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Abstract. We consider an obstacle-type problem

∆u = f(x)χΩ in D,

u = |∇u| = 0 on D \ Ω,

where D is a given open set in Rn and Ω is an unknown open subset of

D. The problem originates in potential theory, in connection with harmonic
continuation of potentials. The qualitative difference between this problem

and the classical obstacle problem is that the solutions here are allowed to

change sign. Using geometric and energetic criteria in delicate combination
we show the C1,1 regularity of the solutions, and the regularity of the free

boundary, below the Lipschitz threshold for the right hand side.

1. Introduction and the main results

The statement of the problem. In recent past, starting with the seminal work
of Caffarelli [Caf98] and Caffarelli, Karp, and Shahgholian [CKS00], there has been
a renewed interest in the study of the well-known obstacle problem, as well as
some variations of it. The use of the monotonicity formula of Alt, Caffarelli, and
Friedman [ACF84] has been a key ingredient in answering many questions within
the free boundary regularity, that was not possible earlier. However, the drawback
of using such a strong tool is its limitation in applying it to more general settings.

Our objective in this paper is to find new ways to circumvent such difficulties,
as well as to strengthen earlier results, in this direction, to its sharpest possible
form. We use Weiss’s monotonicity formula [Wei99] in delicate combination with
well-known geometric criteria in such problems. This will be explained in details
in the text.

The setting we consider here is the obstacle-type problem

∆u = f(x)χΩ in D,(1)

u = |∇u| = 0 on D \ Ω,(2)

where D is a given open set in Rn, Ω is an apriori unknown open subset of D, and
u is a locally bounded distributional solution.
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For the function f(x) we assume

(3) 0 < a ≤ f(x) ≤ b < ∞, x ∈ D

for some positive constants a and b and

(4) f ∈ C0(D)

with a modulus of continuity ω, satisfying a certain Dini-type integrability condi-
tion, to be specified later. Then we are interested in the optimal regularity of the
solution u and the regularity of the free boundary ∂Ω ∩ D. Note that we do not
make any assumptions on the sign of u.

We next give some examples where the problem occurs.

Example 1 (Classical obstacle problem). Given a strictly superharmonic function
φ ∈ C1,1

loc (D) and a function g ≥ φ on ∂D, consider the problem∫
D

|∇v|2dx −→ min, for v
∣∣
∂D

= g, v ≥ φ in D.

We may think of the graph of v as a membrane and the graph of φ as an obstacle.
Clearly, the minimizer v is harmonic in the absence of the obstacle. In general, the
membrane can touch the obstacle and one will have

∆v = ∆φχΛ in D,

where Λ := {v = φ} is the coincidence set. Then the difference u := v − φ satisfies
the conditions (1)–(2) with f := −∆φ and Ω := {u > 0}. We call this problem
the classical obstacle problem. We refer to [Caf98] for more details. Note that we
have an additional property u ≥ 0, which comes from the fact that the membrane
stays above the obstacle. So, the problem (1)–(2) can be interpreted as the “no-
sign” version of the problem above, where the membrane is allowed to “cross” the
obstacle.

Example 2 (Harmonic continuation of Newtonian potentials). Suppose now we
are given a bounded domain Ω and a function a ≤ f(x) ≤ b on Ω. Then consider
the Newtonian potential generated by the distribution of mass fχΩ

U := Φn ∗ fχΩ,

where Φn is the fundamental solution of the Laplacian in Rn. Then U satisfies

∆U = −fχΩ a.e. in Rn.

In particular, U is harmonic outside Ω. Suppose now for some x0 ∈ ∂Ω there exists
a harmonic continuation of U through ∂Ω near x0, i.e. a function v such that

∆v = 0 in Br(x0), v
∣∣
Br(x0)\Ω

= U

for some r > 0. Then, the difference u := v − U satisfies (1)–(2). Clearly, if ∂Ω
and f are real analytic, such v exists by the Cauchy-Kovalevskaya theorem. So,
in a sense, the problem (1)–(2) is an inverse problem for the Cauchy-Kovalevskaya
theorem. Note that in this case we have no information on the sign of u.

The problem (1)–(2) arises also in inverse source problems [Isa90], in the theory
of quadrature domains [Sha92], in Hele-Shaw flow problems [Mar95], in certain
models in superconductivity [CSS04] and several other related problems.
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Regularity of solutions and scaling. Let u ∈ L∞loc(D) be a distributional solu-
tion of (1). Then ∆u ∈ L∞(D) and we will have

u ∈ W 2,p
loc (D), for every 1 < p < ∞,

by the Calderón-Zygmund estimates. This also implies that

u ∈ C1,α
loc (D), for every 0 < α < 1,

by the Sobolev embedding W 2,p
loc ⊂ C1,α

loc with α = 1 − n
p for p > n. However, it is

well known that one cannot generally claim that u ∈ W 2,∞
loc = C1,1

loc , based solely
on the local boundedness of u and ∆u. Instead, one can show (e.g. by using the
methods in Chapter V of Stein’s book [Ste70]) that every directional derivative
v = ∂eu is locally of the so-called Zygmund class, which yields the estimate

(5) |∇u(x)−∇u(y)| ≤ CK |x− y| log
1

|x− y|
,

for any x, y ∈ K ⊂⊂ D with |x − y| ≤ 1/2. The presence of the logarithm in
this estimate is the source of major complications in this and several other free
boundary problems (see e.g. [CGK00], [Bla04], [MW05]), since it does not play well
with the natural quadratic scaling of the problem, described next.

Suppose that u is a solution of (1)–(2) and 0 ∈ ∂Ω. For λ > 0 consider the
functions

(6) uλ(x) :=
u(λx)

λ2
, for x ∈ Dλ :=

1
λ

D,

which we call rescalings of u. Then uλ satisfies

(7) ∆uλ = fλ(x)χΩλ
, uλ = |∇uλ| = 0 on Dλ \ Ωλ,

where

(8) fλ(x) := f(λx), Ωλ :=
1
λ

Ω.

Note that if f(x) has a modulus of continuity ω(r), then fλ has a modulus of
continuity ωλ(r) := ω(λr) ≤ ω(r), if 0 < λ < 1. Consider then the family uλ of
rescalings with small λ > 0. If we had uniform estimates on uλ, we could extract
a converging subsequence uλn → u0 as λn → 0, where u0 will be a solution of
the problem in the entire space Rn (see Section 3 for more details). The problem,
however, is that the Zygmund class estimate tells us only that

|u(x)| ≤ C0|x|2 log
1
|x|

,

for x near the origin and this estimate does not survive the scaling as λ ↘ 0. In
contrast, if we knew that u ∈ C1,1

loc , we would have the quadratic growth estimate

|u(x)| ≤ C0|x|2

for |x| ≤ δ and consequently
|uλ(x)| ≤ C0|x|2

for |x| ≤ δ/λ and we could perform the above described blowup procedure. Note
that C1,1 is the highest regularity that one can expect from the solutions u of (1),
as ∆u is discontinuous. The quadratic growth is very well known for the solutions
of the classical obstacle problem, see [Caf98], and one only needs f to be bounded
measurable. However, when one drops the sign assumption u ≥ 0, the situation
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changes drastically: the quadratic growth is known only for Lipschitz continuous
f(x) (see Theorem 3 and Remark 3 below).

To put the results in this paper into a proper perspective, we start with a brief dis-
cussion of some known results, mainly in the case f = const. There are essentially
two approaches to the free boundary regularity: geometric, due to L. A. Caffarelli,
and energetic, due to G. S. Weiss. But first, let us define the class of local solutions
that we will work with.

Definition 1 (Local solutions). Given positive numbers R and M and a modulus
of continuity ω(r), 0 < r < R, we define Pω

R(M) as the class of distributional
solutions u of (1)–(2) in D = BR such that

|u(x)| ≤ M, x ∈ BR,

|f(x)− f(y)| ≤ ω(|x− y|), x, y ∈ BR,

f(0) = 1,

0 ∈ ∂Ω.

Besides, we always require (3). Without loss of generality we assume

Ω = Ωu := D \ Λu, where Λu := {u = |∇u| = 0}.
We also use fu to indicate the function f that corresponds to the solution u.

Remark 1. When ω = 0 we obtain the class of solutions P 0
R(M) with f = 1. Note

that the general case f = const =: f0 > 0 is easily reduced to the normalized case
f = 1 simply by dividing u by f0.

Geometric approach. This approach to the free boundary regularity was pio-
neered by Luis A. Caffarelli in his celebrated papers [Caf77], [Caf80].

Definition 2 (Thickness function). For a solution u ∈ Pω
R(M) we let

δ(r, u) :=
min diam(Λu ∩Br)

r
,

where Λu = BR \ Ω and min diam(E) is the minimal diameter of the set E, which
is the infimum of the distances between two parallel planes that contain the set E
in the strip between them.

Theorem 1 (Geometric criterion). Let u ∈ P 0
1 (M). Then there exists a modulus

of continuity σ(r), depending only on M and the dimension n, such that if

δ(r0, u) > σ(r0) for some 0 < r0 < 1

then
∂Ω ∩Bc0 is an analytic hypersurface

for some small c0 = c(M, r0, n) > 0.

Proof. This is Theorem III in Caffarelli, Karp, and Shahgholian [CKS00]. It gen-
eralizes Caffarelli’s result for the classical obstacle problem, see [Caf98]. �

Remark 2. Another way of understanding Theorem 1 is that we have the following
Caffarelli’s alternative, which provides the classification of free boundary points:
every x ∈ ∂Ω is either

(i) a cusp-like point with a universal estimate δ(r, u) ≤ σ(r), or
(ii) a regular point, i.e. the free boundary is regular in a neighborhood of that

point.
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Energetic approach. This is a relatively new approach, introduced by Georg S.
Weiss in [Wei99].

Definition 3 (Weiss’s functional). For a local solution u ∈ Pω
R(M) consider the

following energy functional

(9) W (r;u, f) :=
1

rn+2

∫
Br

(
|∇u|2 + 2f(x)u

)
dx− 2

rn+3

∫
∂Br

u2dHn−1.

Quite often, when there is no ambiguity, we will abbreviate W (r;u, f) to W (r;u).

The functional W has the following remarkable properties:
(1) W (r;u) is monotone nondecreasing in r for 0 < r < R if f = 1, see [Wei99],

and “almost” monotone under certain assumptions on f (see Theorem M
in Section 2);

(2) If u ∈ C1,1
loc , then W (0+;u) exists and is finite;

(3) If u ∈ C1,1
loc , there are only two possible values for W (0+;u), namely

W (0+;u) =

{
An, and then we call the origin “regular”,

2An, and then we call the origin “singular”,

for some constant An > 0, depending only on the dimension n.
So, the functional W , similarly to Caffarelli’s alternative, provides a classification
of free boundary points. And “regular” in that classification means regular in the
usual sense. The quantitative version of the latter statement is as follows.

Theorem 2 (Energetic criterion). Let u ∈ P 0
1 (M). Then there exists a modulus of

continuity σ(r), depending only on M and the dimension n, such that if

W (r0;u) < 2An − σ(r0) for some 0 < r0 < 1

then
∂Ω ∩Bc0 is an analytic hypersurface

for some small c0 = c(M, r0, n) > 0.

Proof. This is essentially Theorem 5 in [Wei99]. The main difference is that Weiss
does not specify the critical constant, mainly to avoid the classification of homo-
geneous global solutions (see Lemma 3 in Section 3), which is very specific to this
problem and is hard to generalize to a larger class of problems. An alternative proof
of this stronger version of Weiss’s theorem can be obtained directly from Theorem 1
by utilizing Proposition 1 below. �

The following result is a direct link between Theorems 1 and 2: the geometric
and energetic conditions in these theorems are equivalent, in a sense, provided the
solution is known to be C1,1.

Proposition 1 (Equivalence of geometric and energetic criteria for C1,1 solutions).
Let u ∈ Pω

1 (M) and assume also that ‖u‖C1,1(B1/2) ≤ C0. Then, given ε > 0, there
exist ηε = η(ε,M,C0, ω, n) > 0 and rε = r(ε,M,C0, ω, n) > 0 such that

W (r0;u) < 2An − ε ⇒ δ(r0, u) > ηε

δ(r0, u) > ε ⇒ W (r0;u) < 2An − ηε

for any 0 < r0 < rε.

We prove this proposition by a compactness argument in Section 4.
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C1,1 regularity. As we already mentioned, the C1,1 estimates are crucial for the
study of problem (1)–(2). With no sign assumption on u, the largest class of
functions f for which these estimates are known is the class of Lipschitz continuous
functions.

Theorem 3 (C1,1 regularity when f ∈ Lip). Let u ∈ Pω
1 (M) with ω(r) = Kr.

Then, there exists a constant CM = C(M,K, n) < ∞ such that

‖u‖C1,1(B1/2) ≤ CM .

Proof. This is a particular case of the main result in Shahgholian [Sha03]. A dif-
ferent proof for f = 1 can be found in [CKS00], which can be also generalized to
f ∈ Lip, see [CS04]. �

Remark 3. One of the main reasons why the result above is known only for f ∈ Lip
is as follows. Given a unit vector e ∈ Rn consider the positive and negative parts
of the directional derivative v± = (∂eu)±. Then they satisfy

(10) ∆v± ≥ −K, v±(0) = 0, v+ · v− = 0 in B1,

where K is the Lip constant of f . To such functions one can apply the following
deep estimate of Caffarelli, Jerison, and Kenig [CJK02]:

I(r, v+) I(r, v−) ≤ C(1 + I(1, v+) + I(1, v−))2,

for any 0 < r < 1, where

I(r, v) =
1
r2

∫
Br

|∇v|2

|x|n−2
dx,

which is a generalization of the celebrated monotonicity formula of Alt, Caffarelli,
and Friedman [ACF84]. (The latter says that that I(r, v+) I(r, v−) is monotone
nondecreasing in r if (10) is satisfied with K = 0.) The application of this estimate
is crucial for Shahgholian’s method.

Main results. The main objective of this paper is to study the problem (1)–(3)
when the C1,1 regularity of the solutions is generally unknown. This includes the
case of Hölder continuous functions f , which will be our main target. So for these
f , the analogues of Theorems 1 and 2 or the equivalence of their geometric and
energetic criteria as in Proposition 1 are unknown. What is interesting, however,
is that the combination of the geometric and energetic criteria ensures the C1,1

regularity of the solution and implies the regularity of the free boundary. The
following theorem is our main result.

Theorem A (Geometric-energetic criterion). Let u ∈ Pω
1 (M) with ω satisfying

(11)
∫

0

ω(ρ) log 1
ρ

ρ
dρ < ∞.

Then there exists a modulus of continuity σ(r) such that if for some 0 < r0 < 1

δ(r0/2, u) ≥ σ(r0) and W (r0, u) < 2An − σ(r0)

then

(A1) ‖u‖C1,1(Br0 ) ≤ C0

and

(A2) ∂Ω ∩Bc0 is a C1 hypersurface
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for some large C0 = C(M, r0, ω, n) < ∞ and small c0 = c(M, r0, ω, n) > 0.

Remark 4. The integrability condition (11) is needed for two main reasons: the
generalization of Weiss’s monotonicity formula (see Section 2) and Blank’s sharp
version of C1 regularity theorem for the classical obstacle problem (see Theorem 4
in Section 6). This condition is slightly stronger than that of Dini, and covers the
following cases:

(i) f ∈ Cα(B1) for some 0 < α < 1. Then one can take ω = Crα and condition
(11) will be readily satisfied.

(ii) f ∈ W 1,p(BR) with p > n and some R > 1, since by the Sobolev embedding
theorem f ∈ Cα(B1), with α = 1− n

p .

Remark 5. Earlier results on the problem with non-Lipschitz f had to impose a
certain uniform thickness condition for the zero set of u or a uniform vanishing
thinness of the negativity set of u in a whole neighborhood of the point, see [KS99],
[BS03]; see also Section 6. The main achievement of Theorem A is that we ask a
condition at just one free boundary point.

Finally, we give a purely geometric criterion for the regularity of the free bound-
ary, which is a consequence of Theorem A.

Theorem B (Non-cusp-like points are regular). Let u ∈ Pω
1 (M) with ω satisfying

(11). Then, if

lim sup
r↘0

δ(r, u) > 0,

there exists a small c0 > 0, depending on u, such that

∂Ω ∩Bc0 is a C1 hypersurface.

Remark 6. This theorem essentially provides a weaker version of Caffarelli’s alter-
native (see Remark 2 above): every free boundary point is either

(i) a cusp-like point with δ(r, u) → 0 as r ↘ 0, or
(ii) a regular point, i.e. the free boundary is regular near that point.

The following corollary from Theorem B is immediate.

Corollary 1 (Exterior cone implies regularity). Let u ∈ Pω
1 (M) with ω satisfying

(11). If Ω satisfies the exterior cone condition at the origin i.e.

Ω ∩Br0 ⊂ {xn < K|x′|} ∩Br0

for some constants r0 > 0 and K < ∞, after a suitable rotation of coordinate axes,
then ∂Ω ∩Bc0 is a C1 hypersurface for some c0 > 0. �

The paper is organized as follows. In Section 2 we prove a generalization of
Weiss’s monotonicity formula. In Section 3 we recall some known results from the
literature, mainly for the case f = 1. In Section 4 we establish the equivalence of
geometric and energetic criteria for C1,1 solutions. Sections 5 and 6 contain the
proofs of the first and the second parts of Theorem A, respectively, and in Section 7
we prove Theorem B.
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2. Monotonicity formula

In this section we establish the following generalization of Weiss’s monotonicity
formula.

Theorem M (Monotonicity formula). Let u ∈ Pω
1 (M) with ω satisfying (11).

Then there exists a continuous function Fω(r) for 0 ≤ r ≤ 1 with Fω(0) = 0 and a
constant CM = C(M,ω, n) such that

W (r;u, f) + CMFω(r) ↗ for 0 < r < 1/2.

Namely, one can take

(12) Fω(t) :=
∫ t

0

ω(τ) log
1
τ

[
n+3
n+2

τ
−

1
n+2τn+1

tn+2

]
dτ.

Remark 7. Note that when ω = 0, i.e. when f = 1, we have Fω = 0 and therefore
W (r;u, f) itself is monotone. This is the original case of Weiss’s monotonicity
formula. Moreover, in this case something more can be shown: if W (r1;u) =
W (r2;u) for r1 < r2 then u is homogeneous of degree two in Br2 \Br1 , i.e. x ·∇u−
2u = 0 there.

Proof. We are going to exploit the identity

(13) W (λr;u, f) = W (r;uλ, fλ),

where uλ and fλ are as in (6)–(8). To proceed, we introduce the following notation
for the “homogeneous derivative”

Lw =
d

dλ

∣∣∣∣
λ=1

wλ(x) = x · ∇w − 2w

for any function w, for which it is defined. Note that generally we have

(14)
d

dλ
wλ =

1
λ

Lwλ

for any λ > 0. We are also going to use the following easily verifiable identities

L(|∇w|2) = 2∇w · ∇(Lw),(15)
d

dλ

∣∣∣∣
λ=1

(wλ)2 = 2w Lw.(16)

Fix now 0 < r < s < 1/2 and σ = s/r. Then

W (s;u, f)−W (r;u, f) = W (r;uσ, fσ)−W (r;u, f)

=
1

rn+2

∫
Br

(
|∇uσ|2 − |∇u|2

)
dx +

2
rn+2

∫
Br

(fσ(x)uσ − f(x)u) dx

− 2
rn+3

∫
∂Br

(u2
σ − u2) dHn−1.



GEOMETRIC AND ENERGETIC CRITERIA 9

Using (14)–(16), we will have∫
Br

(
|∇uσ|2 − |∇u|2

)
dx =

∫ σ

1

∫
Br

1
λ

L(|∇uλ|)2 dx dλ

=
∫ σ

1

2
λ

∫
Br

∇uλ · ∇(Luλ) dx dλ

=
∫ σ

1

2
λ

{
−

∫
Br

∆uλ Luλ dx +
1
r

∫
∂Br

x · ∇uλ Luλ dHn−1

}
dλ

=
∫ σ

1

2
λ

{
−

∫
Br

fλ(x) Luλ dx +
1
r

∫
∂Br

x · ∇uλ Luλ dHn−1

}
dλ

and ∫
∂Br

(
u2

σ − u2
)
dHn−1 =

∫ σ

1

∫
∂Br

2
λ

uλ Luλ dHn−1 dλ.

Then

W (s;u, f)−W (r;u, f)

=
∫ σ

1

1
λ

{
− 2

rn+2

∫
Br

fλ(x) Luλ dx +
2

rn+3

∫
∂Br

(Luλ)2dHn−1

}
dλ

+
2

rn+2

∫
Br

{fσ(x) uσ − f(x) u} dx

≥ 2
rn+2

∫
Br

{
f(σx) uσ − f(x) u−

∫ σ

1

f(λx)
(

d

dλ
uλ

)
dλ

}
dx.

Now that we have this inequality, we argue as follows. Approximate f with a
smooth function f ε with the same modulus of continuity ω(r), for instance by
taking a convolution with a mollifier. Then we rewrite∫

Br

{
f ε(σx) uσ − f ε(x) u−

∫ σ

1

f ε(λx)
(

d

dλ
uλ

)
dλ

}
dx

=
∫

Br

∫ σ

1

(
d

dλ
f ε(λx)

)
uλ dλ dx

=
∫ σ

1

∫
Br

x · ∇f ε(λx)uλ dx dλ.

Next, by changing to polar coordinates and integrating by parts, we transform∫
Br

x · ∇f ε(λx)uλ dx =
∫

∂B1

∫ r

0

∂ρf
ε(λρθ)uλ(ρθ)ρn dρ dHn−1

θ

=
∫

∂B1

{
[f ε(λrθ)− 1]uλ(rθ)rn −

∫ r

0

[f ε(λρθ)− 1]∂ρ(uλ(ρθ)ρn)dρ

}
dHn−1

θ .

Now, recall that in general we have the Zygmund class estimate

|u| ≤ CM |x|2 log
1
|x|

, |∇u| ≤ CM |x| log
1
|x|

, |x| ≤ 1
2
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for solutions in Pω
1 (M). Then we obtain∫

Br

x · ∇f ε(λx) uλ dx

≥ −CM

(
ω(λr)rn+2 log

1
λr

+
∫ r

0

ω(λρ)ρn+1 log
1
λρ

dρ

)
.

Since this inequality is purely in terms of the modulus of continuity ω, we can let
ε → 0 to obtain

W (s;u, f)−W (r;u, f)

≥ −CM

∫ σ

1

(
ω(λr) log

1
λr

+
1

rn+2

∫ r

0

ω(λρ)ρn+1 log
1
λρ

dρ

)
dλ.

Changing the variables, we can rewrite the above inequality as

W (s;u, f)−W (r;u, f)

≥ −CM

r

(∫ s

r

ω(t) log
1
t

dt +
∫ s

r

∫ t

0

ω(τ)
τn+1

tn+2
log

1
τ

dτ dt

)
≥ −CM

s

r

(∫ s

r

ω(t) log 1
t

t
dt +

∫ s

r

∫ t

0

ω(τ)
τn+1

tn+3
log

1
τ

dτ dt

)
.

We also have∫ s

0

∫ t

0

ω(τ)
τn+1

tn+3
log

1
τ

dτ dt =
∫ s

0

∫ s

τ

ω(τ)
τn+1

tn+3
log

1
τ

dt dτ

=
1

n + 2

∫ s

0

ω(τ)τn+1

[
1

τn+2
− 1

sn+2

]
log

1
τ

dτ.

Thus, introducing,

Fω(t) :=
∫ t

0

ω(τ) log
1
τ

[
n+3
n+2

τ
−

1
n+2τn+1

tn+2

]
dτ,

we obtain

W (s;u, f)−W (r;u, f) ≥ −CM
s

r
[F (s)− F (r)]

for any 0 < r ≤ s ≤ 1/2. Finally, we can drop the factor s/r in the right-hand side,
for instance, by taking a partition r = s0 < s1 < . . . < sN = s and applying the
inequality for W (si+1;u, f) −W (si;u, f), summing up, and letting the size of the
partition tend to 0. We will arrive at

W (s;u, f)−W (r;u, f) ≥ −CM [F (s)− F (r)],

for any 0 < r ≤ s ≤ 1/2, which is equivalent to saying that

W (r;u, f) + CMF (r) ↗ as r ↗ .

The theorem is proved. �
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3. Convergence and blowup

In this section we have collected some technical material that will be used later
in the paper.

Lemma 1 (Nondegeneracy). Let u be a solution of (1) with f satisfying (3). Then
there exists a constant c0 = c(a, b, n) > 0 such that

sup
Br(x)

u ≥ c0r
2,

for any free boundary point x ∈ ∂Ω ∩D and radius r > 0 such that Br(x) ⊂ D.

Lemma 2 (Convergence). Let uj ∈ Pω
1 (M) for j = 1, 2, . . ., and uj → u0 in

C1,α
loc (B1). Then u0 ∈ Pω

1 (M). Moreover, we also have

(17) Int(Λu0) ⊂ lim inf
j→∞

Int(Λuj
).

Proof. Without loss of generality, we may assume that fuj
→ f0 for some function

f0 with the same modulus of continuity ω as fuj
and the same bounds (3). Let

now x ∈ Ωu0 = B1 \ Λu0 . Then either u0 or |∇u0| are non-zero in a small ball
Br(x) and consequently Br/2(x) ⊂ Ωuj

for large j. Thus, u0 will satisfy ∆u0 = f0

weakly in Br/2(x). This shows that ∆u0 = f0 in Ωu0 . On the other hand, by
Calderón-Zygmund estimates, uj are locally uniformly bounded in W 2,p

loc (B1) and
therefore also u0 ∈ W 2,p

loc (B1). Since ∇u0 = 0 on Λu0 , taking a weak derivative, we
will obtain that D2u0 = 0 a.e. on Λu0 . Thus, we established that ∆u0 = f0χΩu0

weakly in B1.
Next, it is immediate that |u0| ≤ M in B1. Hence, to conclude that u0 ∈ Pω

1 (M),
it remains to show that the origin is a free boundary point for u0. Clearly 0 ∈ Λu0 ,
since 0 ∈ Λuj , j = 1, 2, . . .. So we have to make sure that the origin is not an
interior point of Λu0 . The latter is a direct consequence from the nondegeneracy
(see Lemma 1 above). Indeed, for any 0 < r < 1, we have

sup
Br

uj ≥ c0r
2

for all j and consequently
sup
Br

u0 ≥ c0r
2

which shows that Br 6⊂ Λu0 . More generally, the same argument also shows the
inclusion (17). �

Particularly, we can apply the convergence lemma in the following situation.
Suppose we have u ∈ Pω

R(M), which is also known to be in C1,1(Br0) for some
r0 > 0. Then there exists a constant C such that

|u(x)| ≤ C|x|2, x ∈ Br0 .

Rescaling, we obtain
|uλ(x)| ≤ C|x|2, x ∈ Br0/λ,

for any λ > 0, which implies that the family uλ is uniformly bounded on compact
subsets of Rn. Hence, we can extract a subsequence of uλ as λ → 0 converging in
C1,α

loc (Rn) to a certain function u0, which we call a blowup of u at the origin. This
function will be a solution of (1)–(2) with f = f(0) = 1 in D = Rn or, in other
words, it will be a global solution. Moreover, we will have

|u0(x)| ≤ C|x|2, x ∈ Rn,
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i.e., u0 will have at most quadratic growth at infinity. This motivates the following
definition.

Definition 4 (Global solutions with quadratic growth). Given a positive number
M we define P 0

∞(M) as the class of all solution of (1)–(2) in D = Rn such that

|u(x)| ≤ M(1 + |x|2), x ∈ Rn,

f(x) = 1, x ∈ Rn,

0 ∈ ∂Ω.

The following two examples are of fundamental importance.

Halfspace solutions: u(x) = h(x) = 1
2 (x · e)2+ is a global solution for any unit

vector e ∈ Rn.
Polynomial solutions: u(x) = p(x) =

∑n
i,j=1 aijxixj is a global solution, pro-

vided ∆p = 2
∑n

i=1 aii = 1.

Note that both of the examples above are homogeneous of degree 2, i.e.,

u(λx) = λ2u(x), x ∈ Rn, λ > 0.

It is a remarkable fact that these are the only homogeneous global solutions.

Lemma 3. Let u ∈ P 0
∞(M) be homogeneous of degree 2. Then u is either a

halfspace solution or a polynomial solution.

Proof. This fact is essentially proved in [CKS00]. The proof is by distinguishing
the cases when Int(Λu) = ∅ and Int(Λu) 6= ∅ and is based on a deep monotonicity
formula of Alt, Caffarelli and Friedman [ACF84]. See Cases 1 and 2 in the proof of
Theorem II′ in [CKS00]. We also refer to Lemma 6.3 in [CPS04] for a more explicit
proof of a generalization of this result to time dependent solutions. �

Remark 8. If u is a homogeneous global solution, the energy W (r;u) is constant in
r. Thus, without ambiguity we may denote

W (u) := W (r;u).

Moreover, if W (r;u) = const for any global solution u (not necessarily with qua-
dratic growth at infinity), then by Remark 7, u must be a homogeneous solution.

Lemma 4. There exists a constant An, depending only on the dimension n, such
that for any halfspace solution h(x) = 1

2 (x ·e)2+ and any polynomial solution p(x) =∑n
i,j=1 aijxixj, we have

(18) W (h) = An, W (p) = 2An.

Moreover, for any global solution u ∈ P 0
∞(M) and r > 0

(19) An ≤ W (r, u) ≤ 2An

with a strict inequality from above for all r > 0, unless u is a polynomial solution.

Remark 9. The case of equality from below in (19) is more delicate: u must be
either a halfspace solution or given by u(x) = 1

2 (x · e)2+ + 1
2 (x · e + a)2− for some

a > 0.



GEOMETRIC AND ENERGETIC CRITERIA 13

Proof. Since (18) can already be found in the original paper of Weiss [Wei99], we
concentrate here on the rest of the lemma.

We start by observing that the second order derivatives of a global solution
u ∈ P 0

∞(M) are uniformly bounded in Rn, see Theorem 3. Then we may consider
the rescalings uλ and extract converging subsequences as λ → 0 and λ → ∞. We
will denote the corresponding limits by u0 and u∞. Then

W (r;u0) = lim
λj→0

W (r;uλj
) = lim

λj→0
W (λjr;u) = W (0+;u) = const

is independent of r. Thus, u0 is a homogeneous solution and therefore W (0+;u) is
either An or 2An. Similarly,

W (r;u∞) = lim
λj→∞

W (r;uλj
) = lim

λj→∞
W (λjr;u) = W (∞;u) = const

is independent of r and therefore W (∞;u) is either An or 2An. Hence, by the
monotonicity of W (r;u), we will have

An ≤ W (0+, u) ≤ W (r;u) ≤ W (∞;u) ≤ 2An,

which proves the required inequality.
Finally, assume that for some r0 > 0 the equality from above is attained, i.e.

W (r0;u) = 2An. Then, by monotonicity, we must also have W (r;u) = 2An for
all r ≥ r0. This will imply that u is homogeneous of degree 2 in Rn \ Br0 , see
Remark 7, and therefore u = u∞ for the blowup u∞ considered above. We will also
have W (u∞) = 2An, which will imply that u∞ = p is a homogeneous quadratic
polynomial. Thus u = p in Rn\Br and by a unique analytic continuation argument
we will have that u = p in Rn \ Λp. Since Λp is nowhere dense, u = p in Rn. �

4. Equivalence of geometric and energetic criteria for C1,1

solutions

Proof of Proposition 1. 1) First show that

W (r0;u) < 2An − ε ⇒ δ(r0, u) > ηε

if r0 > 0 is sufficiently small. If this is not so, there exist sequences rj → 0 and
uj ∈ Pω

1 (M), j = 1, 2, . . ., with

‖uj‖C1,1(B1/2) ≤ C0

and such that
W (rj ;uj) < 2An − ε and δ(rj , uj) → 0.

Consider then the rescalings

vj := (uj)rj
∈ P

ωrj

1/rj
(M/r2

j ).

From C1,1 estimates on uj we will have

|uj(x)| ≤ C0

2
|x|2, x ∈ B1/2

which will translate to

|vj(x)| ≤ C0

2
|x|2, x ∈ B1/(2rj).
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Thus, we can extract a subsequence vj converging in C1,α
loc (Rn) to a global solution

v0 ∈ P 0
∞(C0). For this global solution we will have

W (1; v0) = lim
j→∞

W (1; vj) = lim
j→∞

W (rj ;uj) ≤ 2An − ε.

On the other hand, we will also have

δ(1, v0) ≤ lim inf
j→∞

δ(1, vj) = lim inf
j→∞

δ(rj , uj) = 0.

This means ∆v0 = 1 a.e. in B1. Therefore, any blowup of v0 at the origin must also
have that property, which is possible only if the blowup is a quadratic polynomial
(by Liouville’s theorem). Thus,

W (0+; v0) = 2An,

which contradicts to the fact that

W (0+; v0) ≤ W (1; v0) ≤ 2An − ε.

2) Next we show that

δ(r0, u) > ε ⇒ W (r0;u) < 2An − ηε,

for sufficiently small r0 > 0. Assuming the contrary, we will have sequences rj → 0
and uj ∈ Pω

1 (M), j = 1, 2, . . ., with

‖uj‖C1,1(B1/2) ≤ C0

and such that

δ(rj , uj) ≥ ε and lim inf
j→∞

W (rj ;uj) ≥ 2An.

As before, consider the rescalings

vj := (uj)rj
∈ P

ωrj

1/rj
(M/r2

j ),

which will also satisfy

|vj(x)| ≤ C0

2
|x|2, x ∈ B1/(2rj),

and extract a subsequence vj converging in C1,α
loc (Rn) to a global solution v0 ∈

P 0
∞(C0). We will have

W (1; v0) = lim
j→∞

W (1; vj) = lim
j→∞

W (rj , uj) ≥ 2An.

Invoking Lemma 4, we obtain that W (1; v0) = 2An, which is possible only if v0 is
a quadratic polynomial. But this contradicts to

δ(1, v0) ≥ lim sup
j→∞

δ(1, vj) = lim sup
j→∞

δ(rj , uj) ≥ ε > 0.

The proof is complete. �
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5. C1,1 regularity

In the next two sections we prove Theorem A by splitting it into two parts. The
main result of this section, Theorem A1, is equivalent to the first part of Theorem A.

Before we proceed, note that from now on we will not explicitly indicate the
dependence of constants on the dimension n and/or on the modulus of continuity
ω; this should be clear from the context.

Theorem A1 (C1,1 regularity). Let u ∈ Pω
1 (M) with ω satisfying (11). Given

ε > 0, there exists rε,M > 0 such that if for some 0 < r0 < rε,M

δ(r0/2, u) ≥ ε and W (r0, u) < 2An − ε

then

(20) ‖u‖L∞(Br) ≤ Cεr
2 for every 0 < r ≤ r0

and

(21) ‖u‖C1,1(Bc0 ) ≤ Cε,M,r0

for some small c0 = c(ε,M, r0) > 0.

We start with a growth estimate near the origin.

Lemma 5. Let u ∈ Pω
1 (M). Given ε > 0 and W0 < ∞, there exist λε,W0 > 0 and

Cε,W0 < ∞ such that if for some 0 < r0 < λε,W0

δ(r0/2, u) > ε and W (r0;u) ≤ W0

then
‖u‖L∞(Br0/2) ≤ (Cε,W0) r2

0.

Remark 10. We emphasize that the constants λε,W0 and Cε,W0 do not depend on
M .

Proof. Note that it will suffice to prove that

‖u‖L2(∂Br0 ) ≤ (Cε,W0)r
n+1
0 ,

since one has an interior estimate

‖u‖L∞(Br0/2) ≤ C0

(
1

rn−1
0

‖u‖L2(∂Br0 ) + ‖f‖L∞(Br0 )r
2
0

)
.

This can be easily seen by decomposing u in Br0 into the sum of a harmonic function
with the same boundary values and a function with zero boundary values and the
same Laplacian.

We argue by contradiction: assume that there exist sequences rj ↘ 0 and uj ∈
Pω

1 (Mj) such that

δ(rj/2, uj) > ε,

W (rj ;uj) ≤ W0,

Cj :=
‖uj‖L2(∂Brj

)

rn+1
j

→∞

Consider then the functions

wj(x) :=
uj(rjx)
Cjr2

j

, x ∈ B1/rj
.



16 ARSHAK PETROSYAN AND HENRIK SHAHGHOLIAN

Then wj will be a solution of (1) with

f̃j(x) :=
fuj

(rjx)
Cj

, x ∈ B1/rj
.

Besides, we will have

δ(1/2, wj) ≥ ε(22)

‖wj‖L2(∂B1) = 1.(23)

Furthermore,

W (1;wj , f̃j) =
W (rj ;uj , fuj )

C2
j

≤ W0

C2
j

.

In particular,

(24)
∫

B1

|∇wj |2 ≤ 2
∫

∂B1

w2
j +

W0

C2
j

+
1
Cj

sup
Brj

fuj
.

Since the last two terms converge to 0, the right-hand side is bounded and we
conclude that wj are uniformly bounded in W 1,2(B1). Hence, over a subsequence

wj → w0 weakly in W 1,2(B1).

Now the compactness of the Sobolev trace operator implies that, over yet another
subsequence,

wj → w0 strongly in L2(∂B1)
and consequently

(25) ‖w0‖L2(∂B1) = 1.

On the other hand, passing to the limit in (24), we will obtain

(26)
∫

B1

|∇w0|2 ≤ 2
∫

∂B1

w2
0.

We will also have

(27) |∆wj | ≤ sup
B1

f̃j ≤
1
Cj

sup
Brj

fuj
→ 0 in B1,

implying that w0 is harmonic in B1. On the other hand, by Almgren’s frequency
lemma (e.g. see Lemma 4.1 in [Wei01])

(28)
∫

B1

|∇w0|2 ≥ 2
∫

∂B1

w2
0,

since w0(0) = |∇w0(0)| = 0, and the inequalities (26) and (28) are possible iff w0 is
a homogeneous quadratic polynomial in B1. Now, to complete the proof, we note
that

δ(1/2, w0) ≥ ε.

This follows from (22) and the fact that, over a subsequence, wj → w0 in C1,α
loc (Bq),

since wj and ∆wj are locally uniformly bounded in B1. Thus, w0 must be identically
0, contradicting (25). �

To simplify the statement of the next few lemmas, we use the notion of ε-closeness
of two functions.

Definition 5. (ε-closeness) We say that functions u and v are ε-close on a set E,
whenever ‖u− v‖L∞(E) < ε. We also use dist(u, v) on E to indicate ‖u− v‖L∞(E).
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Lemma 6. Let v ∈ P 0
1/4(C0) and W (1/4; v) ≤ 2An − ε/2. Then for every β0 > 0

there exists a small t0 = tε,β0,C0 > 0 such that v is β0t
2
0-close to a halfspace solution

in Bt0 .

Proof. Assume the contrary. Then there exist sequences tj ↘ 0 and vj ∈ P 0
1/4(C0)

such that

(29) dist(vj , h) ≥ β0t
2
j in Btj

,

for any halfspace solution h. Consider now the rescalings

wj := (vj)tj
∈ P 0

1/4tj
(C0/t2j ).

Using the C1,1 estimates, available for solutions with f = 1, see Theorem 3, we
can extract a subsequence wj → w0 converging in C1,α

loc (Rn) to a global solution
w0 ∈ P 0

∞(C(C0)). Note that from construction we will have

W (r;w0) = lim
j→∞

W (r;wj) = lim
j→∞

W (rtj ; vj)

≤ lim
j→∞

W (1/4; vj) ≤ 2An − ε/2,

for any r > 0. In particular, W (∞;w0) < 2An. Repeating the arguments as in the
proof of Lemma 4, we find that W (∞;w0) can take only two values: An or 2An.
Hence, W (∞;w0) = An, which implies that W (r;w0) = An for any r > 0. The
latter is possible only if w0 is a halfspace solution, see Remark 8 and Lemma 4.
But then

dist(wj , w0) < β0 in B1,

for large j, implying that

dist(vj , w0) < β0t
2
j in Btj .

This contradicts (29). �

Lemma 7. Let u ∈ Pω
1 (M). Given ε > 0 and β0 > 0 there exist small µε,β0 > 0

and tε,β0 > 0 such that if for some 0 < r0 < µε,β0

δ(r0/2, u) ≥ ε, W (r0/4;u) < 2An − ε/2, W (r0;u) < 2An − ε/2

then
u is β0(r0tε,β0)

2-close to a halfspace solution in Br0tε,β0
.

Remark 11. The double energetic condition is necessary to avoid the use of the
monotonicity formula and the dependence on constant M . The latter is crucial in
our arguments.

Proof. Let tε,β0 = tε,β0/2,C0 be as in Lemma 6 above with C0 = Cε,2An
as in

Lemma 5 and assume that the statement of Lemma 7 fails. Then there exist
sequences rj ↘ 0 and uj ∈ Pω

1 (Mj) such that

δ(rj/2, uj) ≥ ε, W (rj/4;uj) < 2An − ε/2, W (rj ;uj) < 2An − ε/2

and
dist(uj , h) ≥ β0(tε,β0rj)2 in Btε,β0rj

,

for any halfspace solution h. Consider then the rescalings

vj := (uj)rj ∈ P
ωrj

1/rj
(Mj/r2

j ).
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We will have that

δ(1/2, vj) ≥ ε,

dist(vj , h) ≥ β0t
2
ε,β0

in Btε,β0
,

for any halfspace solution h. Moreover, by Lemma 5, we will have that

|uj | ≤ (Cε,2An) r2
j in Brj/2,

which is equivalent to
|vj | ≤ Cε,2An

in B1/2.

Thus, we can extract a subsequence vj → v0, converging in C1,α norm in B1/4.
The limiting v0 will be a solution with f = 1. Besides, we will also have

W (1/4; v0) = lim
j→∞

W (1/4; vj) = lim
j→∞

W (rj/4;uj) ≤ 2An − ε/2.

Applying now Lemma 6 above, we obtain that v0 is (β0/2)(tε,β0)
2-close to a halfs-

pace solution in Btε,β0
. But then vj is (3β0/4)(tε,β0)

2-close to a halfspace solution in
Btε,β0

, for sufficiently large j, which is a contradiction. This proves the lemma. �

Lemma 8. Let u ∈ Pω
1 (M) be β0-close to a halfspace solution in B1. Then, if β0

is sufficiently small (independent of M), we will have

δ(u, 1/2) > 1/2.

Proof. Assume the contrary. Then there exist a sequence uj ∈ Pω
1 (Mj) and halfs-

pace solutions hj such that

dist(uj , hj) → 0 in B1

and
δ(uj , 1/2) ≤ 1/2, j = 1, 2, . . . .

Without loss of generality we may assume that hj → h0 which will imply that, over
a subsequence, uj → h0 in C1,α

loc in B1. But then, we will obtain that

δ(uj , 1/2) → δ(h0, 1/2) = 1

by Lemma 2. This is clearly a contradiction. �

Proof of Theorem A1.
Step 1 : We start with an observation that by the monotonicity formula (Theo-

rem M) there exists ρε,M > 0 such that

W (r1;u) ≤ W (r2;u) + ε/2, for every 0 < r1 ≤ r2 ≤ ρε,M ,

if u ∈ Pω
1 (M). In particular,

W (r0;u) < 2An − ε for some 0 < r0 < ρε,M

implies
W (r;u) ≤ 2An − ε/2 for every 0 < r ≤ r0.

Step 2 : Let β0 be as in Lemma 8, tε = tε,β0 and µε = µε,β0 as in Lemma 7 and
λε = λε,2An

as in Lemma 5. Assume now that

δ(r0/2, u) ≥ ε and W (r0;u) ≤ 2An − ε

for some
0 < r0 < min{λε, µε, ρε,M}.
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Then we also have W (r0/4;u) ≤ 2An− ε/2, see Step 1. Then by Lemma 7, we will
have that

u is β0(r0tε)2-close to a halfspace solution in Br0tε
.

Applying now Lemma 8 to the rescaling ur0tε , we find that

δ(r0tε/2, u) = δ(1/2, ur0tε
) > 1/2.

Step 3 : Induction. Set now

u(k)(x) = utk
ε
(x) =

u(tkε x)
t2k
ε

, k = 0, 1, 2, . . . .

Then from Steps 1 and 2, we have that

W
(
r;u(1)

)
= W (tεr;u) ≤ 2An − ε/2 for every 0 < r ≤ r0,

δ
(
r0/2, u(1)

)
= δ(r0tε/2, u) ≥ 1/2 > ε.

Then we can apply Step 2 to the function u(1) to obtain

δ
(
r0tε/2, u(1)

)
≥ 1/2.

Iterating this process, we obtain that for any k = 1, 2, . . .

δ(r0t
k
ε /2, u) ≥ 1/2.

Then, applying Lemma 5, we obtain

‖u‖
L∞

“
B

r0tk
ε /2

” ≤ Cε(r0t
k
ε )2, k = 1, 2, . . . .

By a standard procedure, this implies that

‖u‖L∞(Br) ≤ C̃εr
2, for every 0 < r ≤ r0.

This proves (20).

Step 4 : Finally, to conclude the proof, we notice the following. If instead of
the origin we take any of the free boundary points x0 ∈ ∂Ω ∩ Bc0 , for some small
constant c0 = cε,M,r0 > 0, and define

(30) ũ :=
u(·+ x0)

f(x0)
∈ P 2ω

1/2(2M),

we will have that

(31) δ((3/4)r0, ũ) ≥ ε/2, W (r0, ũ) ≤ 2An − ε/2
f(x0)2

≤ 2An − ε/4.

(Note that |1 − f(x0)| ≤ ω(c0) can be made as small as we wish). This is slightly
different than the condition we had for u, nevertheless, we can easily adjust the
lemmas above to deal with these modified conditions. Then, going back to the
original u, we will obtain that it satisfies

|u(x)| ≤ C0 dist(x, ∂Ω)2, for any x ∈ Bc0 .

Invoking now a standard procedure based on the interior derivative estimates, see
e.g. [CKS00], we establish (21) and thereby conclude the proof of the theorem. �



20 ARSHAK PETROSYAN AND HENRIK SHAHGHOLIAN

6. Regularity of the free boundary

In this section we prove the second half of Theorem A.

Theorem A2 (Regularity of the free boundary). Let u ∈ Pω
1 (M) with ω satisfying

(11). Given ε > 0, there exists rε,M > 0 such that if for some 0 < r0 < rε,M

δ(r0/2, u) ≥ ε and W (r0, u) < 2An − ε

then
∂Ω ∩Bc0 is a C1 hypersurface

for some small c0 = c(ε,M, r0) > 0.

A similar result was known earlier under much stronger assumptions on u, such
as the uniform thickness of Λu in a neighborhood of the origin, i.e.

min diam(Λu ∩Br(x0))
r

≥ δ0 > 0,

for any 0 < r < r0 and x0 ∈ Bρ0 ∩ ∂Ω, see Blank and Shahgholian [BS03], or the
uniform vanishing thinness of the negativity set Ω− = {u < 0}, i.e.

lim
r↘0

max rad(Ω− ∩Br(x0))
r

= 0,

uniformly in x0 ∈ Bρ0 ∩ ∂Ω, see Karp and Shahgholian [KS99]. (Here max rad(E)
is the maximal radius of the set E, which is the supremum of the radii of balls fully
contained in E.)

Our geometric-energetic condition implies both of the conditions above. How-
ever, we choose to work with the former one, since it yields a slightly stronger
result.

The main idea of the proof is to show that u becomes nonnegative in a small
neighborhood of u. Then the result will follow from the corresponding result for
the classical obstacle problem. Namely, we will use Blank’s sharp form for the C1

regularity of the free boundary, see [Bla01] and Theorem 4 below.

Lemma 9 (Local nonnegativity). Let u ∈ Pω
1 (M) with ω satisfying (11). Given

ε > 0, there exists rε,M > 0 such that if for some 0 < r < rε,M

δ(r0/2, u) ≥ ε and W (r0, u) < 2An − ε

then there exists ρε,M,r0 > 0 such that u ≥ 0 in Bρε,M,r0
.

Proof. We go back to the proof of Theorem A1, where we showed that

δ(tkε r0/2, u) ≥ 1/2, for k = 1, 2, . . . .

This immediately implies that

δ(r/2, u) ≥ tε/2, for 0 < r < r0,

by finding the integer k such that tk+1
ε r0 ≤ r < tkε r0.

Arguing now as in Step 4 of the proof of Theorem A1, we find that

δx0(r, u) :=
min diam(Λu ∩Br(x0))

r
≥ t̃ε/2,

for any 0 < r < r0 and x0 ∈ Bc0 ∩ ∂Ω, or in other words Λu is uniformly thick in
a neighborhood of the origin. Then the lemma follows from Theorem 1.6 of Blank
and Shahgholian [BS03]. �
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The following theorem of Blank is the sharp version of Caffarelli’s theorem for
(nonnegative) solutions of the classical obstacle problem.

Theorem 4. Let u ∈ Pω
1 (M), u ≥ 0, with ω satisfying the Dini condition∫

0

ω(ρ)
ρ

dρ < ∞.

Then there exists a modulus of continuity σ(r) such that if

δ(r0, u) > σ(r0) for some 0 < r0 < 1

then
∂Ω ∩Bc0 is a C1 hypersurface

for some small c0 = c(M, r0) > 0.

Proof. See Theorem 0.1 in [Bla01]. �

We are now ready to prove the main result of this section.

Proof of Theorem A2. By Lemma 9, u ≥ 0 in ρε,M,r0-neighborhood of the origin.
Since the modulus ω satisfies condition (11) which is stronger than the Dini integra-
bility condition, we can apply Theorem 4. To finish the proof, we must find r̂0 > 0
such that δ(r̂0, u) > σ(r̂0) for the modulus of continuity σ(r) as in Theorem 4. But
the latter follows easily from the fact that δ(r/2, u) ≥ tε/2 > 0 for all 0 < r < r0,
as we established in the proof of Lemma 9.

This completes the proof of the theorem. �

7. Purely geometric criterion

In this section we prove Theorem B, which provides a purely geometric criterion
for the regularity of the free boundary.

Proof of Theorem B. Let u ∈ Pω
1 (M) and rj → 0 be a sequence such that

(32) δ(rj/2, u) ≥ ε > 0, j = 1, 2, . . . .

We claim that

(33) W (0+;u) = lim
r↘0

W (r;u) = An.

(Note that the limit exists by Theorem M). To prove this claim, observe that
u ∈ Pω

1 (M) automatically implies that

W (1/2;u) ≤ WM .

Then, by the monotonicity formula (Theorem A) we can assume also that

W (r;u) ≤ WM , for every 0 < r ≤ 1/2.

Next, consider the rescaled functions

vj(x) := urj
(x), x ∈ B1/rj

.

Given K > 1, observe that

δ(rj/2, uK) = δ(rjK/2, u) ≥ δ(rj/2, u)/K ≥ ε/K

and
W (rj , uK) = W (Krj , u) ≤ WM
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provided Krj ≤ 1/2. Applying now Lemma 5, we obtain that there exists a constant
Cε,M,K such that

‖uK‖L∞(Brj/2) ≤ Cε,M,Kr2
j for j ≥ jε,M,K .

This is equivalent to

‖u‖L∞(BKrj/2) ≤ Cε,M,KK2r2
j for j ≥ jε,M,K

or
‖vj‖L∞(BK) ≤ Cε,M,KK2 for j ≥ jε,M,K .

This means we can extract a subsequence of vj converging to a global solution v0

in C1,α
loc (Rn) (which might not necessarily have a quadratic growth at infinity).

Observe then

W (r; v0) = lim
j→∞

W (r; vj) = lim
j→∞

W (rrj ;u) = W (0+;u).

In particular, W (r, v0) = const. Since v0 is a solution of (1) with f = 1, this
is possible iff v0 is homogeneous of degree two. Then by the classification of such
solutions (see Lemma 3), v0 is either a halfspace solution or a nonzero homogeneous
quadratic polynomial. Let us show that the latter is impossible. Indeed, we have

δ(1/2, vj) = δ(rj/2, u) ≥ ε > 0,

which implies that
δ(1/2, v0) ≥ ε.

Thus, if v0 were a quadratic polynomial it would have been identically 0, which
would contradict the nondegeneracy (see Lemma 1). Consequently, v0 is a halfspace
solution. But then

W (0+;u) = W (1; v0) = An,

which proves (33). Once we have both (32) and (33), we can find rj > 0 as small
as we like such that

δ(rj , u) > ε and W (rj ;u) < 2An − ε.

Then, applying Theorem A, we complete the proof of the theorem. �
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