LECTURE 11

11. Classification of Free Boundary points

11.1. Homogeneous Global Solutions. By Theorem 10.3, blowups of solutions of Problems A and B at fixed \(x_0 \in \Gamma \) and of Problem C at \(x_0 \in \Gamma' \) are homogeneous (of degree two) global solutions, i.e. a global solution \(u \) satisfying
\[
 u(\lambda x) = \lambda^2 u(x), \quad x \in \mathbb{R}^n, \; \lambda > 0.
\]

Another way to express the homogeneity is by the identity
\[
 \partial^{(2)} u(x) := x \cdot \nabla u(x) - 2u(x) = 0 \quad \text{in} \; \mathbb{R}^n.
\]

In this section we give a complete description of such solutions.

Theorem 11.1 (Classification of homogeneous global solution). Let \(u \) be a homogeneous global solution of Problem A, B, or C. Then \(u \) is of one of the following forms.

- In Problems A, B:
 - Polynomial solution \(u(x) = \frac{1}{2}(x \cdot Ax) \), \(x \in \mathbb{R}^n \). where \(A \) is an \(n \times n \) symmetric matrix with \(\text{Tr} A = 1 \).
 - Halfplane solutions \(u(x) = \frac{1}{2}(x \cdot e)^2 \), \(x \in \mathbb{R}^n \), where \(e \) is a unit vector.

- In Problem C:
 - Polynomial solutions (positive or negative) \(u(x) = \frac{\lambda}{2}(x \cdot Ax) \) or \(u(x) = -\frac{\lambda}{2}(x \cdot Ax) \), \(x \in \mathbb{R}^n \), where \(A \) is an \(n \times n \) nonnegative symmetric matrix with \(\text{Tr} A = 1 \).
 - Halfplane solutions (positive or negative) \(u(x) = \frac{\lambda}{2}(x \cdot e)^2 \) or \(u(x) = -\frac{\lambda}{2}(x \cdot e)^2 \), \(x \in \mathbb{R}^n \), for a unit vector \(e \).
 - Two-plane solution \(u(x) = \frac{\lambda}{2}(x \cdot e)^2 - \frac{\lambda}{2}(x \cdot e)^2 \), \(x \in \mathbb{R}^n \), for a unit vector \(e \).

Proof.

Problems A, B. Observe that \(u \in P_\infty(M) \) and
\[
 u(0) = |\nabla u(0)| = 0.
\]

Consider two possibilities. First suppose that \(\text{Int} \; \Omega_u = \emptyset \). Then, since \(\partial \Omega(u) \) has zero Lebesgue measure (see Corollary 8.10) the function \(u \) satisfies the equation \(\Delta u = \text{const} \; \text{a.e. in} \; \mathbb{R}^n \), and \(\| D^2 u_0 \|_{L_\infty(\mathbb{R}^n)} \leq M \). By Liouville’s theorem \(u \) is a degree two polynomial and homogeneity comes from (11.2).

Next, suppose \(\text{Int} \; \Omega_u \neq \emptyset \). Then we apply the ACF Monotonicity Formula (see Lecture 5) to the positive and the negative parts of \(\partial_e u \), for different directions \(e \). Recall that we have shown earlier that \((\partial_e u)^\pm \) are subharmonic, so the ACF Monotonicity Formula is applicable (see Lemma 6.2 applied with \(M_1 = M_2 = 0 \)).

The homogeneity of \(u \) readily implies that for any direction \(e \)
\[
 \phi_e(r) := \Phi(r, (\partial_e u)^+, (\partial_e u)^-) = \frac{1}{r^2} \int_{B_r} |\nabla(\partial_e u)^+|^2 \frac{1}{|x|^{n-2}} \int_{B_r} |\nabla(\partial_e u)^-|^2 \frac{1}{|x|^{n-2}},
\]
By continuity for all directions. As before, this implies that \(C \) are either halfplane or two-plane solutions for which \(\Gamma \). But it is easy to show that all one-dimensional homogeneous solutions of Problem \(\nu \) hold for directions \(e \).

\[\frac{\lambda_+ + \lambda_-}{2} \int_{\{u = 0\} \cap B_r(y_0)} |e \cdot \nu| \, dH^{n-1} > 0, \]

where \(\nu = \nabla u/|\nabla u| \) is the normal to the surface \(u = 0 \). Thus the case (ii) cannot hold for directions \(e \) nonorthogonal to \(\nu_0 \). Thus, (i) holds for all such directions and by continuity for all directions. As before, this implies that \(u \) is one-dimensional. But it is easy to show that all one-dimensional homogeneous solutions of Problem \(C \) are either halfplane or two-plane solutions for which \(\Gamma'' = 0 \). This contradicts to assumption that \(\Gamma''(u) \) is non-empty.

Once we have that \(\Gamma''(u) = \emptyset \), renormalized positive and negative parts of \(u, \frac{1}{\lambda_\pm} u^\pm \), will solve Problem \(A \). Thus \(u \) has one of the forms described in the statement of the theorem. \(\square \)

11.2. Classification of Free Boundary Points

Since the blowups with fixed centers are homogeneous global solution by Theorem 11.1, this leads to a classification of free boundary points according to their blowup. But first we need to show any two blowups at a given point are of the same type.

We start by finding Weiss’s energy of homogeneous global solutions described in Theorem 11.1.

Problem A. If \(u \) is a homogeneous global solution and we integrate by parts in the expression for \(W \), using that \(\Delta u = 1 \) in \(\Omega \), we arrive at

\[
W(r, u, 0) = \int_{B_1} (|\nabla u|^2 + 2u) \, dx - 2 \int_{\partial B_1} u^2 \, dH^{n-1} = \int_{B_1} (-\Delta u + 2u) \, dx - \int_{\partial B_1} \partial^2 u u \, dH^{n-1} = \int_{B_1} u \, dx.
\]
Hence, for polynomial solutions $u(x) = \frac{1}{2} (x \cdot Ax)$, we have

$$W(r, u, 0) = \frac{1}{2} \int_{B_1} x \cdot Ax \, dx = \alpha_n$$

and for halfplane solutions $u(x) = \frac{1}{2} (x \cdot e)^2_+$

$$W(r, u, 0) = \frac{1}{2} \int_{B_1} (x \cdot e)^2_+ \, dx = \frac{\alpha_n}{2},$$

where

$$\alpha_n = \frac{1}{2} \int_{B_1} x^2_+ \, dx.$$

So, the only values taken by W on homogeneous solutions are

$$\alpha_n, \quad \frac{\alpha_n}{2}.$$

Problem B. As it follows from Theorem 11.1, the homogeneous solutions of Problems A and B are identical and so are their Weiss functionals.

Problem C. Arguing similarly, we obtain that the homogeneous solutions in this case have energies W

$$\lambda \pm \alpha_n, \quad \frac{(\lambda_+ + \lambda_-)\alpha_n}{2}, \quad \frac{\lambda \pm \alpha_n}{2}.$$

The computation above and Weiss’s Monotonicity Formula lead us to the following definition.

Definition 11.2 (Balanced Energy). Let $u \in P^R(x_0, M)$ be a solution of Problem A, B, or C and assume additionally that $x_0 \in \Gamma(u)$ in the case of Problem C. Then the limit

$$\omega(x_0) := \lim_{r \to 0} W(r, u, x_0),$$

which exists by Theorem 10.2, is called the balanced energy of u at x_0.

If $u_0 = \lim_{j \to \infty} u_{x_0, \lambda_j}$ for $\lambda_j \to 0$ is a blowup of u at a fixed center x_0 as in Theorem 10.3 then

$$\omega(x_0) = \lim_{j \to \infty} W(\lambda_j, u, x_0) = \lim_{j \to 0} W(1, u_{x_0, \lambda_j}, 0) = W(1, u_0, 0).$$

Thus, the balanced energy at a point coincides with the Weiss energy of any of blowups with fixed center x_0. This has two consequences: first that the balanced energy can take only a limited number of values and second that all blowups at x_0 are of the same type.

Proposition 11.3. Problems A, B. The balanced energy is an upper semicontinuous function of $x_0 \in \Gamma(u)$ and

$$\omega(x_0) \in \left\{ \alpha_n, \frac{\alpha_n}{2} \right\}.$$

Problem C. The balanced energy is an upper semicontinuous function of $x_0 \in \Gamma(u)$ and

$$\omega(x_0) \in \left\{ \lambda \pm \alpha_n, \frac{(\lambda_+ + \lambda_-)\alpha_n}{2}, \frac{\lambda \pm \alpha_n}{2} \right\}.$$
Proof. The upper semicontinuity follows from the fact that

\[W(r, u, \cdot) =: \omega_r(\cdot) \downarrow \omega(\cdot), \quad \text{as } r \downarrow 0, \]

and the functions \(\omega_r(\cdot) \) are continuous for any \(r > 0 \). The values taken by the balanced energy are obtained from the analysis immediately before and after Definition 11.2.

\[\square \]

Proposition 11.4 (Unique type of the blowup). *Let \(x_0 \in \Gamma(u) \) in Problems A, B, or \(x_0 \in \Gamma'(u) \) in Problem C. Then any two blowups of solution \(u \) with fixed center \(x_0 \) have the same type.*

We leave the proof to the reader as an exercise.

Definition 11.5 (Classification of Free Boundary Points).

- In Problems A, B for \(x_0 \in \Gamma(u) \) we will use the following terminology:
 - \(x_0 \) is a high-energy point, if \(\omega(x_0) = \alpha_n \)
 - \(x_0 \) is a low-energy point, if \(\omega(x_0) = \frac{\alpha_n}{2} \)

 Equivalently, \(x_0 \) is high-energy if blowups with fixed center \(x_0 \) are polynomial and low-energy if blowups are halfplane solutions.

- In Problem C, for \(x_0 \in \Gamma'(u) \), we say
 - \(x_0 \) is a two-phase point, if \(x_0 \in \partial\{u > 0\} \cap \partial\{u < 0\} \)
 - \(x_0 \) is an one-phase point, otherwise

One can show that the solution \(u \) of Problem C does not change sign in a neighborhood of an one-phase point. Similarly to Problems A, B we distinguish high-energy and low-energy one-phase points, depending on their balanced energy.