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ABSTRACT: Sandpile and avalanche models of failure were introduced
recently (Bak et al., 1987, and an avalanche of publications with refer-
ences to this paper) to simulate processes of different nature (earthquakes,
charge density waves, forest fires, etc., including economics) characterized by
self-organized critical behavior. Statistical properties of an important class
of these models, Abelian sandpiles (Dhar, 1990) and Abelian avalanches
(Gabrielov, 1992), can be investigated analytically due to an Abelian group
acting on the phase space. It is shown that the distribution of avalanches in
a discrete, stochastic Abelian sandpile model is identical to the distribution
of avalanches in a continuous, deterministic Abelian avalanche model with
the same redistribution matrix and loading rate vector. For a symmetric
redistribution matrix, recurrent formulas for the distribution of avalanches
in the Abelian avalanche model lead to explicit expressions containing invari-
ants of graphs known as Tutte polynomials. In general case, an analogue of
the Tutte decomposition is suggested for matrices and directed graphs, and
the corresponding expressions for the distribution of avalanches in terms of
directed tree numbers of a directed graph are found. New combinatorial
identities for graphs and directed graphs are derived from these formulas.

Abelian avalanche models. An Abelian avalanche model is defined by a finite set V

of sites and by a redistribution matrix ∆ with indices in V ,

∆ii > 0, for all i; ∆ij ≤ 0, for j 6= i. (1)

At every site i, a value hi, the height at i, is defined. A vector h = {hi, i ∈ V } is called a

configuration of the model. The dynamics of the model is defined by a loading rate vector

v = {vi, i ∈ V } with non-negative components and by a set of thresholds Hi, i ∈ V . A

site i is stable if hi < Hi, and a configuration h = {hi} is stable when hi < Hi, for all i.

A stable configuration evolves in time according to the rule

dh/dt = v.
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An unstable site i breaks, i.e. the heights are redistributed according to the rule

hj → hj −∆ij , for all j, (2)

or h → h − δi, where δi = (∆i1, . . . ,∆iN) is the i-th row vector of ∆, N is the number

of sites. If after this break there are other unstable sites, they also break according to the

rule (2), until every site becomes stable. This sequence of breaks is called an avalanche.

The number of breaks during an avalanche is called its size.

The value si =
∑

j ∆ij is called the dissipation at the site i, and the value s′j =
∑
i ∆ij

is called the codissipation at the site j. It is usually supposed that all the dissipation values

are non-negative. For the combinatorial computations of this paper, it is often more natural

to suppose that the codissipation values are non-negative at all sites. These two conditions

coincide for a symmetric matrix ∆.

Let ∆0 = ∆ − s′ where s′ is a diagonal matrix with s′ii = s′i. A directed graph

Γ = Γ(∆) is defined by the set of vertices V (Γ) = V and an edge drawn from i to j when

∆ij < 0. The matrix ∆0 coincides with the Kirchhoff matrix of Γ with conductances −∆ij

(Tutte, 1984, p.138).

A model is called weakly dissipative if all the dissipation values are non-negative and

the graph Γ(∆) has no non-dissipative sink components, i.e. for every subset W ⊆ V with

sk = 0, for all k ∈W , there exist i ∈W and j 6∈W with ∆ij < 0.

A model is called weakly codissipative if all the codissipation values are non-negative

and the graph Γ(∆) has no non-codissipative source components, i.e. for every subset W

of V with s′k = 0, for all k ∈W , there exist j ∈W and i 6∈W with ∆ij < 0.

It can be shown that each of these two conditions guarantee that every avalanche in

the model is finite, i.e. from any configuration we arrive at a stable configuration after a

finite number of breaks.

A model is called properly loaded if the graph Γ(∆) has no non-loaded source com-

ponents, i.e. for every subset W of V with vk = 0, for all k ∈ W , there exist j ∈ W and

i 6∈W with ∆ij < 0. For a properly loaded model, rate of breaks at every site is positive.
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The threshold values Hi are not relevant for the dynamics of the model. It is conve-

nient to take Hi = ∆ii, for all i. Then hi ≥ 0 if the site i has been broken at least once.

Accordingly, we shall consider only non-negative values of hi, and define the set of stable

configurations S as

S = {0 ≤ hi < ∆ii, for all i}.

Let r = {ri, i ∈ V } be the vector of the break rates per unit time.

Proposition (Dhar, 1990). ∆′r = v where ∆′ is the transpose of ∆.

This implies that ∆′(RV
+) ⊃ RV

+ where RV
+ = {hi ≥ 0, for i ∈ V }. In particular,

det(∆) 6= 0. We have also det(∆) > 0 because all the weakly dissipative (or weakly

codissipative) matrices constitute a convex domain of non-degenerate matrices containing

the unit matrix.

Abelian properties. The following properties (Dhar, 1990; Bjorner and Lovasz, 1991)

play the principal role in the dynamics of our models.

Theorem 1. The stable configuration after an avalanche depends only on the starting

configuration of the avalanche, and does not depend on the possible choice of the order of

breaks during the avalanche.

Hence an avalanche operator A : RV
+ → S is defined. For any vector u with non-

negative components, the load-avalanche operator Cu is defined as follows.

Cu(h) = A(h + u).

Theorem 2. For any two vectors u,v with non-negative components,

Cu · Cv = Cu+v. (3)

Hence every two load-avalanche operators commute, and the result of a series of

loading episodes followed by avalanches is the same as if we do all the loading first, with

one large avalanche in the end.
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Recurrent configurations. A configuration h is called recurrent if there exists an

avalanche started at a configuration with arbitrarily large components, passing through h.

The set of all stable recurrent configurations is denoted by R.

Theorem 3 (Dhar, 1990). The set R is a fundamental domain for the lattice L generated

by the vectors δi, i.e. for every configuration h, there exists precisely one configuration

g ∈ R equivalent to h modulo L.

Corollary. The volume of R is equal to det(∆), and the dynamics of the model on R is

equivalent to a flow on a torus RV /L with the constant rate r. In particular, if Tr = n

where n is a vector with integer components then every trajectory of the model has a

period T , otherwise every trajectory is quasiperiodic.

Theorem 4. Let Q = (∆11, . . . ,∆NN) be the diagonal vector of ∆. For every vector

v =
∑
i ciδi with ci ≥ 0,

A(S + Q + v) = R.

Theorem 5. Let Qn = Q−∆′n and let Vn be an open negative octant with the vertex

at Qn. If n is a vector with integer components at least one of which is positive then Vn

does not contain recurrent configurations.

Theorem 6. For a model with non-negative codissipations, R = S\∪Vn where the union

is taken over all non-zero integer vectors n with components 0 or 1.

This theorem is equivalent to the description of R as the set of those stable configu-

rations which do not contain forbidden subconfigurations (Dhar, 1990). For a subset W

of V , a subconfiguration {hi, i ∈W} is called forbidden if

hj < −
∑
i∈W\j

∆ij , for all j ∈W.

The proof of Theorem 6 includes the following identity for a determinant of an arbitrary

matrix ∆.
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det(∆) =
∑
l≥0

(−1)|V |−|Vl|
∑

∅=V0⊂...⊂Vl

∏
j 6∈Vl

∆jj

l∏
i=1

∏
j∈Vi\Vi−1

∑
ν∈Vi\j

∆νj.

Marginally stable recurrent configurations. Let Ri = R∩ {hi = ∆ii} be the set of

recurrent configurations where the avalanches starting with the break at the site i originate.

Here R is the closure of R.

Theorem 7. For a model with positive codissipations, the volume of Ri is equal to

det(∆)(∆−1)ii = det(∆(i)) where ∆(i) is the i-th principal minor of ∆.

Theorem 8. The mean per unit time number of avalanches started at i in the model

with positive codissipations is equal to vi(∆
−1)ii. For the model with non-negative codis-

sipations the same is true if we count every avalanche with the multiplicity equal to the

number of breaks of its starting site.

Avalanche models vs. sandpile models. An Abelian sandpile model (Dhar, 1990) is

defined in the same way as the Abelian avalanche model, for an integer matrix ∆, except

the values of hi are integer, time is discrete, and the loading rate v is random, with the

probability vi to add 1 to the value hi at every time step.

Theorem 9. For every site i ∈ V and every sequence of non-negative integers kj , j ∈ V ,

the mean number per time step of avalanches in an Abelian sandpile model started at

i and such that every site j breaks kj times during the avalanche, is equal to the mean

number per unit time of avalanches with the same property in an Abelian avalanche model

with the same redistribution matrix ∆ and the same loading vector v. In case of periodic

behavior of the Abelian avalanche model, the average over all periodic trajectories should

be taken.

In particular, the distributions of sizes of avalanches in the two types of models are

identical.
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Tutte decomposition for symmetric matrices and graphs. For a symmetric matrix

∆, we define the operation of deletion Ds
ij(∆) as

∆ii → ∆ii + ∆ij , ∆jj → ∆jj + ∆ij , ∆ij → 0, ∆ji → 0.

The operation of contraction Cs
ij(∆) is defined as

∆ii → ∆ii + ∆jj + 2∆ij , ∆ik → ∆ik + ∆jk, ∆ki → ∆ki + ∆kj , for k 6= i, j,

with the j-th row and column of ∆ removed. We call these operations the Tutte decom-

position of a symmetric matrix ∆.

Theorem 10. For every symmetric matrix ∆,

det(∆) = det(Ds
ij(∆))−∆ij det(Cs

ij(∆)).

Due to the corollary of Theorem 3, for the model with symmetric redistribution matrix

∆ and the loading rate vi = si > 0, for all i, every trajectory has period 1, and every site

breaks once during this period. Hence a periodic trajectory with m avalanches defines a

partition of the set V into subsets V1, . . . , Vm and starting sites iν ∈ Vν , for ν = 1, . . . ,m.

Let X(∆) = X(∆;V1, . . . , Vm; i1, . . . , im) be the volume of all periodic trajectories

with avalanches V1, . . . , Vm and starting sites i1, . . . , im.

Lemma. For i = iν and j ∈ Vν , j 6= i,

X(∆)

si
=
X(Ds

ij(∆))

si
−∆ij

X(Cs
ij(∆))

si + sj
.

Theorem 11. The volume of all periodic trajectories with m avalanches started at sites

i1, . . . , im is si1 . . . sim det(∆i1,...,im), the term with si1 · · · sim in the expansion of det(∆) =

det(∆0 + s) in si.

Here s is the diagonal matrix with sii = si and ∆i1,...,im is the minor of ∆0 corre-

sponding to removal of the rows and columns i1, . . . , im.
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Theorem 12. The volume fm(∆) of all periodic trajectories with m avalanches satisfies

fm(∆) = fm(Ds
ij(∆))−∆ijfm(Cs

ij(∆)).

Theorem 13.
∑
m≥1 fm(∆)zm = det(∆0 + zs).

If the matrix ∆ is integer, we define a graph G = G(∆) with the set of vertices

V (G) = V and nij = −∆ij edges drawn between i and j. The matrix ∆0 is the Laplace

matrix of G, the operation Ds
ij corresponds to the deletion of all edges of G between i and

j, and the operation Cs
ij corresponds to the contraction of all edges of G between i and

j. These operations constitute the Tutte decomposition of G. In particular, the number

T (G) of spanning trees of G satisfies (Tutte, 1984, p.40)

T (G) = T (Ds
ij(G)) + nijT (Cs

ij(G)). (4)

In general, invariants of graphs satisfying (4) are called Tutte polynomials.

Theorem 14. For an integer symmetric matrix ∆,

det(∆) =
∑
m≥1

∑
G1,...,Gm

 m∏
ν=1

T (Gν)
∑

i∈V (Gν)

si

 . (5)

Here the second sum is taken over all partitions of G(∆) into m induced subgraphs

G1, . . . , Gm.

Due to Theorem 11, the expression in brackets in (5) is equal to the total volume of

periodic trajectories with m avalanches V (G1), . . . , V (Gm).

Theorem 15. The mean per unit time number of avalanches in an Abelian avalanche

model with an integer symmetric matrix ∆ and vi = si > 0, for all i, is equal to

1

det(∆)

∑
m≥1

m
∑

G1,...,Gm

m∏
ν=1

s(Gν)T (Gν).

Due to Theorem 9, the same is valid for the mean per time step number of avalanches

in an Abelian sandpile model.
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Tutte decomposition for non-symmetric matrices and directed graphs. For an

arbitrary matrix ∆, we define deletion operation Dij(∆) as

∆ii → ∆ii + ∆ji, ∆ji → 0,

and contraction operation Cij(∆) as

∆ik → ∆ik + ∆jk, for all k,

with the j-th row and the j-th column removed. We call these operations the Tutte

decomposition of a matrix ∆.

Theorem 16. For an arbitrary matrix ∆,

det(∆) = det(Dij(∆))−∆ji det(Cij(∆)).

Due to the Corollary from Theorem 3, for the Abelian avalanche model with the

loading rate vi = s′i > 0, for all i, every trajectory has period 1, and every site breaks once

during this period. Let X(∆) = X(∆;V1, . . . , Vm; i1, . . . , im) be the volume of all periodic

trajectories with avalanches V1, . . . , Vm and starting sites i1, . . . , im.

Lemma. For i = iν and j ∈ Vν , j 6= i,

X(∆) = X(Dij(∆))−∆jiX(Cij(∆)).

Theorem 17. The volume of all periodic trajectories with m avalanches started at sites

i1, . . . , im is s′i1 . . . s
′
im

det(∆i1,...,im), the term with s′i1 · · · s′im in the expansion of det(∆) =

det(∆0 + s′) in s′i.

Here s′ is the diagonal matrix with s′ii = s′i and ∆i1,...,im is the minor of ∆0 corre-

sponding to removal of the rows and columns i1, . . . , im.

If the matrix ∆ is integer, we define a directed graph G = G(∆) with the set of

vertices V (G) = V and nij = −∆ji edges drawn from i to j (note inverse order of indices).
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The matrix ∆0 = ∆− s′ is the Laplace matrix of G, the operation Dij corresponds to the

deletion of all edges of G from i to j, and the operation Cij corresponds to the deletion of

all edges of G entering j and the contraction of all edges of G from i to j, the contracted

vertex denoted by i. We call these operations a Tutte decomposition of a directed graph

G.

Theorem 18. For a vertex k of G, let T (G; k) be the number of all spanning trees in G

directed from k. Then

T (G; k) = T (Dij(G); k) + nijT (Cij(G); k).

In case k = j, the vertex k is absent in Cij(G) and T (Cij(G); k) = 0.

Theorem 19. For an integer matrix ∆,

det(∆) =
∑
m≥1

∑
G1...Gm

∑
i1,...,im

[
m∏
ν=1

T (Gν ; iν)s
′
iν

]
. (6)

Here the second sum is taken over all partitions of G(∆) into m induced subgraphs

G1, . . . , Gm, and the third sum is taken over all m-tuples {iν ∈ V (Gν)}.

Due to Theorem 17, the term in brackets in (6) is equal to the total volume of periodic

trajectories with m avalanches V (G1), . . . , V (Gm) started at i1, . . . , im.

Acknowledgements. This work was done when the author was visiting Cornell Univer-

sity, under NSF grant #EAR-91-04624, and Rutgers University, under NSF grant #DMS-

92-13357.

REFERENCES

P. Bak, C. Tang and K. Wiesenfeld, 1987. Phys. Rev. Lett. 59, 381

A. Bjorner, L. Lovasz, 1991. Chip firing games on directed graphs, preprint.

D. Dhar, 1990. Phys. Rev. Lett. 64, 1613.

A. Gabrielov, 1992. Abelian avalanches and Tutte polynomials, preprint. To appear

in Physica A.

W.T. Tutte, 1984. Graph Theory. Addison-Wesley Publishing Company.


