LECTURE 19

19. C!' REGULARITY OF THE FREE BOUNDARY: PROBLEM C
19.1. C! regularity.

Theorem 19.1. Let u € Pi(M) be a solution of Problem C. Then there are con-
stants o9 > 0 and ro > 0 such that if

(19.1) |Vu(0)| <o, QF(u)N By #0,

then T*(u) N B,, are C'-surfaces. The constants o, o and the modulus of conti-
nuity of the normal vectors to these surfaces depend only on Ay, M and the space
dimension n.

Remark 19.2. The C'-regularity is optimal in the sense that the graphs are in
general not of class C'*P™i, This means that the normal of the free boundary may
not be Dini continuous, i.e. if w is the modulus of continuity of the normal vector

then )
/ bad A4 *) dt = oo
0 t

Corollary 19.3. Let u € Py(M) and suppose that 0 € T'(u) is a two-phase point.
Then there is a constant vy > 0 such that T*(u)NB,, are C*-surfaces. The constant
ro and the modulus of continuity of the normal vectors to these surfaces depend only
on Ay, M and the space dimension n.

Proof of Therem 19.1. From Theorem 17.7 we know that T'F N B,, are given as
Lipschitz graphs (after a suitable rotation of coordinate axes)

Tp = f:l: (xl)
with Lipschitz continuous fy satisfying |V fi(z)] < L < 1 for (2/, f1(2')) € TN
B,,. Moreover, we know that fi are differentiable and even C*. So, it will suffice
to show that the normals are equicontinuous on I'*(u) N B, /2 for u in the class of
solutions specified in the statement of the theorem.
We claim that for € > 0 there is 6. > 0 depending only on the parameters in the
statement such that for any pair of free boundary points y1,y2 € I'" N By, /25

(19.2) i —y2| <o = |v(yr) —v(y2)| < 26

Fix e > 0. Let 0. and r. denote the constants og and rg respectively in Theorem 17.7
for L = e. In what follows p. := min{r., o }ro/4.

Suppose first that u is non-negative in B, (y1). Then we can apply the ohe
regularity result the scaled function

Uy, p. () 7= u(y1 + pew) /2.
Since the C'**-norm of the normal on B, N 8{uy, ,. > 0} bounded by a constant
Cy, where ¢y and Cj depend only on the parameters in the statement, we may
choose
b := min{(e/Co)" %, co} pe
1



2 LECTURE 19

to obtain (19.2).

Next, suppose that u changes its sign in B,_(y1). This means B,_(y1) intersects
both {+u > 0}. If there is a point y € B,_(y1) N 0{u > 0} such that |Vu(y)| < p.
then the rescaling u,, /2 satisfies the conditions of Theorem 17.7 with L = e.
Namely,

(Vg 1o /2(0)| < 0e, Bo, N {Euy o2 > 0} # 0.
Hence, the free boundary d{u > 0} N B, _,,/2(y) D 0{u > 0} N B, _(y1) is Lipschitz
with Lipschitz norm not greater than e. Hence (19.2) follows in this case with
Oc 1= Pe.

Finally, if [Vu| > p, for all points y € B, (y1) N 0{u > 0}, we proceed as
follows: from the equation u(z’, f+(z')) = 0 we infer that V'u + 9, uV'fy = 0 on
0{u > 0} N B, /2. Hence we obtain

IVii(y1) = Vii(y2)| <

(Here M is such that |[D?u| < M in Bj.) In particular we may choose

4M

ly1 — y2l-

€

PR

4AM

to arrive at (19.2).
u

19.2. Optimality of C! regularity. Let us now show that the free boundaries
I'* are not generally C1Pini,

Lemma 19.4. If v € WY2(D) is a solution of the one-phase obstacle problem
Av = X(y>0y in D
such thatv =0 on ¥ C 9D, then for any B,(x¢) C R™ satisfying B,(xo)NOD C X,
sup v<7r*/(8n) = wv=0 inDNB,m(x).
DﬁBT(LD())

Proof. Comparison of v in DN B, 2(y) to wy(x) = |z —y[*/(2n) for y € B, j2(x0)N
D. O

Let now ¢ € C*°(R) be such that {( = 0in [-1/2,+00), ( = 1/16 in (—o0, —1] and
¢ is strictly decreasing in (—1,—1/2). Moreover define for M € [0,1] the function
ups as the solution of the one-phase obstacle problem

Aupr = X{uy >0y in Q :={x € R?: 2 € (0,1), 25 € (—1,0)},
up (21, 22) = M{(x2) on {x1 =0} NIQ,
ung (21, 22) = M/2 on {z1 =1} N 9Q,
Ooupr =0 on ({xe = -1} U{xe =0})NOQ .
For M =1 we may compare uy; to the function z%/2 to deduce that
up >01in Q .

For M = 0, clearly ug = 0.

On the other hand, as dyups is harmonic in the set @ N {drups > 0} and non-
positive on 9(QN{daups > 0}), we obtain from the maximum principle that daups <
0 in Q. Thus the free boundary of uys is a graph of the x;-variable.

Suppose now towards a contradiction that {0} x (—=1/4,0) C d{uy = 0}° for
all M € (0,1). Then, as M — 1, we obtain u; = |Vui| = 0 on {0} x [-1/4,0],
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implying by the fact that u; > 0 in @ and by the Cauchy-Kovalevskaya theorem
(applied repeatedly to w = u; — 2% /2) that u; = 22/2 in Q; this is a contradiction
in view of the boundary data of u;.

From the continuous dependence of u,; on the boundary data as well as Lemma 19.4
we infer therefore the existence of an My € (0,1) as well as T = (Z1,Z2) € ({0} x
[—1/4,0]) N O{ung, = 0}° NO{un, > 0}. Note that Hopf’s principle, applied at the
line segment {0} x (—1/2,Z3), yields Vuypy, # 0 on {0} x (—1/2,Z2).

Now we may extend uyz, by odd reflection at the line {z1 = 0} to a solution u
of Problem C in an open neighborhood of Z; here AL = A_ = 1. The point 7 is a
branch point, so we may apply Theorem 19.1 to obtain that the free boundary is
the union of two C''-graphs in a neighborhood of Z.

Suppose now towards a contradiction that d{u > 0} is of class in a
neighborhood of . Then by a theorem of Widman, the Hopf principle holds at &
and tells us that

('1:Dini

P _

lim inf 22%Me %1, %2) (21,75)
z1—0 X1

But that contradicts Lemma 16. which, applied to the rescalings of solution u at

y = T, shows that

< 0.

lim inf 22120 (1, 72)
x1—0 xr1
Consequently d{u > 0} and O{u < 0} are not of class C*Pini,

=0.



