Chapter 10

Differentials/Tangent bundle (Continued)

10.1 Derivative of map

Suppose that $F : R \to S$ is a homomorphism of k-algebras. Then there exists an S-module homomorphism

$$dF : S \otimes_R \Omega_R \to \Omega_S$$

(10.1)

sending $s \otimes dr \mapsto sd(F(r))$.

Example 10.1.1. Let $F : k[y_1, \ldots, y_m] \to k[x_1, \ldots, x_n]$ given by sending $y_i \to f_i(x_1, \ldots, x_n)$. Then from the definition

$$dF(1 \otimes dy_i) = df_i = \sum_j \frac{\partial f_i}{\partial x_j} dx_j$$

Thus

$$S^m \cong S \otimes_R \Omega_R \xrightarrow{dF} \Omega_S \cong S^n$$

is given by the Jacobian matrix.

As the above example makes clear, dF can be thought of as the derivative of F.

Suppose $f : X \to Y$ is a map of affine varieties with $p \in X$ and $q = f(p)$. Then let R and S be the local rings at q and p respectively, and $F : R \to S$ the associated homomorphism. Then from proposition 9.2.1, we see that dF induces a map between the tangent spaces $T_p X \to T_q Y$. This can be constructed more directly. Since F is local, it takes the maximal ideal $m_R \subset R$ to $m_S \subset S$. Therefore it induces a linear map

$$m_R/m_R^2 \to m_S/m_S^2$$

The dual map is precisely above map $T_p X \to T_q Y$.

63
10.2 Nonaffine varieties

Let X be an affine variety (or scheme) with coordinate ring R. This ring is noetherian in the case of varieties, and we will assume this in the scheme case. Given a finitely generated R-module M, we can find a surjection $f : R^n \to M$ for n. The kernel $\ker f$ is again finitely generated, because R is noetherian. Therefore we can find a surjection $R^m \to \ker f$. We can combine this into an exact sequence

$$R^m \to R^n \to M \to 0$$

called a presentation for M. Recall that we have a sheaf of rings \mathcal{O}_X such that for any basic open set

$$\mathcal{O}_X(D(f)) = R[1/f]$$

We note that any element of r gives rise to a morphism $\mathcal{O}_X \to \mathcal{O}_X$ sending to $1 \mapsto r$. We want to extend this to M. We can use the presentation to construct a morphism

$$\mathcal{O}_X^m \to \mathcal{O}_X^n$$

We define the presheaf

$$\tilde{M}'(U) = \text{coker } \mathcal{O}_X^m(U) \to \mathcal{O}_X^n(U)$$

We turn this into a sheaf by sheafifying

$$\tilde{M} = (\tilde{M}')^+$$

We have the following properties

Proposition 10.2.1.

1. \tilde{M} is a sheaf of \mathcal{O}_X-modules, i.e. $\tilde{M}(U)$ is an $\mathcal{O}_X(U)$-module and the module compatible with restriction.

2. \tilde{M} as a sheaf of modules does not depend on the presentation.

3. $\tilde{M}(D(f)) \cong M[1/f]$.

An \mathcal{O}_X-module which arises this way is called coherent. In the nonaffine, coherence means that the module is locally of the form \tilde{M} for a finitely generated module. We apply the construction to Ω_R and T_R to get the sheaf of Kähler differentials

$$\Omega_X = \tilde{\Omega}_R$$

and the tangent sheaf

$$T_X = \tilde{T}_R$$

We can extend these constructions to general varieties or schemes.

Theorem 10.2.2. Given a variety X (or scheme over Spec k), there exists coherent \mathcal{O}_X-modules Ω_X and T_X which are given by the last two formulas when restricted to an affine open set.
Sketch. Choose a cover \{U_i\} by open affines. The sheaves are obtained by gluing the sheaves \(\Omega_{U_i}, \mathcal{T}_{U_i}\) in the appropriate sense. Most books will use a different construction, however.

Example 10.2.3. Let \(X = \mathbb{P}^1_k\). We use the standard open covering by \(U_0, U_1\) by two affine lines. The first has coordinate \(x\) and the second has coordinate \(y = x^{-1}\). Given a regular differential \(f(x)dx\) on \(U_0\), it transforms to \(-f(y^{-1})y^{-2}dy\) on \(U_1\). Thus we can conclude that there are no nonzero regular differentials on \(\mathbb{P}^1\).

We want to construct an analogue of (10.1). First we replace \(F\) by a regular map \(f : X \to Y\). Given a sheaf \(\mathcal{F}\) on \(Y\), we define the pullback by

\[f^{-1}\mathcal{F}(U) = \mathcal{F}(f(U)) \]

if \(f(U)\) were open. In general, we approximate by opens and set

\[f^{-1}\mathcal{F}(U) = \lim_{V \supset f(U)} \mathcal{F}(V) \]

If \(\mathcal{F}\) is an \(\mathcal{O}_Y\)-module, then \(f^{-1}\) is an \(\mathcal{O}_{f^{-1}\mathcal{O}_Y}\)-module. We define the inverse image \(f^*\mathcal{F}\) to be the sheafification of the presheaf

\[U \mapsto \mathcal{O}_X(U) \otimes_{f^{-1}\mathcal{O}_Y(U)} f^{-1}\mathcal{F}(U) \]

These operations can be understood in terms of their stalks

Lemma 10.2.4. For any \(p \in X\), the stalks

\[f^{-1}\mathcal{F}_p \cong \mathcal{F}_{f(p)} \]

\[f^*\mathcal{F}_p \cong \mathcal{O}_{X,p} \otimes \mathcal{O}_{Y,f(p)} \mathcal{F}_{f(p)} \]

Now we can define what we were after.

Proposition 10.2.5. Given a regular map of varieties \(f : X \to Y\), there exists a morphism \(f^*\Omega_Y \to \Omega_X\), such that on stalks, it coincides with the map

\[\mathcal{O}_{X,p} \otimes \Omega_{Y,f(p)} \to \Omega_{X,p} \]

given by (10.1).

10.3 The genus of a curve

Let \(X\) be a nonsingular projective curve over an algebraically closed field \(k\). The genus of \(X\) is the dimension

\[g = \dim_k \Omega^1_X(X) \]
It is not a priori clear that this number is finite, but it is. From the last section, we know that the genus of \mathbb{P}^1 is zero. To facilitate computation of more examples, we give an alternative. Let $K = k(X)$ be the field of rational functions on X. This is a field of transcendence degree 1. Given a point $p \in X$, we can form the local ring $O_p = O_{X,p} \subset K$. Since X is a curve, $\dim O_p = 1$. Since X is nonsingular, $\dim m/m^2 = 1$. This implies (by Nakayama’s lemma) that m is principal. Therefore O_p is a discrete valuation ring. This means that there is a function

$$ord_p : K \to \mathbb{Z} \cup \{\infty\}$$

such that

1. $ord_p : K^* \to \mathbb{Z}$ is a surjective homomorphism.
2. $ord_p(0) = \infty$
3. $ord_p(f + g) \geq \min(\text{ord}_p(f), \text{ord}_p(g))$
4. $f \in O_p$ if and only if $\text{ord}_p(f) \geq 0$.

A function satisfying (1), (2), (3) is called a discrete valuation. (Surjectivity is not usually required, but it simplifies the story.) We point out the following useful fact. Although we won’t actually need it.

Theorem 10.3.1. Every discrete valuation arises, as above, from a unique $p \in X$.

We can form the K-vector space $\Omega_K = \Omega^1_{K/k}$. This is can be seen to be one dimensional. It is spanned by df for any nonconstant $f \in K$. We want to extend ord_p to Ω_K. First choose a generator x for $m \subset O_p$, called a local parameter at p. If $\omega = fx \in K^*$, define

$$ord_p \omega = ord_p(f)$$

So in particular, $ord_p dx = 0$.

Lemma 10.3.2. This is well defined.

Proof. If x' is another local parameter, we can write $x' = ux$, with $ord_p u = 0$. Then $ord_p (dx') = ord_p (udx + xdu) = 0$. \qed

We define the space of regular differentials by $\{\omega \in \Omega_K \mid \forall p \in X, ord_p \omega \geq 0\}$

Lemma 10.3.3. $\Omega^1_X(X)$ is precisely the space of regular differentials.

We are now ready to do a basic example. Assume that $\text{char } k \neq 2$. Choose $2g + 2$ distinct points $a_i \in \mathbb{A}^1_k$. Let $C_1 \subset \mathbb{A}^2_k$ be defined by

$$y^2 = \prod (x - a_i)$$
We want to complete this to a nonsingular projective curve C. The closure in \mathbb{P}^2_k is usually singular, so instead we use a gluing construction. Let $C_2 \subset \mathbb{A}^2_k$ be given by
\[
Y^2 = \prod (1 - a_iX)
\]
We glue $C = C_2 \cup C_1$ by identifying $X = x^{-1}$ and $Y = yx^{-g-1}$. C is called a hyperelliptic curve, although technically this name is reserved for when $g > 1$. We have a regular map $C \to \mathbb{P}^1$ given by projection to the x-axis for C_1. This map is 2 to 1 everywhere except over the a_i's. These are called branch, or ramification, points. In algebraic terms, we have a degree two extension $k(\mathbb{P}^1) \subset K = k(C)$.

Theorem 10.3.4. When $g > 0$, $\omega = \frac{dx}{y} \in \Omega_K$ is regular.

Proof. We just have to check that $\text{ord}_p \omega \geq 0$ for all $p \in C$. It suffices to do this for p lying over a_i or ∞. In the first case, we can assume with loss of generality that $i = 1$, and $a_1 = 0$. Let $u = (x - a_2)(x - a_3) \ldots$. Then
\[
\text{ord}_0 \frac{dx}{y} = \text{ord}_0 \left(\frac{2dy}{u} - \frac{xdu}{yu} \right) \geq 0
\]
There are two points over ∞ given by to $X = 0$, $Y = \pm 1$. Denote these by $0'$, $0''$. In algebraic terms, we have an inclusion of local rings $\mathcal{O}_\infty \subset \mathcal{O}_{0'}$, and the local parameter X in the first ring extends to a local parameter of the second. The same holds for the second point. In these coordinates
\[
\omega = - \frac{X^{g-1}}{Y} dX
\]
This has nonnegative valuation at these points because $g > 0$.

Corollary 10.3.5. If $g > 0$, C has positive genus. In particular, C is not isomorphic to \mathbb{P}^1_k.

A more detailed analysis will show that
\[
\Omega^1_C(C) = \{ f(x)\omega \mid f(x) \text{ is a polynomial of } \deg < g \}
\]
Therefore the genus of C is exactly g. Some details will be given as exercises.

10.4 Exercises

Exercise 10.4.1.

1. Determine all homomorphisms $F : k[x] \to k[x]$ such that dF is identically 0. The answer depends on char k.

\[^1\text{Technically, branch points are downstairs, and ramification points are upstairs. Although}
\text{some people interchange these terms.}\]
2. Give examples of regular maps from \(f : \mathbb{P}^1_k \to \mathbb{P}^1_k \) such that natural map \(f^*\Omega_{\mathbb{P}^1_k} \to \Omega_{\mathbb{P}^1_k} \) is zero.

3. Given an algebraic group \(G \), with \(g \in G \), define the regular map \(L_g : G \to G \) by \(L_g(h) = gh \). A differential \(\omega \in \Omega_G(G) \) is called left invariant if \(L_g^*\omega = \omega \) for all \(g \in G \). Determine the left invariant differentials for the multiplicative group \(G = G_m = \mathbb{A}^1_k - 0 \).

4. Show that for the hyperelliptic curve \(C \) constructed above, \(f(x) \frac{dx}{y} \) is regular if \(\deg f(x) < g \).