
TOPOLOGICAL GALOIS THEORY

Problems of solvability and non-solvability of algebraic, transcendental and differential equa-
tions in explicit form, including Liouville theory, classical and differential Galois theory, and Picard-
Vessiot theory, will be addressed from the geometry and analysis point of view. The course will be
based on the book “Topological Galois Theory” by A. G. Khovanskii (2008, in Russian). Most of its
contents can be found in Khovanskii’s review paper “On solvability and unsolvability of equations
in explicit form,” Russian Math. Surveys, v. 59, pp. 661-736.

The students are not expected to have prior knowledge of any of the above mentioned theories.

1. Overview
- Algebraic equations (Abel, Galois).
- Quadratures (Liouville, Ritt).
- Differential equations (Picard-Vessiot, Kolchin).
- Topological obstructions to solvability (Arnol’d, Khovanskii).

2. Solvability problem setup
- Classes of functions defined by generators and admissible operations.
- Multivalued functions.
- Functions representable by radicals.
- Elementary functions.
- Functions representable by quadratures.
- Generalized elementary, etc., functions.
- Functions representable by k-radicals, etc.

3. Liouville theory: preliminaries
- When an indefinite integral of an elementary function is an elementary function?
- When solutions of a linear differential equation can be represented by (generalized) quadratures?
- A “simple” equation either has a “simple” solution or cannot be solved explicitly.
- Algebraization: replacing composition y = exp(f) and z = log(f) by differential equations y′ = f ′y
and z′ = f ′/f .
- All elementary functions are generated by exp and log.
- Differential fields, elementary and Liouville extensions, generalized and k-extensions.
- Differential function fields and their extensions.

4. Liouville theory: indefinite integrals
- An indefinite integral of a function f ∈ K belongs to a generalized elementary extension of K if
and only if

f = A′
0 +

n∑

i=1

λiA
′
i/Ai, y = A0 +

n∑

i=1

λi log Ai (∗)

where Ai ∈ K for i = 0, . . . , n.
⇒ An indefinite integral y of a generalized elementary function f is a generalized elementary
function if and only if (∗) holds with Ai rational in f and its derivatives.
⇒ An indefinite integral y of an algebraic function f is a generalized elementary function if and
only if (∗) holds with Ai algebraic, single-valued on the Riemann surface of f .
⇒ An indefinite integral I of feg where f 6≡ 0 and g 6≡ const are rational functions is a generalized
elementary function if and only if a′ + ag′ = f for some rational function a. Then I = aeg + C.

5. Liouville theory: linear differential equations
- A second order equation y′′ + py′ + q = 0 with p and q representable by generalized quadratures
can be solved by generalized quadratures if and only if it has a solution y1 = exp

(∫
f(t)dt

)
where
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f is algebraic over the differential field K generated by p and q.
- Higher order equations (Liouville, Mordukhai-Boltovskii, Picard-Vessiot). An equation y(n) +
p1y

(n−1) + . . . + pny = 0 with pi representable by generalized quadratures can be solved by gener-
alized quadratures if and only if
1) It has a solution y1 = exp

(∫
f(t)dt

)
where f belongs to an algebraic extension K1 of the

differential field K generated by pi.
2) The differential equation for z = y′ − (y′1/y1)y of the order (n-1) with coefficients in K1,

obtained by reducing the order of the original equation, is solvable by generalized quadratures
over K1.

6. Galois theory: Solvability of algebraic equations by radicals
- Let V be an algebra over a field K and G a finite commutative group of automorphisms of V .
Assume that char(K) = 0 and K contains n-th roots of 1. Then each x ∈ V is a sum of n-th roots
of elements of the invariant algebra V0.
- For V as above, let G be a finite solvable group of automorphisms of V . Then each x ∈ V can be
obtained from the elements of V0 by extracting roots and summation.
- Permutation group S(n) and solvability of equations of degree ≤ 4.
- Lagrange interpolation polynomials, eigenvectors of commuting matrices, and formulas for solu-
tions of equations of degree ≤ 4.
- Galois group of an algebraic equation. Galois extension of a field and its Galois group.
- Main theorem of Galois theory: Let P be a Galois extension of a field K with the Galois group
G. The Galois correspondence between subgroups H of G and intermediate fields F , K ⊆ F ⊆ P ,
is one-to-one. An intermediate field F is a Galois extension of K, with the Galois group G/H, if
and only if the group H corresponding to F is a normal subgroup of P .
- Galois extension of the field of coefficients and the change of the Galois group of an algebraic
equation.
- An algebraic equation over a field K is solvable by radicals if and only if its Galois group is
solvable.
- Abel’s theorem: The general algebraic equation of degree ≥ 5 is not solvable by radicals.
- k-solvable groups and reduction of the degree of an algebraic equation.

7. Picard-Vessiot theory: Solvability of linear differential equations by quadratures
- Division with remainder for linear differential operators.
- Reduction of order of a linear differential equation.
- Wronskians and the analog of Viète formula for linear differential equations.
- Galois group of a linear differential equation. Picard-Vessiot extension of a differential field.
- Main theorem of Picard-Vessiot theory: Let P be a Picard-Vessiot extension of a differential field
K, with the Galois group G. The Galois correspondence between Zariski closed subgroups H of
G and intermediate differential fields F , K ⊆ F ⊆ P , is one-to-one. An intermediate differential
field F is a Picard-Vessiot extension of K, with the Galois group G/H, if and only if the group H
corresponding to F is a normal subgroup of P .
- Picard-Vessiot extension of the field of coefficients and the change of the Galois group of a linear
differential equation.
- Solvable, k-solvable, almost solvable algebraic groups and solvability of linear differential equations
by quadratures, k-quadratures, generalized quadratures, resp.
- Kolchin’s theory: Quasi-compact and anticompact groups. Special triangular and diagonal groups.
Solvability of linear differential equations by integrals, integrals and radicals, integrals and algebraic
functions, exponentials of integrals, exponentials of integrals and algebraic functions.
- Picard-Vessiot extensions with triangular Galois groups.
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8. Univariate topological Galois theory
- Fields of meromorphic functions on algebraic curves and ramified coverings of the Riemann sur-
faces.
- Galois group of an algebraic equation as its monodromy group.
- Topological obstructions to representability of functions by radicals: An algebraic function is
representable by radicals (k-radicals) if and only if its monodromy group is solvable (k-solvable).
⇒ (Arnol’d) An algebraic function not representable by radicals is also not representable by radi-
cals and any entire functions.
⇒ (Arnol’d) If a meromorphic function g is topologically equivalent to an elliptic function f then
g is an elliptic function (possibly with different periods than those of f). In particular, g is not
elementary.
- Dense sets of ramification points and monodromy groups with a continuum of elements. Functions
analytic outside a “forbidden” set A and their A-monodromy groups. Closed monodromy groups.
- Functions with at most countable set of singular points (S-functions). Closedness under differ-
entiation, integration, composition, substitution into a meromorphic function, solution of algebraic
and linear differential equations.
- Topological obstructions to representability of functions by quadratures, generalized quadratures,
k-quadratures.

9. Topological Picard-Vessiot theory
- Monodromy of a linear differential equation and its Galois group.
- Fuchsian equations. Frobenius theorem: Single-valued solutions of a Fuchsian equation are ratio-
nal functions.
⇒ Zariski closure of the monodromy group of a Fuchsian equation coincides with its Galois group.
- A Fuchsian equation is solvable by quadratures (k-quadratures, generalized quadratures) if and
only if its monodromy group is solvable (k-solvable, almost solvable).
- Monodromy group of a system of linear differential equations and its Galois group.
- Regular singular points of a system of linear differential equations. Regular systems of linear
differential equations.
- For a regular system of linear differential equations, the differential field generated by its solutions
is a Picard-Vessiot extension of the field of rational functions. Its Galois group coincides with the
Zariski closure of its monodromy group.
- Each component of each solution of a regular system of linear differential equations can be ex-
pressed by quadratures (k-quadratures, generalized quadratures) if and only if its monodromy group
is solvable (k-solvable, almost solvable).

10. Multivariate topological Galois theory
- Will be covered if time permits.
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