LECTURE 15

15. Global solutions

In this lecture we study the so-called global solutions, i.e. solutions defined in the whole space, with an additional assumption that they grow quadratically at infinity. More precisely, we consider elements of the class $P_{\infty}(x_0, M)$ which satisfy
- $\|D^2 u\|_{L^\infty(\mathbb{R}^n)} \leq M$,
- $x_0 \in \Gamma(u)$.

The global solutions may exist by their own, but most importantly they may appear as blowups of one or a sequence of functions with variable centers, i.e. limits of rescalings
$$u_{x_j, r_j}(x) = \frac{u(x_j + r_j x) - u(x_j)}{r_j^2}.$$

We will first study the global solution for the classical obstacle problem, then generalize the results for Problems A, B and at the end of this lecture we will study the case of Problem C.

15.1. Classical Obstacle Problem.

Theorem 15.1. Let $u \in P_{\infty}(M)$ be a global solution of Problem A and assume that $u \geq 0$ in \mathbb{R}^n. Then u is a convex function in \mathbb{R}^n, i.e.
$$\partial_{ee} u(x) \geq 0, \quad \text{for any direction } e \text{ and } x \in \mathbb{R}^n$$

In particular, the set $\{u = 0\}$ is convex.

Proof. Fix any direction e. Without loss of generality suppose that $e = e_n = (0, \cdots, 0, 1)$. Assume, on the contrary, that
$$-m := \inf_{\Omega} \partial_{nn} u < 0,$$
and let $x_j \in \Omega$ be a minimizing sequence for the value $-m$, i.e.
$$\lim_{j \to -\infty} \partial_{nn} u(x_j) = -m.$$

Let $d_j = \text{dist}(x_j, \Gamma)$ and consider the rescalings
$$u_j(x) = u_{x_j, d_j}(x) = \frac{1}{d_j^2} u(x_j + d_j x).$$

Observe that $B_1 \subset \Omega(u_j)$ and the free boundary $\Gamma(u_j)$ contains at least one point on ∂B_1. Since also $\|D^2 u_j\|$ are uniformly bounded we have the uniform estimates
$$|u_j(x)| \leq \frac{M}{2} (R + 1)^2$$

for all $R > 0$ and therefore we can extract a subsequence converging in $C^{1,\alpha}_{\text{loc}}(\mathbb{R}^n)$ to a global solution u_0 of Problem A. The assumption $u \geq 0$, implies that $u_0 \geq 0$ and therefore, $\Omega(u_0) = \{u_0 > 0\}$. Moreover, similarly to u_j, observe that since $B_1 \subset \Omega(u_0)$, and ∂B_1 contains at least one free boundary point.
Next observe, since all functions \(u_j \) satisfy \(\Delta u_j = 1 \) in \(B_1 \), the convergence to \(u_0 \) can be assumed to be at least in \(C^2_{\text{loc}}(B_1) \). Hence, the limit function \(u_0 \) satisfies
\[
\Delta u_0 = 1, \quad \partial_{nn} u_0 \geq -m \text{ in } B_1, \quad \partial_{nn} u_0(0) = -m.
\]
Since \(\partial_{nn} u_0 \) is harmonic in \(B_1 \), the minimum principle implies that \(\partial_{nn} u_0 \equiv -m \) in \(B_1 \). In fact we have even more, \(\partial_{nn} u_0 = -m \) in the connected component of \(\Omega(u_0) \) which contains \(B_1 \). Hence we obtain the representations
\[
\partial_n u_0(x) = g_1(x') - mx_n, \quad x' = (x_1, \ldots, x_{n-1})
\]
and
\[
u_0(x) = g_2(x') + g_1(x')x_n - \frac{m}{2} x_n^2,
\]
in \(B_1 \). Now let us choose a point \((x', 0) \in B_1 \) and start moving in the direction \(e_n \).
Observe that as long as we stay in \(\Omega(u_0) \), we still have \(\partial_{nn} u = -m \) and therefore still have the representations (15.1)–(15.2). However, sooner or later we will reach \(\partial \Omega(u_0) \), otherwise if \(x_n \) becomes very large (15.2) will imply \(u_0 < 0 \), contrary to our assumption. Since \(u_0 = |\nabla u_0| = 0 \) on \(\partial \Omega(u_0) \), from (15.1) we obtain that the first value \(\xi(x') \) of \(x_n \) for which we arrive at \(\partial \Omega(u_0) \) is given by
\[
\xi(x') = \frac{g_1(x')}{m}.
\]
Hence from (15.2) we deduce that
\[
g_2(x') = -\frac{g_1(x')^2}{2m}.
\]
Now, the representation (15.2) takes the form
\[
u_0(x) = -\frac{m}{2}(x_n - \xi(x'))^2,
\]
which is not possible since \(u_0 \geq 0 \). This concludes the proof. \(\square \)

15.2. Problems A, B. Next, our goal is to generalize Theorem 15.1 for global solutions of Problems A, B. We will consider two case: when the complement of \(\Omega \) is bounded and when it is unbounded.

15.2.1. The compact complement case. Assume now we have \(u \in P_\infty(x_0, M) \) for which \(\Omega^c \) is compact.

Lemma 15.2. Let \(u \in P_\infty(x_0, M) \) be a global solution of Problem A, B, such that \(\Omega^c \) is compact and \(\text{Int} \Omega^c \neq \emptyset \). Then \(x_0 \) is a low energy point.

Proof. Suppose, towards a contradiction, that \(x_0 \) is a high energy point. Consider then a so-called “shrink-down” of \(u \) with a fixed center at \(x_0 \), i.e. sequence of rescalings
\[
u_k(x) = u_{x_0, R_k}(x) = \frac{u(x_0 + R_k x) - u(x_0)}{R_k^2}
\]
for \(R_k \to \infty \) which converges to a global solution \(u_\infty \). Similarly to blowups with fixed centers (Theorem 10.3), it is not hard show that \(u_\infty \) is a homogeneous global solution, as a simple corollary of Weiss’s monotonicity formula (see Lecture 10). The same monotonicity formula implies
\[
\alpha_n = \omega(x_0) \leq W(r, u, x_0) \leq \lim_{R_k \to \infty} W(R_k, u, x_0) = \lim_{R_k \to \infty} W(1, u_k) = W(1, u_\infty).
\]
On the other hand, we know that for homogeneous global solutions W can take only two values: $\alpha_n/2$ and α_n, hence $W(1, u_\infty) = \alpha_n$. global solution and $W(1, u_\infty) \leq \alpha_n$. This, combined with Hence, from (15.3) implies that $W(r, u, x_0) = \alpha_n$ for any $r > 0$. Thus, by Theorem 10.2 u must be homogeneous with respect to the point x_0 and the classification of homogeneous solutions implies that u must be a polynomial solution. This contradicts the assumption $\text{Int } \Omega^c \neq \emptyset$. \hfill \Box

Lemma 15.3. Let u be as in Lemma 15.2. Then Ω^c will consist of finite union of connected components Ω_i^c, $i = 1, \ldots, N$ with C^1 boundaries and nonempty interiors such that u is constant in Ω_i^c.

Proof. Note that every point on $\partial\Omega$ is of low energy. Applying now Theorems 12.4 and 13.1 we obtain the desired structure for Ω^c. \hfill \Box

Lemma 15.4. Let u be as in Lemma 15.2 and suppose that
\begin{equation}
\sup_{\Omega^c} u = 0
\end{equation}
Then, for a suitable choice of the origin in Ω^c, the function
$$r \mapsto \frac{u(rx)}{r^2}$$
is nondecreasing, for any fixed x.

Proof. We will give the proof for $n \geq 3$. Denote by V the Newtonian potential of Ω^c, i.e.
$$V(x) = \int_{\Omega^c} \frac{c_n}{|x - y|^{n-2}} dy.$$ Then V is bounded and superharmonic in \mathbb{R}^n and harmonic in Ω. By the maximum principle, there is at least one point $\zeta_0 \in \Omega^c$ such that
$$V(\zeta_0) \geq V(x) \quad \text{for all } x \in \mathbb{R}^n.$$ Set the origin at ζ_0.
Since
$$\Delta(u - V) = 1$$in the sense of distributions and all second order partial derivatives of $u - V$ are bounded harmonic functions, the Hessian of $u - V$ is a constant matrix, by Liouville’s theorem. Hence $u - V$ is a polynomial of degree two. Set
$$P(x) = u(x) - V(x) - u(0) + V(0).$$Note that $|\nabla V(0)| = |\nabla u(0)| = 0$. Hence $P(0) = |\nabla P(0)| = 0$, this implies that P is homogeneous. Now consider the function
$$h(x) = x \cdot \nabla u(x) - 2u(x).$$
h is continuous in \mathbb{R}^n and for all $x \neq 0$ fixed,
$$\frac{d}{dr} \left(\frac{u(rx)}{r^2} \right) = \frac{1}{r^3} h(rx).$$
We will show that h is non-negative in \mathbb{R}^n. In fact
$$h(x) = -2u(x) \geq 0, \quad \forall x \in \Omega^c.$$
On the other hand, by the homogeneity of P,
\[h(x) = x \cdot \nabla V(x) - 2V(x) + 2V(0) - 2u(0) \]
then
\[\lim_{|x| \to \infty} h(x) = 2V(0) - 2u(0) \geq 0. \]
Since h harmonic in Ω, by the minimum principle, h is positive in Ω. \qed

Now we can prove the main result of this section.

Theorem 15.5. Let $u \in P_\infty(M)$ be such that Ω^c is compact and $\text{Int } \Omega^c \neq \emptyset$. Suppose also that (15.4) holds. Then $u \geq 0$ in \mathbb{R}^n and u is a convex function. In particular $\{u = 0\}$ is a convex set.

Proof. Choose the origin as in Lemma 15.4.

Consider first the case of Problem A. We claim that there exists small $\rho > 0$ such that $u \geq 0$ in B_ρ. Indeed, if $0 \in \text{Int } \Omega^c$, this is immediate. If $0 \in \Gamma$, then it is a low energy point by Lemma 15.2 and therefore the statement follows from Lemma 12.3. Now, invoking Lemma 15.4, we conclude
\[0 \leq u(\rho x) \leq \frac{\rho^2}{R^2} u(Rx), \quad x \in B_1, \quad R > \rho, \]
i.e. $u \geq 0$ everywhere in \mathbb{R}^n. Then we invoke Theorem 15.1.

In the case of Problem B, we observe that the set $\{u \leq 0\}$ is star-like and therefore connected. Let now use the structure of Ω^c. If Ω^c_i, $i = 1, \ldots, N$ are the components as in Lemma 15.3 and $u = c_i$ there, then $c_i \leq 0$ by the assumption (15.4). On the other hand since, u is subharmonic, we must have either $u = 0$ in the interior of $\{u \leq 0\}$ or $u < 0$. The latter is impossible, since it will imply that $c_i < 0$ for all $i = 1, \ldots, N$ (recall that Ω^c_i have nonempty interiors), which contradicts (15.4). Therefore we must have
\[\{u \leq 0\} = \{u = 0\}. \]
and we arrive at the situation of Problem A. \qed

15.2.2. **Global solutions with unbounded Ω^c.**

Theorem 15.6. Let $u \in P_\infty(M)$ such that Ω^c is unbounded and has nonempty interior. Then, there is $a \in \mathbb{R}$ such that $u \geq a$ and $\Omega^c = \{u = a\}$.

In particular, by Theorem 15.1 Ω^c is convex.

Proof. Suppose that some shrink-down u_∞ of u at 0 is a half space solution. Then, arguing as in the proof of Lemma 15.2 we will have that $u - u(0)$ is a half space solution. Hence the theorem follows in this case.

Now, if no shrink-down is a half-space solution, we may assume u_∞ is a polynomial. The assumption $\text{Int } \Omega^c \neq \emptyset$ prevents u from being a polynomial.

Since Ω^c is unbounded, there exists a sequence $x_j \in \partial \Omega$ tending to ∞. In this case we may scale by $R_j = |x_j|$ so as to obtain, in the limit, a global solution with a free boundary point e on the unit sphere. By homogeneity then the ray $\{re: \ r > 0\}$, must lie in the free boundary. Since u_∞ is a homogeneous quadratic polynomial, this is possible only if $\partial_e u_\infty \equiv 0$. Consider now the Alt-Caffarelli-Friedman monotonicity functional
\[\phi_e(r, u) := \Phi(r, (\partial_e u)^+, (\partial_e u)^-). \]
Since \((\partial_e u)\pm\) are subharmonic by Lemma 6.2, from ACF monotonicity formula we have that
\[0 \leq \phi_e(r, u) \leq \phi_e(\infty, u) = \phi_e(1, u_\infty) = 0.\]
Hence, either \((\partial_e u)^+\) or \((\partial_e u)^-\) must vanish identically and we may assume without loss of generality that \(\partial_e u \geq 0\) (otherwise we replace \(e\) by \(-e\)).

Next, without loss of generality assume \(e = e_n\) and (after changing the origin)
\[B_r(0) \subset \Omega_c(u).\]
Then \(u \equiv u(0) \text{ in } B_r(0).\) Moreover, by monotonicity in the direction \(e_n\) we have that \(u \leq u(0) \text{ in the half-infinite cylinder } B'_r(0) \times (-\infty, 0),\) where \(B'_r(0)\) stands for a ball in \(\mathbb{R}^{n-1}.\) Since \(u\) is subharmonic, the maximum principle implies now that \(u(x', x_n) = u(0)\) for \(x' \in B'_r(0),\ x_n \leq 0.\)

Define now a \((n-1)\)-dimensional solution \(\hat{u}(x') = \lim_{x_n \to -\infty} u(x', x_n)\)
First, we notice that the limit exists by the monotonicity in the direction \(e_n.\) Next, the limit is finite, since \(B'_r(0) \times (-\infty, 0) \subset \Omega^c\) which gives the estimate
\[|u(x) - u(0)| \leq M \frac{|x'|^2}{2}.\]
Thus, \(\hat{u}\) is a \((n-1)\)-dimensional solution with a quadratic growth at infinity. Also note that
\[B'_r(0) \subset \Omega^c(\hat{u}).\]
First, suppose that \(\hat{u}\) is either a half space solution, or falls into the hypotheses of Theorem 15.5. Then \(\hat{u}\) is convex and non-negative. Since \(u(x', x_n) - u(0) \geq \hat{u}(x') \geq 0\) we conclude the proof by applying Theorem 15.1 to \(u(x) - u(0).\)

Next, if the lower dimensional solution \(\hat{u}\) is neither of the above it must fall into the third category analyzed above. Hence we repeat our argument and translate \(\hat{u}\) again in a new direction and reduce the dimension further. Finally, by induction, we need to classify the one dimensional solutions. However, the only one-dimensional solutions are \(x^1_1/2, (x^1_1)^2/2,\) or two separated solutions of the latter, which are all nonnegative. \(\square\)

15.3. Problem C.

Theorem 15.7. Let \(u \in P_\infty(M)\) be a solution of Problem C such that the origin is a branching point, i.e. \(0 \in \partial\{u > 0\} \cap \partial\{u < 0\}\) and \(|\nabla u(0)| = 0.\) Then \(u\) is a two-plane solution
\[u(x) = \frac{\lambda_+}{2}(x \cdot e)^2_+ - \frac{\lambda_-}{2}(x \cdot e)^2_-\]
for a certain direction \(e.\)

Proof. The proof follows from the classification of homogeneous global solutions in Theorem 11.1 and the following shrink-down argument.
Consider a limit
\[u_\infty(x) = \lim_{R_j \to \infty} \frac{u(R_j x)}{R_j^2}\]
over a certain sequence \(R_j \to \infty.\) Then Weiss's monotonicity formula implies that \(u_\infty\) is a homogeneous global solution. Since we still have that \(0\) is a branching
free-boundary point for u_∞. Theorem 11.1 implies that u_∞ is a two-plane solution for a certain direction e.

In particular, for any direction ν, $\partial_\nu u_\infty$ does not change sign in \mathbb{R}^n and therefore

$$\phi_\nu(r, u_\infty) = \Phi(r; (\partial_\nu u_\infty)^+, (\partial_\nu u_\infty)^-) = 0.$$

On the other hand, by the ACF monotonicity formula we have

$$0 \leq \phi_\nu(r, u) \leq \phi_\nu(\infty, u) = \phi_\nu(1, u_\infty) = 0,$$

implying $\partial_\nu u$ does not change sign. Since this holds for all directions ν we conclude u is one dimensional and hence can be computed as earlier. \qed