MA504 REAL ANALYSIS

PURDUE UNIVERSITY SPRING 2012

Instructional Format: Lecture meets 2 times per week for 75 minutes per meeting for 16 weeks. Credits: 3.00

Description: Completeness of the real number system, basic topological properties, compactness, sequences and series, absolute convergence of series, rearrangement of series, properties of continuous functions, the Riemann-Stieltjes integral, sequences and series of functions, uniform convergence, the Stone-Weierstrass theorem, equicontinuity, and the Arzela-Ascoli theorem.

Prerequisites: Upper division undergraduate level course work in Mathematics, General or Upper division undergraduate level course work in Engineering, General; for a total of two courses. Authorized equivalent courses or consent of instructor may be used in satisfying course pre- and co-requisites.

Topics

○ Chapter 1. The Real and Complex Number System
 – Real number system - (Emphasize inf, sup)
 – Extended real number system
 – Euclidean spaces

○ Chapter 2. Basic Topology
 – Finite, countable and uncountable sets
 – Metric spaces (Only a few special examples)
 – Compact sets

○ Chapter 3. Numerical Sequences and Series
 – Convergent sequences
 – Subsequences
 – Cauchy sequences
 – lim sup x_n and lim inf x_n
 – Series
 – Series with many terms (comparison test)
 – Absolute and conditional convergence
 – Rearrangements

○ Chapter 4. Continuity
 – Limits of functions

 – Continuous functions
 – Continuity and compactness
 – Intermediate Value Theorem

○ Chapter 6. The Riemann-Stieltjes Integral
 – Definition and existence
 – Properties
 – Integration and differentiation

○ Chapter 7. Sequences and Series of Functions
 – Uniform convergence
 – Uniform convergence and continuity
 – Uniform convergence and integration
 – Uniform convergence and differentiation
 – Equicontinuous families of functions
 – Stone-Weierstrass Theorem

○ Optional Topics.
 – Sets of Lebesgue measure zero
 – Characterization of Riemann integrable functions bounded and continuous a.e.
 – Differentiability a.e. of monotone functions