
NOTES ON D-MODULES AND CONNECTIONS WITH HODGE
THEORY

DONU ARAPURA

These notes are almost entirely expository and result from my attempt to learn
this material. The first part summarizes D-module theory up to Riemann-Hilbert.
The second part discusses vanishing cycles in its various forms. This is needed in
the next part which summarizes the basics of Morihiko Saito’s theory of Hodge
modules. My main motivation for going through all this was to convince myself
that Saito’s methods and the more naive construction in [A] yield the same mixed
Hodge structure on the cohomology of a geometric variation of Hodge structure.
The proof of this is given in part 4. Readers interested in just this part, may find
the note [A2] on the“ArXiv” more convenient.

I gave some informal talks on this material at KIAS in Seoul in 2005 and TIFR
Mumbai in 2008. I would them for giving me the opportunity to do so.
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1. D-modules

1.1. Weyl Algebra. Fix a positive integer n. The nth Weyl algebra Dn over C is
the ring of differential operators with complex polynomial coefficients in n variables.
More formally, Dn can be defined as the noncommutative C-algebra generated by
symbols x1, . . . xn, ∂1 = ∂

∂x1
, . . . ∂n = ∂

∂xn
subject to relations

xixj = xjxi

∂i∂j = ∂j∂i

∂ixj = xj∂i, if i 6= j

∂ixi = xi∂i + 1
The last two relations stem from the Leibnitz rule ∂i(xjf) = ∂i(xj)f+xj∂if . These
relations can be expressed more succinctly, using commutators as

[xi, xj ] = [∂i, ∂j ] = 0

[∂i, xj ] = δij

There is a sense in which Dn is almost commutative that I want to explain. From
the defining relations, it follows that any P ∈ Dn can be expanded uniquely as

P =
∑

αI,Jx
I∂J

where I, J ∈ Nn, xI = xI1
1 . . . xIn

n etc. The maximum value of J1 + . . . Jn occurring
in this sum is the order of P . We write FkDn for the space of operators of order
at most k. It is easy to see that FkFm ⊆ Fk+m. Thus the associated graded

Gr(Dn) =
⊕

k

Fk/Fk−1

inherits a graded algebra structure.

Lemma 1.2. Given P,Q ∈ Dn, we have order([P,Q]) < order(P ) + order(Q)

Sketch. It’s enough to check this when P,Q are monomials, i.e. expressions of the
form xI∂J . In this case, it is a straight forward consequence of induction and the
defining relations. �

Corollary 1.3. Gr(Dn) is commutative.

Slightly more work yields:

Theorem 1.4. Gr(Dn) is isomorphic to the polynomial ring C[x1, . . . xn, ξ1, . . . ξn] =
R2n

I want to sketch a slightly nonstandard proof of this. First “quantize” Dn to
obtain a ring Hn which has an additional variable q subject to the relations that q
commutes with xi and ∂j and

[∂i, xj ] = qδij

The remaining relations are the same as for Dn: the x’s and ∂’s commute among
themselves. I will call Hn the Heisenberg algebra, since it nothing but the universal
enveloping algebra of the Heisenberg Lie algebra. We see from the relations that
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Dn = Hn/(q−1) and the “classical limit” Hn/(q) is the polynomial ring R2n, where
(q − λ) is the two sided ideal generated by this element.

Now form the Rees algebra

Rees =
⊕

tkFk ⊂ C[t]⊗Dn

with t a central element. The theorem will follow from the next result which is
straightforward.

Lemma 1.5.
(1) Gr(Dn) ∼= Rees/(t)
(2) The map Rees → Hn sending xi 7→ xi, t∂j 7→ ∂j and t 7→ q is an isomor-

phism.

In more geometric terms, we have an identification between Gr(Dn) and the ring
of polynomial functions on the cotangent bundle T ∗Cn.

1.6. Dn-modules. The notion of a Dn-module gives an abstract way to think
about systems of linear partial differential equations in n-variables. Since the ring
Dn is noncommutative, we have to be careful about distinguishing between left-
modules and right Dn-modules. I will often be lazy, and refer to a left Dn-module
simply as a Dn-module. Here are some examples.

Example 1.7. Dn is automatically both a left and right Dn-module.

Example 1.8. Let Rn = C[x1, . . . xn] be the polynomial ring. This is a left Dn-
module where xi acts by multiplication, and ∂i by ∂

∂xi
.

Example 1.9. Given operators P1 . . . PN ∈ Dn, the left (resp. right) ideal
∑
DnPi

(resp.
∑
PiDn) are left (resp. right) Dn-modules. Likewise for the quotients

Dn/
∑
DnPi (resp. Dn/

∑
PiDn). Note that Rn = Dn/

∑
Dn∂i.

Example 1.10. Given a nonzero polynomial, Rn[f−1] = C[x1, . . . xn, f
−1] is a

Dn-module, where the derivatives act by differentiation of rational functions.

Example 1.11. Let F be any space of complex valued functions on Cn which is
an algebra over the polynomial ring and and closed under differentiation, then it
becomes a left Dn-module as above. In particular, this applies to holomorphic, C∞

and C∞ functions with compact support.

Example 1.12. The space of distributions is the topological dual of the space of
C∞ functions with compact support or test functions. This has a right module
structure defined a follows. Given a distribution δ, a test function φ and P ∈ Dn,
let δP (φ) = δ(Pφ).

The first four examples above are finitely generated. (The last example requires
some thought. In the special case f = x1, we see immediately that x−N

1 can be
obtained by repeated differentiation.)

Fix a space of functions F as in example 1.11. Given a left Dn-module M , define
the space of solutions by

Sol(M) = HomDn(M,F )

To justify this terminology consider the example 1.9 above. We see immediately
that there is an exact sequence

0 → Sol(M) → F
P

Pi−→ FN
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Therefore Sol(M) is the space of solutions of the system Pi(f) = 0.
There is a symmetry between right and left modules that I will refer to as

“flipping”.

Lemma 1.13. There is an involution P 7→ P ∗ of Dn determined by x∗i = xi and
∂∗i = −∂i. Given a right Dn-module M , the operation P ·m = mP ∗ makes M into
a left module, which I denote by FlipR→L(M). This gives an equivalence between
the categories of (finitely generated) left and right modules. The inverse operation
will denote by FlipL→R.

Suppose that M is a finitely generated Dn-module. We define good filtration on
M to be a filtration FpM such that

(1) The filtration FpM = 0 for p� 0 and ∪FpM = M .
(2) Each FpM is a finitely generated Rn-submodule.
(3) FpDn · FqM ⊆ Fp+qM .

Lemma 1.14. Every finitely generated module possess a good filtration.

Proof. Write it as a quotient of some free module DN
n and take the image of

(FpDn)N �

The filtration is not unique, however it does lead to some well defined invariants.
Given a module with good filtration, the associate graded

Gr(M) =
⊕

FpM/Fp−1M

is a finitely generated Gr(Dn)-module. The annihilator of Gr(M) gives an ideal
in Gr(Dn) ∼= R2n. The zero set of this ideal defines a subvariety Ch(M,F ) ⊂
C2n called the characteristic variety or singular support. Since Gr(M) is graded
with respect to the natural grading on Gr(Dn), we see that, the annihilator is
homogeneous. Therefore

Lemma 1.15. Ch(M,F ) is invariant under the action of t ∈ C∗ by (xi, ξj) 7→
(xi, tξj).

We can view this another way. Consider the Rees module Rees(M,F ) = ⊕FpM .
This is a finitely generated module overHn such thatGr(M) = Hn/(q)⊗Rees(M,F ).
So in some sense Ch(M,F ) is the classical limit of M as q → 0.

Theorem 1.16. Ch(M,F ) is independent of the filtration. Thus we can, and will,
drop F from the notation.

Example 1.17. In the previous examples, we see that
(1) The annihilator of Gr(Dn) is 0, so that Ch(Dn) = C2n.
(2) Taking Rn = Dn/

∑
Dn∂i, yields Gr(Rn) = C[x1, . . . xn]. Its annihilator

is the ideal (ξ1, . . . ξn). Therefore Ch(Rn) = Cn × 0
(3) Let M = R1[x−1], where we x = x1. Then 1, x−1 generate M . Let

FkM = Fk · 1 + Fk · x−1 = C[x]x−k−1

This gives a good filtration. A simple computation shows that

Gr(M) ∼= C[x, ξ]/(ξ)⊕ C[x, ξ]/(x)

So Ch(M) = V (xξ) is a union of the axes.
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Theorem 1.18 (Bernstein’s inequality). For any nonzero finitely generated Dn-
module, we have dimCh(M) ≥ n.

There are a number of ways to prove this. Perhaps the most conceptual, though
not the easiest, way is to deduce it from the involutivity of the annihilator [Ga].
This means that this ideal is closed under the Poisson bracket induced from the
symplectic structure of C2n = T ∗Cn. This implies that the tangent space of any
smooth point p ∈ Ch(M) satisfies T⊥p ⊆ Tp, and the inequality follows. Note that
the C∗-action of lemma 1.15 is precisely the natural action on the fibers of the
cotangent bundle.

We say that finitely generated Dn-module M is holonomic if dimCh(M) = n or
if M = 0. Thanks to Bernstein’s inequality, this is equivalent to dimCh(M) ≤ n.
For example Rn and R1[x−1] are holonomic, but Dn isn’t.

Proposition 1.19. The class of holonomic modules is closed under submodules,
quotients and extensions. Therefore the full subcategory of holonomic modules is
Abelian.

Proof. One checks that Ch(M2) = Ch(M1) ∪ Ch(M3) for any exact sequence 0 →
M1 →M2 →M3 → 0. �

From the symplectic viewpoint, holonomic modules are precisely the ones with
Lagrangian characteristic varieties. There is also a homological characterization of
such modules.

Theorem 1.20. A finitely generated Dn-module is holonomic if and only if Exti(M,Dn) =
0 for i 6= n. If M is holonomic, then the module Extn(M,Dn) is a finitely generated
holonomic right Dn-module. The contravariant functor M 7→ FlipR→LExtn(M,Dn)
is an involution on the category of holonomic modules.

Corollary 1.21. Holonomic modules are artinian (which means the descending
chain condition holds).

Sketch. Any descending chain in M gets flipped around to an ascending chain in
N = Extn(M,Dn). Dn is known to be right (and left) noetherian, so the same
goes for N . �

It will follow that holonomic modules can built up from simple holonomic mod-
ules.

1.22. Inverse and direct image. Suppose that X = Cn with coordinates xi and
Y = Cm with coordinates yj . Consider a map F : X → Y given by

F (x1, . . . xn) = (F1(x1, . . . xn), . . .)

where the Fi are polynomials. Let OX = C[x1, . . . xn], and OY = C[y1, . . . yn], and
let DX and DY denote the corresponding Weyl algebras. (To avoid confusion, I
will label the derivatives ∂xi

etc.) Then F determines an algebra homomorphism

OY → OX

f 7→ f ◦ F
Given a left DY -module M , we define a left DX module F ∗M , called the inverse
image, as follows. First define

F ∗M = OX ⊗OY
M
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as an OX -module. We now define an action of the derivatives by the chain rule

∂xi
(f ⊗m) =

∂f

∂xi
⊗m+

∑
j

f
∂Fj

∂xi
⊗ ∂yj

m

Lemma 1.23. This formula determines a DX-module structure on F ∗M

Example 1.24. Let X = Cn with coordinates x1, . . . xn, Y = Cn−1 with coordi-
nates x1, . . . xn−1. Let p(x1, . . . xn) = (x1, . . . xn−1). Then

p∗M = C[xn]⊗C M

Given f(xn) ⊗ m, xn and ∂n acts in the usual way through the first factor, and
remaining generators of DX act through the second.

There is a second description that is useful. Define

DX→Y = F ∗DY = OX ⊗OY
DY

This has the structure of a left DX -module as above, as well as a right DY -module
structure, where DY acts by right multiplication on itself in the above formula.
These two actions commute, so they determine a so called bimodule structure. If
we flip both of these actions, we get left DY right DX bimodule

DY←X = FlipL→R
DX

FlipR→L
DY

(DX→Y ).

Lemma 1.25. f F ∗M = DX→Y ⊗DY
M

Proof.

F ∗M = OX ⊗OY M = (OX ⊗OY
DY )⊗DY

M = DX→Y ⊗DY
M

�

Given a left DX -module N , the direct image

F∗N = DY←X ⊗DX
N

is a left DY -module. This operation is sometimes denoted with an integral sign to
suggest the analogy with integration along the fibers.

Example 1.26. Let X = Cn with coordinates x1 . . . xn, Y = Cn+1 with coordi-
nates x1, . . . xn+1 and suppose i(x1, . . .) = (x1, . . . xn, 0). We have i∗M = MN, a
countable direct sum. Here x1, ∂1, x2, . . . ∂n acts as componentwise using the given
DX-module structure, xn+1 acts by 0, ∂n+1 acts as the shift operator

(m1,m2, . . .) 7→ (0,m1,m2, . . .)

Thus it is more suggestive to write

i∗M =
⊕

j

∂j
n+1M

These operations are compatible with composition, as one would hope.

Theorem 1.27. If F : X → Y and G : Y → Z are polynomial maps of affine
spaces, then for any DZ-module M and DX-module M , we have

(1) (G ◦ F )∗M ∼= F ∗G∗M
(2) (G ◦ F )∗N ∼= G∗F∗N .

Theorem 1.28. These operations preserve finite generation and holonomicity.
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Since any map can be factored as an embedding followed by a projection, it
suffices by the theorem 1.27 to check these two cases. This theorem provides many
additional examples of holonomic modules.

1.29. Differential operators on affine varieties. Let X be a nonsingular affine
variety over C. This is a complex manifold which can be described as the set of
solutions to a system of polynomial equations in some Cn. We write R(X) for ring
regular (= polynomial) functions on X. This is a finitely generated commutative
algebra. A differential operator of order ≤ k on X is a C-linear endomorphism T
of R(X) such that

[. . . [[T, f0], f1] . . . fk] = 0

for all fi ∈ R(X). Let Diffk(X) denote the space of these operators. We define

DX =
⋃

Diffk(X)

Lemma 1.30. DX becomes a ring under composition such that DiffkDiffm ⊂
Diffk+m.

We note the following characterization (c.f. [K2, lemma 1.7]) which sometimes
useful.

Proposition 1.31. DX is a quotient of the univeral enveloping algebra of the
Lie algebra of vector fields DerC(R(X)) by the relations [ξ, f ] = ξ(f) for all ξ ∈
DerC(R(X)) and f ∈ R(X).

When X = Cn, (DX ,Diff•) = (Dn, F•). Everything that we have done so far
generalizes to the setting of affine varieties. For example

Theorem 1.32. The associated graded with respect to Diff• is isomorphic to the
ring of regular functions on the cotangent bundle T ∗X.

We can define left/right D-modules as before. All of the previous examples
generalize. We give a new example.

Example 1.33. Let f ∈ Rn, and let X be complement of the zero set of f in Cn.
This is an affine variety with coordinate ring R = Rn[ 1

f ]. Let A =
∑
Aidxi be an

r × r matrix of 1-forms with coefficients in R satisfying the integrability condition
[Ai, Aj ] = 0. Then M = Rr carries a left DX-module structure with

∂iv =
∂v

∂xi
+Aiv; v ∈M

Note that this construction is equivalent to defining an integrable connection on
M . There are nontrivial examples only when X is non-simply connected, and in
particular none unless f 6= 1.

The “flipping” operation for affine varieties is more subtle than before. Let ωX

denote the canonical module or equivalently the module of algebraic n-forms, where
n = dimX. This has right DX module structure dual to left module structure on
R(X). Heuristically, this can be undertood by the equation∫

X

(αP )f =
∫

X

α(Pf)
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where α is an n-form, P a differential operator, and f a function and X is replaced
by a compact manifold. A rigorous definition can be given via the Lie derivative
L. Given a vector field ξ and an element of α ∈ ωX ,

Lξω(ξ1, . . . ξn) = ξ(ω(ξ1, . . . ξn)) +
∑

ω(ξ1, . . . [ξ, ξi], . . . ξn)

Then ω · ξ = −Lξα can be shown to extend to a right action of the whole ring DX

with the help of proposition 1.31. Under this action, the difference (αP )f −α(Pf)
can be shown to be exact, and so above integral formula would follow.

Lemma 1.34. If M is a left DX-module, then FlipL→R(M) = ωX⊗R(X)M carries
a natural right DX-module structure. This operation induces an equivalence between
the categories of left and right DX-modules; its inverse is FlipR→L(N) = ω−1

X ⊗N .

Note that ωCn ∼= Rn, which was why we could ignore it.
The notions of characteristic variety and holonomocity can be defined as before.

The characteristic variety of example 1.33 is X embedded in T ∗X as the zero
section. Therefore it is holonomic.

Given a morphism of affine varieties F : X → Y , we can define bimodulesDX→Y ,
DY←X , and inverse and direct images as before.

1.35. Non-affine varieties. Now we want to generalize to the case where X is a
nonsingular non-affine variety, for example projective space Pn. First, recall that in
its modern formulation a variety consists of a space X with a Zariski topology and
a sheaf of commutative rings OX , such that for any open set OX(U) is the space
of regular functions [Ha]. By definition, X possesses an open covering by affine
varieties. Our first task is to extend DX to this world:

Lemma 1.36. There exists a unique sheaf of noncommutative rings DX on X such
that for any affine open U , DX(U) is the ring of differential operators on U .

We can define a filtration by subsheaves FpDX ⊂ DX as above. The previous
result globalizes easily to:

Theorem 1.37. The associated graded is isomorphic to π∗OT∗X where π : T ∗X →
X is the cotangent bundle.

A left or right DX -module is sheaf of left or right modules over DX . For example,
OX (resp. ωX) has a natural left (resp. right) DX -module structure. DX has both.
We have an analogue of lemma 1.34 in this setting, so we can always switch from
right to left.

We will be primarily interested in the modules which are coherent (i.e. locally
finitely generated) over DX . The notion of good filtration for a DX -module M
can be extended to this setting. The associated graded Gr(M) defines a sheaf over
the cotangent bundle, and the characteristic variety Ch(M) is its support. This
depends only on M as before and is C∗-invariant. We have Bernstein’s inequality
dimCh(M) ≥ dimX, and M is holonomic if equality holds. We again have:

Proposition 1.38. The full subcategory of holomonic modules is an artinian Abelian
category.

Given a morphism of varieties F : X → Y , we define

DX→Y = OX ⊗F−1OY
F−1DY
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where F−1 is the inverse image in the category of sheaves [Ha]. This is a left DX

right F−1DY bimodule. We define a right DX left F−1DY bimodule by flipping
both actions:

DY←X = FlipL→R
DX

FlipR→L
F−1DY

(DX→Y )

As an OX -module, it this is isomorphic to ωX ⊗DX→Y ⊗ F ∗ω−1
Y .

Given a left DY -module M , we can define the naive1 inverse image as the DX -
module:

F ∗nM = DX→Y ⊗F−1DY
F−1M

For a left DX -module N , the naive direct image as the DY -module

Fn
∗ N = F∗(DY←X ⊗DX

N)

where F∗ on the right is the sheaf theoretic direct image.
The above definitions proceed in complete analogy with the affine case. The bad

news is that the naive direct image is somewhat pathological. For example, the
composition rule (theorem 1.27) may fail. The solution is to work in the setting
of derived categories. Let Db(DX) denote the bounded derived category of quasi-
coherent left DX -modules. The objects of this category are bounded (i.e. finite)
complexes of left DX -modules. Two objects are isomorphic in Db(DX) if and only
if they are quasi-isomorphic in the usual sense i.e. possess isomorphic cohomology
sheaves. More formally, Db(DX) is constructed in two steps: first one passes to
the homotopy category Kb(DX) where morphisms are homotopy classes of maps
between complexes, then the quasi-isomorphisms are inverted by a procedure analo-
gous to localization in commutative algebra. The details can be found, for example,
in [Bo, GM]. The categories Kb(DX) and Db(DX) are not abelian, so that exact
sequences are not meaningful inside them. However, these categories are trian-
gulated, which means that they are equipped with a collection of diagrams called
distinguished triangles, and this provides a reasonable substitute. The functors
F∗,⊗, . . . extend to derived functors RF∗,⊗L, . . . between these derived categories.
In practice, this involves replacing a given complex by an appropriate (injective,
flat...) resolution, before applying the functor. Taking cohomology sheaves, yields
functors Hi : Db(DX) →M(DX) to the category of DX -modules.

We can define the inverse image

F ∗ : Db(DY ) → Db(DX)

by

F ∗M• = DX→Y ⊗L
F−1DY

F−1M•

and the direct image F∗ : Db(DX) → Db(DY ) by

F∗N
• = RF∗(DY←X ⊗L

DX
N•)

These behave well under composition. At the end of the day, we can compose these
operations with Hi to get actual D-modules.

1This is nonstandard terminology.
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1.39. Connections. Let E be a vector bundle on a nonsingular variety X, i.e. a
locally free OX -module. A DX -module structure on E is the same thing as an
integrable connection on E, which is given locally as in example 1.33. Globally,
this is a C-linear map from the tangent sheaf

∇ : TX → End(E)

such that ∇(v) is a derivation and such that ∇ preserves Lie bracket

∇([e1, e2]) = [∇(e1),∇(e2)]

Equivalently, it is given by a C-linear map

∇ : E → Ω1
X ⊗ E

satisfying the Leibnitz rule and the having curvature ∇2 = 0.
From, the local description, it is easy to see that the characteristic variety of an

integrable connection is the zero section of T ∗X. Thus it is holonomic. Conversely,

Proposition 1.40. M is a vector bundle with integrable connection if and only if
its characteristic variety is the zero section of T ∗X

Corollary 1.41. If M is a holonomic module, there exists an open dense set U ⊆ X
such that M |U is an integrable connection.

Proof. We can assume that the support of M is X, otherwise the statement is
trivially true. Then the map Ch(M) → X is generically finite, and therefore finite
over some open U ⊂ X. Since Ch(M) ∩ T ∗U is C∗ invariant, it must be the zero
section. �

Given a morphism F : X → Y and an integrable connection (E,∇) on Y .
The pullback of the associated DY -module coincides with the pullback F ∗E in
the category of O-modules with its induced connection. If (E′,∇′) is an integrable
connection on X, then the pushforward of the associated DX -module does not come
from a connection in general. However, there is one important case where it does,
see section 1.56.

We finally discuss the notion of regular singularities which is a growth condition
at infinity. The classical condition is the following.

Example 1.42. Let A be an r × r matrix of rational 1-forms on P1. Let U be the
complement of the poles in P1 of the entries of A, and let j : U → P1 the inclusion.
Then we can define a DU -module structure on M = Or

U by

∂v =
dv

dx
+Av

M is holomonic. The DX-module j∗M has regular singularities if and if the dif-
ferential equation ∂v = 0 has regular singularities in the classical sense; this is the
case if the poles of A are simple.

In general, we have the following extension due to Deligne. A vector bundle
(E,∇) with a connection on a smooth variety X has regular singularities if there
exists a nonsingular compactification X̄, with D = X̄ − X a divisor with normal
crossings, such that (E,∇) extends to a vector bundle with a map

∇̄ : Ē → Ω1
X(logD)⊗ Ē
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The notion of regular singularities can be extended to arbitrary holonomic DX -
modules. If M is a simple holonomic module with support Z, then M |Z is gener-
ically given by an integrable connection as above. Say that M has regular singu-
larities if this connection is regular. In general, M has regular singularities if each
of its simple subquotients have regular singularities. This notion behaves well with
respect to the operations defined earlier. See [Be, Bo, K2] for details.

1.43. Riemann-Hilbert correspondence. In the 19th century Riemann com-
pletely analyzed the hypergeometric equation in terms of its monodromy. Hilbert,
in his 21st problem, proposed that a similar analysis should be carried out for more
general differential equations. Here I want to explain a very nice interpretation and
solution in D-module language due to Kashiwara-Kawai and Mebkhout.

Fix a smooth variety X over C. We can treat X as a complex manifold, and we
denote this by Xan. Most algebraic objects give rise to corresponding analytic ones,
usually marked by “an”. In particular, DXan-module is the sheaf of holomorphic
differential operators. Any DX -module gives rise to a DXan-module.

Let Ωp
Xan denote the sheaf of holomorphic p-forms on Xan. Recall that we have

a complex, Ω•Xan , called the de Rham complex, which is quasi-isomorphic to the
constant sheaf CXan . We can modify this to allow coefficients in any DXan-module
M :

DR(M)• = Ω•Xan ⊗OXan M [dimX]
(The symbol [n] mean shift the complex n places to the left). The differential is
given in local coordinates by

d(dxi1 ∧ . . . ∧ dxip
⊗m) =

∑
j

dxj ∧ dxi1 ∧ . . . dxip
⊗ ∂jm

We can define a complex

. . . DX ⊗OX
∧2TX → DX ⊗OX

TX → DX

with differentials dual to DR(DX)• under the identification

Homright-DX -modHom(Ωp
X ⊗OX

DX , DX) ∼= DX ⊗OX
∧pTX

The complex DXan⊗OXan ∧•TXan gives a locally free resolution of OXan . This comes
down to the fact that it becomes a Koszul complex after taking the associated
graded with respect to F . Therefore

DR(M)• ∼= Hom(DXan ⊗OXan ∧•TXan ,M) ∼= RHom(OXan ,M)

We can extend the definition of DR to the derived category Db(DX) by using the
last formula.

We can now give classical version of the Riemann-Hilbert correspondence.

Proposition 1.44. If E is a holomorphic vector bundle with an integrable connec-
tion ∇, DR(E)[−dimX] is a locally constant sheaf of finite dimensional C-vector
spaces. The functor E 7→ DR(E)[−dimX] induces an equivalence of categories
between these categories.

Sketch.
DR(E)[−dimX] = E

∇→ Ω1
Xan ⊗ E

∇→ . . .

gives a resolution of ker∇, which is locally constant. Conversely, given a locally
constant sheaf L, OXan ⊗ L can be equipped with an integrable connection such L
is the kernel. �



12 DONU ARAPURA

By imposing regularity assumptions, Deligne was able to make this correspon-
dence algebraic [De2]. The point is that regularity ensures that the holomorphic
data extends to a compactification, where GAGA applies. For general D-modules,
we impose holonomicity as well. DR(M) will no longer be a locally constant sheaf
in general, but rather a complex with constructible cohomology. Recall that a
CXan-module L is constructible if there exists an algebraic stratification of X such
that the restrictions L to the strata are locally constant with finite dimensional
stalks.

Theorem 1.45. The de Rham functor DR induces an equivalence of categories
between the subcategory Drh(DX) ⊂ Db(DX) of complexes with regular holonomic
cohomology and the subcategory Db

constr(CXan) ⊂ Db(CXan) of complexes with con-
structible cohomolgy. Moreover the inverse and direct images constructions are
compatible under this correspondence.

There is one more aspect of this, which is worth noting. The duality M 7→
FlipR→LExtn(M,Dn) constructed earlier can be generalized naturally to this set-
ting to

M 7→ FlipR→LRHom(M,DX).
This corresponds to the Verdier dual

F 7→ D(F ) = RHom(F,CXan [2 dimX])

on the constructible derived category. This operation arises in the statement
Poincaré-Verdier duality:

Theorem 1.46. If L ∈ Db
constr(CXan), then Hi(X,L) ∼= H−i

c (X,D(L))∗

When X is nonsingular and L = C, we have D(L) ∼= C[2 dimX], so this reduces
to ordinary Poincaré duality.

1.47. Perverse Sheaves. Let X be nonsingular. The category of of regular holo-
nomic modules sits in the triangulated categoryDb(DX) as an Abelian subcategory.
Its image under DR is the Abelian category of complex perverse sheaves [BBD]. In
spite of the name, these objects are neither perverse nor sheaves, but rather a class
of well behaved elements of Db(CXan).

Example 1.48. DR(OX) = CX [dimX] is perverse.

Example 1.49. Suppose that X is complete (e.g. projective). Suppose that V
is a vector bundle with an integrable connection ∇ : V → Ω1

X(logD) ⊗ V with
logarithmic singularities along a normal crossing divisor. Let U = X − D and
j : U → X be the inclusion. Then L = ker∇|j∗V is a local system on U . Then we
have

DR(j∗j∗V ) = Rj∗(L)[dimX]
is perverse.

Perverse sheaves can be characterized by purely sheaf theoretic methods:

Theorem 1.50. F ∈ Db
constr(CXan) is perverse if and only if

(1) For all j, dim suppHj(F ) ≤ −j.
(2) These inequalities also hold for the Verdier dual D(F )

Note that these conditions work perfectly well with other coefficients, such as Q,
to define full subcategories Perv(QXan) ⊂ Db

constr(QXan).
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Example 1.51. If j : U → X is as in the previous example, then for any local
system of Q vector spaces L, the sheaves Rj∗L[dimX] and j!L[dimX] are per-
verse. The first condition can be checked directly. For the second, observse that
D(Rj∗L[dimX]) = j!L

∨[dimX] and likewise of the dual of j!L[dimX].

Perverse sheaves have another source, independent of D-modules. In the late
70’s Goresky and Macpherson introduced intersection homology by a geometric
construction by placing restrictions how chains met the singular set in terms of a
function refered to as the perversity. Their motivation was to find a theory which
behaved like ordinary homology for nonsingular spaces in general; for example, by
satisfying Poincaré duality. When their constructions were recast in sheaf theoretic
language [Br, GoM], they provided basic examples of perverse sheaves.

Example 1.52. Suppose that Z ⊂ X is a possible singular subvariety. Then the
complex ICZ(Q) computing the rational intersection cohomology of Z is (after a
suitable shift and extension to X) a perverse sheaf on X. This is more generally true
for the complex ICZ(L) computing interesection cohomology of Z with coefficients
in a locally constant sheaf defined on a Zariski open U ⊂ Z. In the notation of
[BBD], this would be denoted by i∗j!∗L[dimZ], where j : U → Z and i : Z → X are
the inclusions.

It turns out that ICZ(Q) is self dual under Verdier duality, and in general that
D(ICZ(L)) ∼= ICZ(L∗). This implies Poincaré duality for intersection cohomology.

In typical cases2 of example 1.49, if L = ker∇|j∗V then Rj∗L is quasi-isomorphic
to the log complex (ΩX(logD)⊗V,∇). Then ICX(L) can be realized by an explicit
subcomplex of the log complex. It can also be realized, in many cases, by a complex
of C∞ forms on X −D with L2 growth conditions.

Theorem 1.53. The category of perverse sheaves (over Q,C, . . .) is Artinian, and
the simple objects are as in example 1.52 with Z and L irreducible.

Corollary 1.54. Simple perverse sheaves are generically local systems on their
support.

The last results shouldn’t come as a surprise, since as we have seen previously,
regular holomonomic D-modules are generically given by integrable connections.

Example 1.55. When X is a smooth curve, this can be made very explicit. Simple
perverse sheaves are either sky scraper sheaves Qx with x ∈ X, or sheaves of the
form j∗L[1], where L is an irreducible local system on a Zariski open set j : U → X.

There is a functor pHi : Db
constr(QXan) → Perv(QXan), which corresponds to

the operation Hi : Db
rh(DX) →Mrh(DX) under Riemann-Hilbert.

1.56. Gauss-Manin connections. Suppose that f : X → Y is a smooth and
proper morphism of relative dimension n. Let Ω•X/Y be the sheaf of relative differ-
entials. Then for any DX -module we have a relative de Rham complex

DRX/Y (M) = Ω•X/Y ⊗M

DRX/Y (DX) gives a resolution of DY←X , with augmentation

Ωn
X/Y ⊗DX

∼= ωX ⊗ f−1ωY ⊗DX → DY←X

2The precise meaning of “typical” here is that the residues of the connection should have no
positive integer eigenvalues
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Then the direct image

(1) Rf∗(DY←X ⊗L
DX

M) = Rf∗(DRX/Y (DX)⊗L
DX

M) = Rf∗(DRX/Y (M))

When M = OX , the ith cohomology sheaf of the direct image

Rif∗DRX/Y (OX) = Rif∗Ω•X/Y

is locally free with an integrable connection called the Gauss-Manin connection.
Under Riemann-Hilbert, Gauss-Manin corresponds to the locally constant sheaf
Rif∗C. This connection was constructed in pre-D-module language as follows.
Assume dimY = 1 for simplicity, then the connection is the connecting map

Rif∗Ω•X/Y → Ω1
Y ⊗Rif∗Ω•X/Y

associated to the sequence

0 → Ω1
Y ⊗ Ω•X/Y [−1] → Ω•X → Ω•X/Y → 0

When f is not smooth, then by resolution of singularities, the singular fibers E
of f can be assumed to have normal crossings. Then the above discussion can be
extended to the log complexes, resulting in a map

Rif∗Ω•X/Y (logE) → Ω1
Y (log f(E))⊗Rif∗Ω•X/Y (logE)

This gives a proof (due to Katz) that the Gauss-Manin connection has regular
singularities.
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2. Vanishing cycles

2.1. Vanishing cycles. Vanishing cycle sheaves and their correspondingD-modules
form the basis for Saito’s constructions described later. I will start with the
classical picture. Suppose that f : X → C is a morphism from a nonsingu-
lar variety. The fiber X0 = f−1(0) may be singular, but the nearby fibers Xt,
0 < |t| < ε � 1 are not. The premiage of the ε-disk f−1Dε retracts onto X0, and
f−1(Dε − {0}) → Dε − {0} is a fiber bundle. Thus we have a monodromy action
by the (counterclockwise) generator T ∈ π1(C∗, t) on Hi(Xt). (From now on, I
will tend to treat algebraic varieties as an analytic spaces, and will no longer be
conscientious about making a distinction.) The image of the restriction map

Hi(X0) = Hi(f−1Dε) → Hi(Xt),

lies in the kernel of T − 1. The restriction is dual to the map in homology which is
induced by the (nonholomorphic) collapsing map of Xt onto X0; the cycles which
die in the process are the vanishing cycles.

Let me reformulate things in a more abstract way following [SGA7]. The nearby
cycle functor applied to F ∈ Db(X) is

RΨF = i∗Rp∗p∗F,

where C̃∗ is the universal cover of C∗ = C − {0}, and p : C̃∗ ×C X → X, i :
X0 = f−1(0) → X are the natural maps. The vanishing cycle functor RΦF is the
mapping cone of the adjunction morphism i∗F → RΨF , and hence it fits into a
distinguished triangle

i∗F → RΨF can−→ RΦF → i∗F [1]

Both RΨF and RΦF are somewhat loosely refered to as sheaves of vanishing cycles.
These objects possess natural monodromy actions by T . If we give i∗F the trivial
T action, then the diagram with solid arrows commutes.

i∗F //

��

Rψ∗F
can //

T−1

��

Rφ∗F //

var

���
�
� i∗F [1]

��
0 // Rψ∗F

= // Rψ∗F // 0

Thus we can deduce a morphism var, which completes this to a morphism of tri-
angles. In particular, T − 1 = var ◦ can. One can also show that can ◦ var = T − 1.

Given p ∈ X0, let Bε be an ε-ball in X centered at p. Then f−1(t)∩Bε is the so
called Milnor fiber. The stalks

Hi(RΨQ)p = Hi(f−1(t) ∩Bε,Q)

Hi(RΦQ)p = H̃i(f−1(t) ∩Bε,Q)
give the (reduced) cohomology of the Milnor fiber. And

Hi(X0,RΨQ) = Hi(f−1(t),Q)

is, as the terminology suggests, the cohomology of the nearby fiber. We have a long
exact sequence

. . .Hi(X0,Q) → Hi(Xt,Q) can−→ Hi(X0,RΦQ) → . . .

The following is a key ingredient in the whole story [BBD]:
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Theorem 2.2 (Gabber). If L is perverse, then so are RΨL[−1] and RΦL[−1].

We set pψfL = pψL = RΨL[−1] and pφfL = pφL = RΦL[−1].

2.3. Perverse Sheaves on a disk. Let D be a disk with the standard coordinate
function t, and inclusion j : D − {0} = D∗ → D. For simplicity assume 1 ∈ D∗.
Consider a perverse sheaf F on D which is locally constant on D∗. Then we can
form the diagram

pψtF
can // pφtFvar

oo

Note that the objects in the diagram are perverse sheaves on {0} i.e. vector spaces.
This leads to the following elementary description of the category due to Deligne
and Verdier (c.f. [V, sect 4]).

Proposition 2.4. The category of perverse sheaves on the disk D which are locally
constant on D∗ is equivalent to the category of quivers of the form

ψ
c //

φ
v

oo

i.e. finite dimensional vector spaces φ, ψ with maps as indicated.

To get a sense of why this is true, let us explain how to construct perverse sheaves
associated to certain quivers. We see immediately that

0
//
Voo

corresponds to the sky scraper sheaf V0.
Let L be a local system L on D∗ with monodromy given by T : L1 → L1. Then

the perverse sheaf j∗L[1] corresponds to

L1

c // L1
ker(T−I)v

oo

where c is the projection, v is induced by T − I. Thus a quiver

ψ
c //

φ
v

oo

with c surjective arises from j∗L[1], where L1 = ψ with T = I + v ◦ c.
It is easy to classify the simple quivers and see that they are covered by these

cases. There are three types:
(P1) 0

//
Coo which corresponds to C0.

(P2) C
//
0oo which corresponds to CD[1].

(P3,λ) C
= //

C
λ−1

oo with λ 6= 0. This corresponds to j∗L[1], where L is a rank one

local system with monodromy λ 6= 1
The examples considered above are not just perverse but in fact intersection

cohomology complexes. In general, they can be characterized by:

Lemma 2.5. A quiver

ψ
c //

φ
v

oo

corresponds to a direct sum of intersection cohomology complexes if and only if

φ = image(c)⊕ ker(v).
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2.6. Kashiwara-Malgrange filtration. Some of the original motivation for the
ideas in this section came from the study of Bernstein-Sato polynomials or b-
functions. However, this connection would take us took far afield. Instead we
start with the question: Under Riemann-Hilbert, what is the D-module analogue
of vanishing cycles? I want to start with a prototype, which should make the
remainder easier to swallow.

Example 2.7. Let Y = C with coordinate t. Fix a rational number r ∈ (−1, 0),
and let M = OC[t−1]tr with ∂t acting on the left in the usual way. For each α ∈ Q,
define VαM ⊂ M to be the C-span of {tn+r | n ∈ Z, n + r ≥ −α}. The following
properties are easy to check:

(1) The filtration is exhaustive and left continuous: ∪VαM = M and Vα+εM =
VαM for 0 < ε� 1.

(2) Each VαM is stable under ti∂j
t if i ≥ j.

(3) ∂tVαM ⊆ Vα+1M , and tVαM ⊆ Vα−1M .
(4) The associated graded

GrV
αM = VαM/Vα−εM =

{
Ct−α if α ∈ r + Z
0 otherwise

is an eigenspace of t∂t with eigenvalue −α.

(4) implies that the set of indices where VαM jumps is r + Z and hence discrete.
Such a filtration is called discrete.

Let f : X → C be a holomorphic function, and let i : X → X × C = Y be the
inclusion of the graph. Let t be the coordinate on C, and let

VαDY = DX×{0}-module generated by {ti∂j
t | i− j ≥ −[α]}

for α ∈ Q. In particular, t ∈ V−1DY and ∂ ∈ V1DY . Note that V0DY ⊂ DY is the
subring preserving the ideal (t).

Let M be a regular holonomic DX -module. It is called called quasiunipotent
along X0 = f−1(0) if pψf (DR(M)) is quasiunipotent with respect to the action of
T ∈ π1(C∗). Set M̃ = i∗M . Note that in the previous example, instead of working
in C×C, we were projecting onto the second C, since no information is lost in this
case.

Theorem 2.8 (Kashiwara, Malgrange). There exists at most one filtration V•M̃

on M̃ indexed by Q, such that

(1) The filtration is exhaustive, discrete and left continuous.
(2) Each VαM̃ is a coherent V0DY -submodule.
(3) ∂tVαM̃ ⊆ Vα+1M̃ , and tVαM̃ ⊆ Vα−1M̃ with equality for α < 0.
(4) GrV

α M̃ is a generalized eigenspace of t∂t with eigenvalue −α.

If M is quasiunipotent along X0, then V•M̃ exists.

Given a perverse sheaf L and λ ∈ C, let pψf,λL and pφf,λL be the generalized
λ-eigensheaves of pψfL and pφfL under the T -action. Note that N ′ = T −λ gives a
nilpotent endomorphism of these sheaves. For various reasons, it is better to work
the logarithm N = log(I +N ′) = N ′− 1

2 (N ′)2 + . . . which is again nilpotent. Saito
[S1] has defined a modification V ar of var which plays an analogous role for N .
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Example 2.9. Continuing with example 2.7, note that M is a simple DC-module,
so it should correspond to a simple perverse sheaf L. I claim that (after restricting
to a disk) L = P3,λ, for λ = exp(2πir), in the above classification. To see this, set
t = exp(2πiτ) ∈ C∗. Then the monondromy τ 7→ τ + 1 is given by tr 7→ λtr as
required. In this case,

pφtL = pφtL = pφt,λL = pψt,λL

Theorem 2.10 (Kashiwara, Malgrange). Suppose that L = DR(M). Let α ∈ Q
and λ = e2πiα. Then

DR(GrV
α M̃) =

{
pψf,λL if α ∈ [−1, 0)
pφf,λL if α ∈ (−1, 0]

The endomorphisms t∂t−α, ∂t, t on the left corresponds to N, can, V ar respectively,
on the right.
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3. Hodge modules

3.1. Hodge theory background. A (rational) pure Hodge structure of weight
m ∈ Z consists of a finite dimensional vector space HQ with a bigrading

H = HQ ⊗ C =
⊕

p+q=m

Hpq

satisfying H̄pq = Hqp. Such structures arise naturally from the cohomology of com-
pact Kähler manifolds. For smooth projective varieties, we have further constraints
namely the existence of a polarization on its cohomology. If m is even (odd), a po-
larization on a weight m Hodge structure H is a (anti)symmetric quadratic form Q
on HQ satisfying the Hodge-Riemann relations. Given a Hodge structure of weight
m, its Hodge filtration is the decreasing filtration

F pH =
⊕
p′≥p

Hp′,m−p′

The decomposition can be recovered from the filtration by

Hpq = F p ∩ F̄ q

Deligne extended Hodge theory to singular varieties. The key definition is that of
a mixed Hodge structure. This consists of a bifiltered vector space (H,F,W ), with
(H,W ) defined over Q, such that F induces a pure Hodge structure of weight k on
GrW

k H. This refines the notion of a pure Hodge structure. A pure Hodge structure
of weight k can be regarded as a mixed Hodge structure such that GrW

k H = H.
Mixed Hodge structures form a category in the obvious way. Morphisms are rational
linear maps preserving filtrations.

Theorem 3.2 (Deligne). The singular rational cohomology of an algebraic variety
carries a canonical mixed Hodge structure.

Griffiths introduced the notion a variation of Hodge structure (VHS) to describe
the cohomology of family of varieties y 7→ Hm(Xy), where f : X → Y is a smooth
projective map. A variation of Hodge structure of weight m on a complex manifold
Y consists of the following data:

(1) A locally constant sheaf L of Q vector spaces with finite dimensional stalks.
(2) A vector bundle with an integrable connection (E,∇) plus an isomorphism

DR(E) ∼= L⊗ C[dimY ].
(3) A filtration F • of E by subbundles satisfying Griffiths’ transversality: ∇(F p) ⊆

F p−1.
(4) The data induces a pure Hodge structure of weight m on each of the stalks

Ly.

A polarization is a flat pairing Q : L× L→ Q inducing polarizations in the stalks.
The main example is:

Example 3.3. If f : X → Y is smooth and projective, L = Rmf∗Q underlies a
polarizable VHS of weight m. E is the associated vector bundle with its Gauss-
Manin connection.

The key analytic fact which makes the rest of the story possible is the following.
(It was originally proved by Zucker for curves).
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Theorem 3.4 (Cattani-Kaplan-Schmid, Kashiwara-Kawai). Let X the complement
of a divisor with normal crossings in a compact Kähler manifold. Then intersec-
tion cohomology with coefficients in a polarized VHS on X is isomorphic to L2

cohomology for a suitable complete Kähler metric on the X.

It follows that L2 cohomology is finite dimensional in this case (there is no a
priori reason why it should be). When combined with the Kähler identities, we get

Corollary 3.5. Intersection cohomology with coefficients in a polarized VHS car-
ries a natural pure Hodge structure.

3.6. Filtered D-modules. The notion of a VHS is no longer adequate to describe
what’s going on for nonsmooth maps. Saito defined the notion Hodge modules
which gives a good theory of VHS with singularities. I start by describing the basic
setting next.

Fix a smooth variety X. We define the category MFrh(X) to consist of regular
coherent DX -modules with good filtrations and filtration preserving morphisms.
Although not Abelian it is an exact category, so we can form its derived category
[BBD]. Recall, that among the requirements of “goodness” is that FqD · FpM ⊆
Fp+qM . It suffices to check this for q = 1. After reindexing F pM = F−pM , we see
that this condition is just Griffiths transverality! Although I will say nothing about
proofs, it is worth remarking that many technical issues are handled by passing to
the Rees module ⊕F pM over the Rees algebra.

The previously defined operations can be extended to the filtered setting. Given
(M,F ) ∈ MFrh(X) and a proper morphism f : X → Y . We define direct image
explicitly. Let n = dimX − dimY . We break the definition into cases:

(1) If f is an embedding:

Fp(Rf∗(M,F )) = f∗(
∑

k

FkDY←X ⊗ Fp−k+n(M [−n]))

where FkDY←X is induced by the order filtration.
(2) If f is smooth then using the formulas of section 1.56

Fp(Rf∗(DRX/Y (M))) = Rf∗(. . .Ωi
X/Y ⊗ Fp+iM . . .)

(3) In general, factor f into a composition of the inclusion of the graph followed
by a projection, and apply the previous cases.

We can filter the cohomology modules by

Fp(Hi(Rf∗(M,F ))) = im[Hi(Fp(Rf∗(M,F ))) → Hi(Rf∗(M,F ))]

The direct image is called strict if the above maps are injections.
Now add a rational structure by defining the category MFrh(DX ,Q). The ob-

jects consist of
(1) A perverse sheaf L over Q.
(2) A regular holonomic DX -module M with an isomorphism DR(M) ∼= L⊗C.
(3) A good filtration F on M .

Variations of Hodge structure give examples of such objects. We can define direct
images for these things by combining the previous constructions. Given a morphism
f : X → Y and an object (M,F,L) ∈ MFrh(X,Q), the direct images are defined
by

pRif∗(M,F,L) = (Hi(Rf∗(M,F )), pHi(Rf∗L))
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The notation is chosen to avoid confusion with the usual direct image for con-
structible sheaves. Sometimes Hi

∫
f

or Rif+ are used in the literature. When M =
(QX , OX) with trivial filtration, then for any smooth projective map f : X → Y ,
pRif∗M gives the standard example of a VHS (up to shift).

3.7. Hodge modules on a curve. The category MFrh(X,Q) is really too big to
do Hodge theory, and Saito defines the subcategory of (polarizable) Hodge modules
which provides the right setting. The definition of this subcategory is extremely
delicate, and will be explained later. To ease our journey, we will give a direct
describe Hodge modules on a smooth projective curve X (fixed for this section).

Given an inclusion of a point i : {x} → X and a polarizable pure Hodge struc-
ture (H,F,HQ), the D-module pushforward i∗H with the filtration induced by F ,
together with the skyscraper sheaf HQ,x defines an object of MFrh(X). Let’s call
these polarizable Hodge modules of type 0.

Given a polarizable variation of Hodge structure (E,F,L) over a Zariski open
subset j : U → X, we define an object of MFrh(X) as follows. The underlyung
perverse sheaf is j∗L[1] which is the intersection cohomology complex for L. We
can extend (E,∇) to a vector bundle with logarithmic connection on X in many
ways. The ambiguity depends on the eigenvalues of the residues of the extension
which are determined mod Z.

Example 3.8. Suppose that (E,∇) = (OD∗ , d + r dt
t ) locally. Then E can be

extended to the whole disk by the obvious way as OD, but also as ODt
n for any

n ∈ Z. In general, writing the connection with respect to the new trivialization
has the effect of translating the residue r by n. Then the multivalued function
t−r+n gives a solution to ∇f = 0. Its monodromy is given by multiplication by
exp(−2πi(r + n)), and this is independent of n.

For every half open interval I of length 1, there is a unique extension ĒI with
eigenvalues in I. Let M ′ = ∪ĒI ⊂ j∗E. This is a DX -module which corresponds
to the perverse sheaf Rj∗L[1]⊗ C. Let M ⊂M ′ be the sub DX -module generated
by Ē(−1,0]. This corresponds to what we want, namely j∗L[1]. We filter this by

FpĒ
(−1,0] = j∗FpE ∩ Ē(−1,0]

FpM =
∑

i

FiDXFp−iĒ
(−1,0]

Then (M,F•M, j∗L[1]) defines an object of MFrh(X) that we call a polarizable
Hodge module of type 1. A polarizable Hodge module is a finite direct sum of
objects of these two types. Let MH(X)pol denote the full subcategory of these.

Theorem 3.9. MH(X)pol is abelian and semisimple.

In outline, the proof can be reduced to the following observations. We claim
that there are no nonzero morphisms between objects of type 0 and type 1. To see
this, we can replace X by a disk and assume that x and U above correspond to
0 and D∗ respectively. Then by lemma 2.4, the perverse sheaves of type 0 and 1
correspond to the quivers

0
//
φoo

ψ
onto //

φ
1−1

oo



22 DONU ARAPURA

and the claim follows. We are thus reduced to dealing with the types seperatedly.
For type 0 (respectively 1), we immediately reduce it the corresponding statements
for the categories of Hodge structures (respectively VHS), where it is standard.
In essence the polarizations allow one to take orthogonal complements, and hence
conclude semisimplicity.

Theorem 3.10. If M ∈MH(X)pol, then its cohomology Hi(M) carries a Hodge
structure.

Here is the proof. Since MH(X,n)pol is semisimple, we can assume that M
is simple. Then either M is supported at point or it is of type 1. In the first
case, H0(M) = M is already a Hodge structure by definition, and the higher
cohomologies vanish. In the second case, we appeal to theorem 3.4 or just the
special case due to Zucker.

3.11. VHS on a punctured disk. We want to analyse Hodge modules locally.
This will provide important clues for the higher dimensional case. We may as well
concentrate on the only interesting case of modules of type 1, that is variations of
Hodge structure. The key statements are due to Schmid [Sc].

Proposition 3.12 (Jacobson, Morosov). Fix an integer m. Let N be a nilpotent
endomorphism of a finite dimensional vector space E over a field of characteristic
0 (or more generally an object in artinian abelian category linear over such a field).
Then the there is a unique filtration

0 ⊂Wm−l ⊂ . . .Wm ⊂ . . .Wm+l = E

called the monodromy filtration on E centered at m, characterized by following
properties:

(1) N(Wk) ⊂Wk−2

(2) Nk induces an isomorphism GrW
m+k(E) ∼= GrW

m−k(E)

Note that this result applies to the categories of perverse sheaves and holonomic
modules.

Example 3.13. If N2 = 0, the filtration is simply im(N) ⊂ ker(N) ⊂ E

The last part of the proposition is reminiscent of the hard Lefschetz theorem.
There is an analogous decomposition into primitive parts:

Corollary 3.14.

GrW
k (E) =

⊕
i

N iPGrW
k+2i(E)

where
PGrW

m+k(E) = ker[Nk+1 : GrW
m+k(E) → GrW

m−k−2(E)]

Things can be refined a bit in the presence of a nondegenerate form.

Lemma 3.15. If S is a nondegenerate (skew) symmetric form on E which N
preserves infinitesimally (S(Nu, v)+S(u,Nv) = 0), then PGrW

m+kE carries a non-
degenerate (skew) form given by (u, v) 7→ S(u,Nkv). This induces a form GrW

m+kE
for which the primitive decomposition is orthogonal.
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Let (L, E , F ) be a polarized variation of Hodge structure of weight m over a
punctured disk D∗; arising for example from the cohomology of family of varieties
over D∗. After choosing a trivialization of E , we can identify the fibers over t ∈ D∗
with a fixed vector space E possessing a rational lattice EQ and a family of flags
F •t . Since L is locally constant, it corresponds to a representation of π1(D∗) →
Aut(EQ). It is known that the (counterclockwise) generator T ∈ π1(D∗) acts quasi-
unipotently. Thus after passing to a branched cover D → D, we can assume tha
T acts unipotently. Then N = log(T ) will be nilpotent. So we get an associated
mondromy filtration W as above centered at m

Theorem 3.16 (Schmid). For an appropriate trivialization, F •t converges in a flag
variety as t→ 0. The limit filtration limF •t together with W yields a mixed Hodge
structure, called the limit mixed structure on E. Moreover, the polarization of the
VHS induces one on the associated graded as in the above lemma.

In geometric situations, this yields a natural mixed Hodge structure on the co-
homology of the nearby fiber. (A alternative construction of this was given by
Steenbrink.) The key consequence of importance here is:

Corollary 3.17. GrW
k (E) with the filtration induced from limF •t is a pure polar-

izable Hodge structure of weight k.

For Hodge modules in general, a refined version of the above statement is taken
as an axiom.

3.18. Hodge modules: introduction. In the next section, we will define the
full subcategories MH(X,n) ⊂ MFrh(X,Q) of Hodge modules of weight n ∈ Z in
general. Since this is rather technical, we start by explaining the main results.

Theorem 3.19 (Saito). MH(X,n) is abelian, and its objects possess strict support
decompositions, i.e. that the maximal sub/quotient module with support in a given
Z ⊂ X can be split off as a direct summand. There is an abelian subcategory
MH(X,n)pol of polarizable objects which is semisimple.

We essenitally checked these properties for polarizable Hodge modules on curves
in section 3.7. They have strict support decompositions by the way we defined
them. Let MHZ(X,n) ⊂ MH(X,n) denote the subcategory of Hodge modules
with strict support in Z, i.e. that all sub/quotient modules have support exactly
Z. The main examples are provided by the following.

Theorem 3.20 (Saito). Any weight n polarizable variation of Hodge structure
(L, . . .) over an open subset of a closed subset

U
j→ Z

i→ X

can be extended to a polarizable Hodge module in MHZ(X,n)pol ⊂ MH(X,n)pol.
The underlying perverse sheaf of the extension is the associated intersection coho-
mology complex i∗j!∗L[dimU ]. All simple objects of MH(X,n)pol are of this form.

Finally, there is stability under direct images.

Theorem 3.21 (Saito). Let f : X → Y be a projective morphism with relatively
ample line bundle `. If M = (M,F,L) ∈MH(X,n) is polarizable, then

pRif∗M∈MH(Y, n+ i)
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is strict. Moreover, a hard Lefschetz theorem holds:

`j : pR−jf∗M∼= pRjf∗M(j)

Corollary 3.22. Given a polarizable variation of Hodge structure defined on an
open subset of X, its intersection cohomology carries a pure Hodge structure. This
cohomology satisfies the Hard Lefschetz theorem.

The last statement was originally obtained in the geometric case in [BBD]. The
above results yield a Hodge theoretic proof of the decomposition theorem of [loc.
cit.]

Corollary 3.23. With assumptions of the theorem Rf∗Q decomposes into a direct
sum of shifts of intersection cohomology complexes.

3.24. Hodge modules: conclusion. We now give the precise definition of Hodge
modules. This is given by induction on dimension of the support. This inductive
process is handled via vanishing cycles. We start by explaining how to extend the
construction to MFrh(X,Q). Given a morphism f : X → C, and a DX -module, we
introduced the Kashiwara-Malgrange filtration V on M earlier in section 2.6. Now
suppose that we have a good filtration F on M . The pair (M,F ) is said to be be
quasi-unipotent and regular along f−1(0) if the following conditions hold:

(1) t(FpVαM̃) = FpVα−1M̃ for α < 1.
(2) ∂t(FpGr

V
α M̃) = Fp+1Gr

V
α+1M̃ ∩ (∂tGr

V
α M̃) for α ≥ 0.

It is worth noting that the corresponding statements in the nonfiltered case come
for free, once we know that V exists of course. Also the basic example of a variation
of Hodge structure on the disk satisfies these conditions with respect to the identity
function.

Lemma 3.25. If α 6= 0, then t : GrV
α M̃

∼= GrV
α−1M̃ and ∂t : GrV

α−1M̃
∼= GrV

α M̃

We extend the functors φ and ψ to MFrh(X,Q). Let

ψf (M,F,L) = (
⊕

−1≤α<0

GrV
α (M̃), F [1], pψfL)

φf,1(M,F,L) = (GrV
0 (M̃), F, pφf,1L)

Here F actually denotes the filtration induced by it on the associated graded.
The elementary definition for curves given earlier will turn to be equivalent. De-

fineX 7→MH(X,n) to be the smallest collection of full subcategories ofMFrh(X,Q)
satisfying:
(MH1) If (M,F,L) ∈ MFrh(X,Q) has zero dimensional support, then it lies in

MH(X,n) iff its stalks are Hodge structures of weight n.
(MH2) If (M,F,L) ∈ MHS(X,n) and f : U → C is a general morphism from a

Zariski open U ⊆ X, then
(a) (M,F )|U is quasi-unipotent and regular with respect to f .
(b) (M,F,L)|U decomposes into a direct sum of a module supported in

f−1(0) and a module for which no sub or quotient module is supported
in f−1(0).

(c) If W is the monodromy filtration of ψf (M,F,L)|U (with respect to
the log of the unipotent part of monodromy) centered at n − 1, then
GrW

i ψf (M,F,L)|U ∈ MH(U, i). Likewise for GrW
i φf,1(M,F,L) with

W centered at n.
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This is a lot to absorb, so let me make few remarks about the definition.
• If f−1(0) is in general position with respect to suppM , the dimension of

the support drops after applying the functors φ and ψ. Thus this is an
inductive definition.

• The somewhat technical condition (b) ensures that Hodge modules admit
strict support decompositions. The condition can be rephrased as saying
that (M,F,L) splits as a sum of the image of can and the kernel of var.
A refinement of lemma 2.5 shows that L will then decompose into a direct
sum of intersection cohomology complexes. This is ultimately needed to
be able to invoke theorem 3.4 when the time comes to construct a Hodge
structure on cohomology.

• Although MFrh(X,Q) is not an abelian category, the category of compati-
ble pairs consisting of a D-module and perverse sheaf is. Thus we do get a
W filtration for ψf (M,F,L)|U in (c) by proposition 3.12 by first suppressing
F , and then using the induced filtration.

There is a notion of polarization in this setting. Given (M,F,L) ∈MHZ(X,n),
a polarization is a pairing S : L⊗L→ QX [2 dimX](−n) satisfying certain axioms.
The key conditions are again inductive. When Z is a point, S should correspond
to a polarization on the Hodge structure at the stalk in the usual sense. In general,
given a (germ of a) function f : Z → C which is not identically zero, S should
induce a polarization on the nearby cycles GrW

• ψfL[−1] (using the same recipe
as lemma 3.15). Once all the definitions are in place, the proofs of the theorems
involve a rather elaborate induction on dimension of supports.

3.26. Mixed Hodge modules. Saito has given an extension of the previous theory
by defining the notion of mixed Hodge module. I will start with recalling the older
definition of a variation of mixed Hodge structure:

(1) A locally constant sheaf L of Q vector spaces with finite dimensional stalks.
(2) An ascending filtration W ⊂ L by locally constant subsheaves
(3) A vector bundle with an integrable connection (E,∇) plus an isomorphism

DR(E) ∼= L⊗ C[dimY ].
(4) A filtration F • of E by subbundles satisfying Griffiths’ transversality: ∇(F p) ⊆

F p−1.
(5) (GrW

m (L), OX ⊗GrW
m (L), F •(OX ⊗GrW

m (L))) is a variation of pure Hodge
structure of weight m.

The data induces a mixed Hodge structure on each of the stalks Ly, and hence the
name. Steenbrink and Zucker [SZ] showed that additional conditions are required
to get a good theory. While these conditions are rather technical, they do hold in
most natural examples.

A variation of mixed Hodge structure over a punctured disk D∗ is admissible if
(1) The pure variations GrW

m (L) are polarizable.
(2) There exists a limit Hodge filtration limF p

t compatible with the one on
GrW

m (L) constructed by Schmid.
(3) There exists a so called relative monodromy filtration U on (E = Lt,W )

with respect to the logarithm N of the unipotent part of monodromy.
This means that NUk ⊆ Uk−2 and U induces the monodromy filtration
on GrW

k (E) constructed earlier up to suitable a shift. (Note that relative
monodromy filtrations need not exist a priori.)
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For a general base X the above conditions are required to hold for every restric-
tion to a punctured disk [K1]. Note that pure variations of Hodge structure are
automatically admissible.

Let me now turn to the general case. I will define a pre-mixed Hodge module on
X to consist of

(1) A perverse sheaf L defined over Q, together filtration W of L by perverse
subsheaves.

(2) A regular holonomic DX -module M with a filtration WM which corre-
sponds to (L⊗ C,W ⊗ C) under Riemann-Hilbert.

(3) A good filtration F on M .
These objects form a category, and Saito defines the subcategory of mixed Hodge

modules MHM(X) by a rather delicate induction. The key points are that for
(M,F,L,W ) to be in MHM(X), we require

• the associated graded objects GrW
k (M,F,L) yield polarizable Hodge mod-

ules of weight k,
• for any (germ of a) function f on X, the relative monodromy filtration U

(resp. U ′) for ψf (M,F,L) (resp. φf,1(M,F,L)) with respect to W exists.
• The pre-mixed Hodge modules (ψf (M,F,L), U) and (φf,1(M,F,L), U ′) are

in fact mixed Hodge modules on f−1(0)
The main properties are summarized below:

Theorem 3.27 (Saito).
(1) MHM(X) is abelian, and it contains each MH(X,n)pol as a full abelian

subcategory.
(2) MHM(point) is the category of polarizable mixed Hodge structures.
(3) If U ⊆ X, then any admissible variation of mixed Hodge structure extends

to an object in MHM(X).

Finally, we have:

Theorem 3.28 (Saito). There is a realization functor

real : DbMHM(X) → Db
constr(X,Q)

and refined direct image and inverse image operations

f∗ : DbMHM(X) → DbMHM(Y )

f∗ : DbMHM(Y ) → DbMHM(X)
for each morphism f : X → Y , such that

real(f∗M) = Rf∗real(M)

real(f∗N ) = Lf∗real(M)
Similar statements hold for various other standard operations such as tensor prod-
ucts.

Putting this together with previous statements yields

Corollary 3.29. The cohomology of a smooth variety U with coefficients in an
admissible variation of mixed Hodge structure L carries a canonical mixed Hodge
structure. The cup product

Hi(U,L)⊗Hj(U,L′) → Hi+j(U,L⊗ L′)

is compatible with these structures.
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When the base is a curve, this was first proved by Steenbrink and Zucker [SZ].

3.30. Explicit construction. I want to give a bit more detail on the construction
of the mixed Hodge structure in corollary 3.29. Let U be a smooth n dimensional
variety. We can choose a smooth compactification j : U → X such that D =
X − U is a divisor with normal crossings. Fix an admissible variation of mixed
Hodge structure (L,W,E, F,∇) on U . Extend (E,∇) to a vector bundle EI with
logarithmic connection with the eigenvalues of its residues of the extension in I as
in section 3.7 Let M = ∪ĒI ⊂ j∗E. This is a DX -module which corresponds to
the perverse sheaf Rj∗L[n]⊗ C. Filter this by

FpM =
∑

i

FiDXFp−iĒ
[−1,0)

The rest of the story is somewhat more complicated, so I will first state the outcome:

Theorem 3.31. There exists compatible filtrations W̃ on Rj∗L[n] and M extending
W over U such that (Rj∗L[n], W̃ ,M, F ) becomes a mixed Hodge module.

This second filtration W̃ is not easy to describe. So I’ll give an indication in the
special case, where the original variation of mixed Hodge is pure and D = f−1(0)
for some morphism f : X → P1. In this case, Rj∗L[n] fits into an exact sequence
of perverse sheaves [E]

0 → j!∗L[n] → Rj∗L[n] → K → 0

where
K = coker(N : pψfL[n] → pψfL[n])

To construct W̃ , we can take j!∗L[n] as the first step. The rest is obtained by
pulling back (the image of) the monodromy filtration from K. In general, D is
always given locally as f−1(0) for some f . Thus this description can be extended
to the general case, once it is shown that the locally defined filtrations must patch.
Note that it is always true that the associated graded GrW̃

i decomposes into a direct
sum of intersection cohomology complexes of pure polarized VHS’s. This provides
the crucial link to the earlier work of Cattani-Kaplan-Schmid and Kashiwara-Kawai
(theorem 3.4).

Finally, let me sketch where the mixed Hodge structure comes from. We have
an isomorphism

Hi(U,L⊗ C) ∼= Hi(Ω•X(logD)⊗ Ē[0,1))

and the filtrations defining the Hodge structure can be displayed rather explicitly
from this. The filtration

F pΩ•X(logD)⊗ Ē[0,1) =
⊕

i

Ωi
X ⊗ F p−iĒ[0,1)

induces the Hodge filtration on cohomology. We define a filtration W• on this
complex, by intersecting (Ω•X ⊗ W̃•+nM)[n] under the inclusion

Ω•X(logD)⊗ Ē[0,1) ⊂ Ω•X ⊗M [n]

Then this filtration induces

Wi+kH
i(U,L⊗ C) = Hi(X,WkΩ•X(logD)⊗ Ē[0,1)).
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Since we have a corresponding filtration on Rj∗L, it follows that W is defined over
Q. In more technical terms, this data constitutes a cohomological mixed Hodge
complex.

3.32. Real Hodge modules. Saito has also developed a theory of (mixed) Hodge
modules over the reals, where the underlying perverse sheaf is defined over R.
Some modifications in the basic set up are necessary (e.g. Kashiwara-Malgrange
filtrations are now indexed by R), but the basic theory goes through pretty much as
before. In particular, the cohomology of real admissible variations of mixed Hodge
structures carry real mixed Hodge structures.
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4. Comparison of Hodge structures

The cohomological mixed Hodge complex described in the previous section re-
duces to the one given by Deligne [De3] for constant coefficients. Consequently:

Proposition 4.1. Let X be smooth variety, then Saito’s mixed Hodge structure
(cor. 3.29) on H∗(X,Q) agrees with Deligne’s.

From now on let f : X → Y be a smooth projective morphism of smooth
quasiprojective varieties. We recall two results

Theorem 4.2 (Deligne [De1]). The Leray spectral sequence

Epq
2 = Hp(Y,Rqf∗Q) ⇒ Hp+q(X,Q)

degenerates. In particular Epq
2
∼= Grp

LH
p+q(X) for the associated “Leray filtration”

L.

Theorem 4.3 ([A]). There exists varieties Yp and morphisms Yp → Y such that

LpHi(X,Q) = ker[Hi(X,Q) → Hi(Xp,Q)]

where Xp = f−1Yp.

It follows that each Lp is a filtration by sub mixed Hodge structures. When com-
bined with the earlier isomorphism, we get a mixed Hodge structure onHp(Y,Rqf∗Q)
which I will call the naive mixed Hodge structure. On the other hand, Rqf∗Q car-
ries a pure hence admissible variation of Hodge structure, so we can apply Saito’s
result 3.29 to get another Hodge structure.

Proposition 4.4. The naive mixed Hodge structure coincides with Saito’s.

Proof. Deligne actually proved a stronger version of the above theorem which im-
plies that

(2) Rf∗Q ∼=
⊕

Rif∗Q[−i]

(non canonically) in Db(X,Q). The theorem is quite general and thanks to 3.21,
it even applies if regard these as objects in DbMHM(Y ). Note that the Leray
filtration is induced by the truncation filtration

LpHi(X,Q) = image[Hi(Y, τ≤i−pRf∗Q → Hi(Y,Rf∗Q)]

Under (2),
τ≤pRf∗Q ∼=

⊕
i≤p

Rif∗Q[−i]

Therefore we have a (non canonical!) isomorphism of mixed Hodge structures

Hi(X,Q) ∼=
⊕

p+q=i

Hp(Y,Rpf∗Q)

where the right side is equipped with Saito’s Hodge structure. Under this isomor-
phism, Lp maps to

Hi−p(Rpf∗Q)⊕Hi−p+1(Rp−1f∗Q)⊕ . . .

The proposition now follows. �

This result goes back to Zucker [Z] when Y is a curve.
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