LECTURE 15

15. GLOBAL SOLUTIONS

In this lecture we study the so-called global solutions, i.e. solutions defined in
the whole space, with an additional assumption that they grow quadratically at
infinity. More precisely, we consider elements of the class P (zo, M) which satisfy

[ ] HD2u||L°°(R") S ]\47

o zy €'(u).
The global solutions may exist by their own, but most importantly they may appear
as blowups of one or a sequence of functions with variable centers, i.e. limits of
rescalings _ ‘
w(x; +rjz) — u(z)

r? '

We will first study the global solution for the classical obstacle problem, then gen-
eralize the results for Problems A, B and at the end of this lecture we will study
the case of Problem C.

ul, , (2) =

15.1. Classical Obstacle Problem.
Theorem 15.1. Let u € Py, (M) be a global solution of Problem A and assume

that u > 0 in R™. Then u is a convex function in R", i.e.
Oect(z) > 0,  for any direction e and x € R"
In particular, the set {u = 0} is conver.
Proof. Fix any direction e. Without loss of generality suppose that e = e, =

(0,--+,0,1). Assume, on the contrary, that

—m = igf Onnu < 0,

and let z; € 2 be a minimizing sequence for the value —m, i.e.

lim Oppu(z;) = —m.
— 00

j
Let d; = dist(z;,T") and consider the rescalings

1
U](l‘) = Uz, d; (-T) = ?U(JZJ + d]ac)
J

Observe that By C Q(u;) and the free boundary I'(u;) contains at leas one point
on B;. Since also || D?u,|| are uniformly bounded we have the uniform estimates

u3(a)] < -(R+1)?

for all R > 0 and therefore we can extract a subsequence converging in Cllo’g (R™)
to a global solution ug of Problem A. The assumption u > 0, implies that ug > 0
and therefore, Q(ug) = {uo > 0}. Moreover, similarly to u;, observe that since
B C Q(ug), and 9B; contains at least one free boundary point.
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Next observe, since all functions u; satisfy Au; = 1 in By, the convergence to
up can be assumed to be at least in C2_(Bj). Hence, the limit function ug satisfies

Aug =1, Onnto > —m in By, Onnuo(0) = —m.
Since 9,,ug is harmonic in By, the minimum principle implies that 0,,,ug = —m in
Bj. In fact we have even more, 9, u9 = —m in the connected component of Q(ug)
which contains B;. Hence we obtain the representations
(15.1) Onuo(z) = g1 () —mzy,, o' = (x1,...,T0_1)
and
/ / m o
(15.2) up(z) = go(2") + g1 (2" )y, — 5 T
in By. Now let us choose a point (z,0) € By and start moving in the direction e,,.
Observe that as long as we stay in Q(ug), we still have d,,,u = —m and therefore

still have the representations (15.1)—(15.2). However, sooner or later we will reach
0Q(up), otherwise if x,, becomes very large (15.2) will imply ug < 0, contrary to or
assumption. Since uy = |[Vug| = 0 on 9Q(uyp), from (15.1) we obtain that the first
value £(z') of z,, for which we arrive at 9Q(ug) is given by

) = 2470

m
Hence from (15.2) we deduce that

no_ _gl(xl)Q
92(@) = 2m
Now, the representation (15.2) takes the form
m
ug(z) = _5(% - f(xl))z,
which is not possible since ug > 0. This concludes the proof. (]

15.2. Problems A, B. Next, our goal is to generalize Theorem 15.1 for global
solutions of Problems A, B. We will consider two case: when the complement of
is bounded and when it is unbounded.

15.2.1. The compact complement case. Assume now we have u € Puo (9, M) for
which Q€ is compact.

Lemma 15.2. Let u € Py (zg, M) be a global solution of Problem A, B, such that
Q° is compact and Int Q¢ #£ . Then xq is a low energy point.

Proof. Suppose, towards a contradiction, that xy is a high energy point. Consider
then a so-called “shrink-down” of u with a fixed center at zq, i.e. sequence of
rescalings
u(xo + Rrx) — u(xo)

Ry
for Ry, — oo which converges to a global solution ... Similarly to blowups with
fixed centers (Theorem 10.3), it is not hard show that u is a homogeneous global
solution, as a simple corollary of Weiss’s monotonicity formula (see Lecture 10).
The same monotonicity formula implies

an = w(xg) < W(r,u,zg) < Rlirn W (R, u,xo)
) — 00

Uk(T) = Ugy, Ry (T) =

(15.3) = lim WL u) = W1, ua).

Ry —o0
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On the other hand, we know that for homogeneous global solutions W can take only
two values: «,,/2 and «,, hence W (1, ux) = . global solution and W (1, us) <
. This, combined with Hence, from (15.3) implies that W (r, u, ) = ay, for any
r > 0. Thus, by Theorem 10.2 v must be homogeneous with respect to the point xg
and the classification of homogeneous solutions implies that « must be a polynomial
solution. This contradicts the assumption Int Q¢ # . O

Lemma 15.3. Let u be as in Lemma 15.2 . Then Q¢ will consist of finite union of
connected components QS, i = 1,..., N with C' boundaries and nonempty interiors
such that w is constant in €05.

Proof. Note that every point on 92 is of low energy. Applying now Theorems 12.4
and 13.1 we obtain the desired structure for Q°. ]

Lemma 15.4. Let u be as in Lemma 15.2 and suppose that

(15.4) supu =0
QC

Then, for a suitable choice of the origin in €, the function

u(rz)

r
is mondecreasing, for any fixed x.

Proof. We will give the proof for n > 3. Denote by V' the Newtonian potential of

Q°, ie.
V(z) = /Cindy
eyl

Then V is bounded and superharmonic in R” and harmonic in 2. By the maximum
principle, there is at least one point (o € ¢ such that

V(¢) > V(z) forall z € R™.

Set the origin at (p.
Since
Alu—V)=1
in the sense of distributions and all second order partial derivatives of u — V are
bounded harmonic functions, the Hessian of u — V' is a constant matrix, by Liou-
ville’s theorem. Hence v — V is a polynomial of degree two. Set

P(z) = u(x) — V(x) — u(0) + V(0).

Note that |[VV(0)| = [Vu(0)] = 0. Hence P(0) = |[VP(0)| = 0, this implies that P
is homogeneous. Now consider the function

h(z) =z - Vu(z) — 2u(x).
h is continuous in R™ and for all x # 0 fixed,
d [(u(rz) 1
% ( 7"2 ) = ﬁh(”’ﬁf)
We will show that A is non-negative in R™. In fact

h(z) = —2u(z) >0, VxeQ°.
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On the other hand, by the homogeneity of P,
h(z) =z -VV(z) — 2V (x) + 2V (0) — 2u(0)

then
‘ 1|im h(z) =2V (0) — 2u(0) > 0.
Since h harmonic in 2, by the minimum principle, h is positive in Q. O

Now we can prove the main result of this section.

Theorem 15.5. Let u € Py (M) be such that Q¢ is compact and Int Q¢ # 0.
Suppose also that (15.4) holds. Then u > 0 in R™ and u is a conver function. In
particular {u = 0} is a convez set.

Proof. Choose the origin as in Lemma 15.4.

Consider first the case of Problem A. We claim that there exists small p > 0
such that v > 0 in B,. Indeed, if 0 € Int Q¢ this is immediate. If 0 € I', then
it is a low energy point by Lemma 15.2 and therefore the statement follows from
Lemma 12.3. Now, invoking Lemma 15.4, we conclude

2
0 <u(pzx) < %U(Rx), x € By, R>p,

i.e. u > 0 everywhere in R™. Then we invoke Theorem 15.1.

In the case of Problem B, we observe that the set {u < 0} is star-like and
therefore connected. Let now use the structure of Q°¢. If Qf, i = 1,..., N are the
components as in Lemma 15.3 and u = ¢; there, then ¢; < 0 by the assumption
(15.4). On the other hand since, w is subharmonic, we must have either v = 0
in the interior of {u < 0} or u < 0. The latter is impossible, since it will imply
that ¢; < 0 for all i = 1,..., N (recall that Q¢ have nonempty interiors), which

contradicts (15.4). Therefore we must have

{v <0} = {u=0}.
and we arrive at the situation of Problem A. g
15.2.2. Global solutions with unbounded °.

Theorem 15.6. Let u € Py (M) such that Q° is unbounded and has nonempty
interior. Then, there is a € R such that u > a and Q° = {u = a}.
In particular, by Theorem 15.1 Q€ is convew.

Proof. Suppose that some shrink-down u., of u at 0 is a half space solution. Then,
arguing as in the proof of Lemma 15.2 we will have that v — «(0) is a half space
solution. Hence the theorem follows in this case.

Now, if no shrink-down is a half-space solution, we may assume u, is a polyno-
mial. The assumption Int Q¢ # () prevents u from being a polynomial.

Since Q¢ is unbounded, there exists a sequence x; € 2 tending to co. In this
case we may scale by R; = |z;| so as to obtain, in the limit, a global solution
with a free boundary point e on the unit sphere. By homogeneity then the ray
{re: r > 0}, must lie in the free boundary. Since u., is a homogeneous quadratic
polynomial, this is possible only if J.us = 0. Consider now the Alt-Caffarelli-
Friedman monotonicity functional

de(r,u) = ®(r, (Oeu)™, (Oou) ™).
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Since (J.u)* are subharmonic by Lemma 6.2, from ACF monotonicity formula we
have that

0 S (]Se(’l’, U) S ¢e(OO,U) = (rbe(l?uoo) =0.
Hence, either (9.u)™ or (G.u)~ must vanish identically and we may assume without
loss of generality that d.u > 0 (otherwise we replace e by —e).

Next, without loss of generality assume e = e,, and (after changing the origin)
that
B, (0) C Q(u).

Then u = u(0) in B,(0). Moreover, by monotonicity in the direction e, we have
that v < u(0) in the half-infinite cylinder By.(0) x (—o0,0), where B,.(0) stands for
a ball in R™~!. Since u is subharmonic, the maximum principle implies now that

w(x',z,) =u(0) for 2’ € B.(0), x, <O0.
Define now a (n — 1)-dimensional solution

w(x') = lim wu(2',x,)
Ty ——00

First, we notice that the limit exists by the monotonicity in the direction e, . Next,
the limit is finite, since B..(0) x (—o0, 0] C Q¢ which gives the estimate

M.,
lu(z) —u(0)] < 5| 2.

Thus, @ is a (n — 1)-dimensional solution with a quadratic growth at infinity. Also
note that

BL.(0) C Q°(q).
First, suppose that @ is either a half space solution, or falls into the hypotheses of
Theorem 15.5. Then 4 is convex and non-negative. Since u(z’, z,,)—u(0) > 4(a’) >
0 we conclude the proof by applying Theorem 15.1 to u(z) — u(0).

Next, if the lower dimensional solution # is neither of the above it must fall into
the third category analyzed above. Hence we repeat our argument and translate @
again in a new direction and reduce the dimension further. Finally, by induction, we
need to classify the one dimensional solutions. However, the only one-dimensional
solutions are #2/2, (z7)2/2, or two separated solutions of the latter, which are all
nonnegative. (Il

15.3. Problem C.

Theorem 15.7. Let u € Poo (M) be a solution of Problem C such that the origin
is a branching point, i.e. 0 € O{u > 0} N 9{u < 0} and |Vu(0)| = 0. Then u is a
two-plane solution

for a certain direction e.

Proof. The proof follows from the classification of homogeneous global solutions in
Theorem 11.1 and the following shrink-down argument.
Consider a limit

R.
Uso (T) = Rliinoo u(R;a:)
J ]

over a certain sequence R; — oo. Then Weiss’s monotonicity formula implies that
Us 18 a homogeneous global solution. Since we still have that 0 is a branching
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free-boundary point for u.,, Theorem 11.1 implies that u, is a two-plane solution
for a certain direction e.
In particular, for any direction v, 0, us does not change sign in R™ and therefore

bu (1, use) = ®(r, (aVUOO)Jra (Opuss)™) = 0.
On the other hand, by the ACF monotonicity formula we have
0 < ¢u(r,u) < ¢u(00,u) = ¢u(1,us) =0,

implying J,u does not change sign. Since this holds for all directions v we conclude
u is one dimensional and hence can be computed as earlier. ([



