
LECTURE 19

19. C1 Regularity of the Free Boundary: Problem C

19.1. C1 regularity.

Theorem 19.1. Let u ∈ P1(M) be a solution of Problem C. Then there are con-
stants σ0 > 0 and r0 > 0 such that if

(19.1) |∇u(0)| ≤ σ, Ω±(u) ∩Bσ 6= ∅,
then Γ±(u) ∩ Br0 are C1-surfaces. The constants σ, r0 and the modulus of conti-
nuity of the normal vectors to these surfaces depend only on λ±, M and the space
dimension n.

Remark 19.2. The C1-regularity is optimal in the sense that the graphs are in
general not of class C1,Dini. This means that the normal of the free boundary may
not be Dini continuous, i.e. if ω is the modulus of continuity of the normal vector
then ∫ 1

0

ω(t)
t

dt = ∞.

Corollary 19.3. Let u ∈ P1(M) and suppose that 0 ∈ Γ′(u) is a two-phase point.
Then there is a constant r0 > 0 such that Γ±(u)∩Br0 are C1-surfaces. The constant
r0 and the modulus of continuity of the normal vectors to these surfaces depend only
on λ±, M and the space dimension n.

Proof of Therem 19.1. From Theorem 17.7 we know that Γ± ∩ Br0 are given as
Lipschitz graphs (after a suitable rotation of coordinate axes)

xn = f±(x′)

with Lipschitz continuous f± satisfying |∇f±(x′)| ≤ L < 1 for (x′, f±(x′)) ∈ Γ± ∩
Br0 . Moreover, we know that f± are differentiable and even C1. So, it will suffice
to show that the normals are equicontinuous on Γ±(u) ∩Br0/2 for u in the class of
solutions specified in the statement of the theorem.

We claim that for ε > 0 there is δε > 0 depending only on the parameters in the
statement such that for any pair of free boundary points y1, y2 ∈ Γ+ ∩Br0/2,

(19.2) |y1 − y2| ≤ δε ⇒ |ν(y1)− ν(y2)| ≤ 2ε.

Fix ε > 0. Let σε and rε denote the constants σ0 and r0 respectively in Theorem 17.7
for L = ε. In what follows ρε := min{rε, σε}r0/4.

Suppose first that u is non-negative in Bρε
(y1). Then we can apply the C1,α

regularity result the scaled function

uy1,ρε
(x) := u(y1 + ρεx)/ρ2

ε .

Since the C1,α-norm of the normal on Bc0 ∩ ∂{uy1,ρε > 0} bounded by a constant
C0, where c0 and C0 depend only on the parameters in the statement, we may
choose

δε := min{(ε/C0)1/α, c0} ρε
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to obtain (19.2).
Next, suppose that u changes its sign in Bρε(y1). This means Bρε(y1) intersects

both {±u > 0}. If there is a point y ∈ Bρε(y1) ∩ ∂{u > 0} such that |∇u(y)| ≤ ρε

then the rescaling uy,r0/2 satisfies the conditions of Theorem 17.7 with L = ε.
Namely,

|∇uy,r0/2(0)| ≤ σε, Bσε ∩ {±uy,r0/2 > 0} 6= ∅.
Hence, the free boundary ∂{u > 0} ∩Brεr0/2(y) ⊃ ∂{u > 0} ∩Bρε

(y1) is Lipschitz
with Lipschitz norm not greater than ε. Hence (19.2) follows in this case with
δε := ρε.

Finally, if |∇u| ≥ ρε for all points y ∈ Bρε
(y1) ∩ ∂{u > 0}, we proceed as

follows: from the equation u(x′, f+(x′)) = 0 we infer that ∇′u + ∂nu∇′f+ = 0 on
∂{u > 0} ∩Br0/2. Hence we obtain

|∇f+(y1)−∇f+(y2)| ≤
4M

ρε
|y1 − y2|.

(Here M is such that |D2u| ≤ M in B1.) In particular we may choose

δε :=
ερε

4M

to arrive at (19.2).
�

19.2. Optimality of C1 regularity. Let us now show that the free boundaries
Γ± are not generally C1,Dini.

Lemma 19.4. If v ∈ W 1,2(D) is a solution of the one-phase obstacle problem

∆v = χ{v>0} in D

such that v = 0 on Σ ⊂ ∂D, then for any Br(x0) ⊂ Rn satisfying Br(x0)∩∂D ⊂ Σ,

sup
D∩Br(x0)

v ≤ r2/(8n) ⇒ v ≡ 0 in D ∩Br/2(x0) .

Proof. Comparison of v in D∩Br/2(y) to wy(x) = |x− y|2/(2n) for y ∈ Br/2(x0)∩
D. �

Let now ζ ∈ C∞(R) be such that ζ = 0 in [−1/2,+∞), ζ = 1/16 in (−∞,−1] and
ζ is strictly decreasing in (−1,−1/2). Moreover define for M ∈ [0, 1] the function
uM as the solution of the one-phase obstacle problem

∆uM = χ{uM >0} in Q := {x ∈ R2 : x1 ∈ (0, 1), x2 ∈ (−1, 0)} ,

uM (x1, x2) = Mζ(x2) on {x1 = 0} ∩ ∂Q,

uM (x1, x2) = M/2 on {x1 = 1} ∩ ∂Q,

∂2uM = 0 on ({x2 = −1} ∪ {x2 = 0}) ∩ ∂Q .

For M = 1 we may compare uM to the function x2
1/2 to deduce that

u1 > 0 in Q .

For M = 0, clearly u0 ≡ 0.
On the other hand, as ∂2uM is harmonic in the set Q ∩ {∂2uM > 0} and non-

positive on ∂(Q∩{∂2uM > 0}), we obtain from the maximum principle that ∂2uM ≤
0 in Q. Thus the free boundary of uM is a graph of the x1-variable.

Suppose now towards a contradiction that {0} × (−1/4, 0) ⊂ ∂{uM = 0}◦ for
all M ∈ (0, 1). Then, as M → 1, we obtain u1 = |∇u1| = 0 on {0} × [−1/4, 0],
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implying by the fact that u1 > 0 in Q and by the Cauchy-Kovalevskaya theorem
(applied repeatedly to w = u1 − x2

1/2) that u1 ≡ x2
1/2 in Q; this is a contradiction

in view of the boundary data of u1.
From the continuous dependence of uM on the boundary data as well as Lemma 19.4
we infer therefore the existence of an M0 ∈ (0, 1) as well as x̄ = (x̄1, x̄2) ∈ ({0} ×
[−1/4, 0])∩ ∂{uM0 = 0}◦ ∩ ∂{uM0 > 0}. Note that Hopf’s principle, applied at the
line segment {0} × (−1/2, x̄2), yields ∇uM0 6= 0 on {0} × (−1/2, x̄2).

Now we may extend uM0 by odd reflection at the line {x1 = 0} to a solution u
of Problem C in an open neighborhood of x̄; here λ+ = λ− = 1. The point x̄ is a
branch point, so we may apply Theorem 19.1 to obtain that the free boundary is
the union of two C1-graphs in a neighborhood of x̄.

Suppose now towards a contradiction that ∂{u > 0} is of class C1,Dini in a
neighborhood of x̄. Then by a theorem of Widman, the Hopf principle holds at x̄
and tells us that

lim inf
x1→0

∂2uM0(x1, x̄2)
x1

< 0.

But that contradicts Lemma 16. which, applied to the rescalings of solution u at
y = x̄, shows that

lim inf
x1→0

∂2uM0(x1, x̄2)
x1

= 0.

Consequently ∂{u > 0} and ∂{u < 0} are not of class C1,Dini.


