
TWO-PHASE SEMILINEAR FREE BOUNDARY PROBLEM

WITH A DEGENERATE PHASE

NORAYR MATEVOSYAN AND ARSHAK PETROSYAN

Abstract. We study minimizers of the energy functional∫
D

[|∇u|2 + λ(u+)p] dx

for p ∈ (0, 1) without any sign restriction on the function u. The main result

states that in dimension two the free boundaries Γ+ = ∂{u > 0} ∩ D and

Γ− = ∂{u < 0} ∩D are C1-regular, provided 1− ε0 < p < 1.

1. Introduction and Main results

1.1. The problem. In this paper we study a two-phase free boundary problem,
obtained by minimizing the functional

(1.1) J(u) :=

∫
D

(
|∇u|2 + 2F (u)

)
dx

in an open subset D ⊂ Rn, where F is a Hölder continuous function

(1.2) F (u) := λ (u+)p, λ > 0, 0 < p < 1.

(Hereafter we denote u± = max{±u, 0}.) By a minimizer, we understand u ∈
W 1,2(D) such that

J(u) ≤ J(v), for any v ∈ u+W 1,2
0 (D).

The existence of minimizers with a given Sobolev trace boundary data u0 ∈W 1,2(D)
follows easily by the direct methods of the calculus of variations, however there is
generally no uniqueness as J is not convex. The minimizers satisfy

∆u = pλup−1 in Ω+(u) := {u > 0}
∆u = 0 in Ω−(u) := {u < 0}

and our objective is to study the interfaces or free boundaries

Γ±(u) := ∂Ω±(u) ∩D.
One of the main difficulties in this problem is related to the lack of nondegeneracy
in the negative phase in the sense that there is no apriori bound on how slowly
u− can grow near Γ−. On the other hand, it is relatively easy to show that u+(x)
grows as dist(x,Γ+)β away from Γ+, β = 2/(2− p).
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Recently, a similar problem has been considered by Lindgren and Petrosyan
[LP08] with

F (u) = λ+(u+)p + λ−(u−)p, λ± > 0, 0 < p < 1.

The main difference is that this problem has nondegeneracy in both phases, which
plays a major role in the study of the free boundary. In particular, for the above
problem it has been shown that Γ± are C1 regular in dimension n = 2. The
regularity in higher dimension is completely open.

The corresponding one-phase problem (i.e., nonnegative minimizers of u) has
been studied in a series of papers by Phillips [Phi83a,Phi83b] and Alt and Phillips
[AP86]. In the latter paper it has been proved that that there exists a singular set
Σ ⊂ Γ+ of (n − 1)-Hausdorff measure zero such that Γ+ \ Σ is C∞ (actually real
analytic). Moreover, they have shown that when the dimension n = 2 then the
singular set Σ = ∅, i.e. the free boundary is fully regular.

1.2. Main result. The main result in this paper states that despite the lack of
nondegeneracy in the negative phase, the free boundary is still fully regular for p
near 1 in dimension two.

Theorem I. Let u be a minimizer of (1.1) in dimension n = 2. Then there exists
an absolute constant ε0 > 0 such that Γ+(u) and Γ−(u) are locally C1,α curves,
provided 1− ε0 < p < 1. Moreover, Γ−(u) ⊂ Γ+(u).

The last part of the theorem basically says that the fattening of {u = 0} cannot
occur between the phases Ω±, but only as the “dead core” in Ω+.

2. Preliminaries

2.1. Optimal regularity and the Euler-Lagrange equation. Perhaps the first
question associated with the variational problem (1.1) is the optimal regularity of
the minimizers. While studying the one-phase free boundary problem, Phillips
[Phi83a] has established that the nonnegative minimizers of J satisfy

u ∈ C1,β−1
loc (D), β =

2

2− p
.

This is the best regularity possible, as one can see from the one-dimensional example
u(x1) = C0(x+

1 )β for suitably chosen C0 = C0(λ, p) > 0. Later, Giaquinta and
Giusti [GG84] have extended this optimal regularity result for general minimizers
of J with no restrictions on their sign.

The Euler-Lagrange equation associated with the variational problem (1.1) is

(2.1) ∆u = pλ(u+)p−1χ{u>0} in D.

However, since even the local integrability of (u+)p−1χ{u>0} in D is apriori un-
known, we have to specify in which sense we understand (2.1). But first notice
that since Ω±(u) = {±u > 0} are open, the equation (2.1) is clearly satisfied in
the classical sense in Ω±(u), and moreover, u is real analytic there. In general, we
understand (2.1) in the sense of domain variation:

d

dε

∣∣∣∣
ε=0

J(u(x+ εφ(x))) =

∫
D

[2∇u ·Dφ∇u− (div φ)(|∇u|2 + 2F (u))] dx = 0,

for any φ ∈ C∞0 (D,Rn).
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Figure 1. Γ+ = ∂{u > 0} ∩D, Γ− = ∂{u < 0} ∩D

2.2. Structure of the free boundary. Here we briefly discuss the structure of
the free boundary (see also Fig. 1).

1 ◦ We start with an observation that Γ− ⊂ Γ+. Indeed, if x0 ∈ Γ−\Γ+, then u ≤ 0
in Bδ(x0) for some small δ > 0. This implies that the term F (u) in the integrand
of (1.1) vanishes identically in Bδ(x0), and consequently that the minimizer u is
harmonic there. But then by the maximum principle, u ≡ 0 in Bδ(x0), which
contradicts to the fact that x0 ∈ ∂{u < 0}. Hence, Γ− ⊂ Γ+. This essentially
means that no thickening of the level set {u = 0} can occur between Γ− and Γ+,
nor that there could be “dead cores” of {u = 0} in {u ≤ 0}.

2 ◦ However, it is possible that Γ+ \Γ− is nonempty, e.g. when u is nonnegative. In
fact, for any x0 ∈ Γ+ \Γ− there exists a ball Bδ(x0) ⊂ D such that u ≥ 0 in Bδ(x0).
We call such x0 a one-phase free boundary point. The analysis of the regularity
of the free boundary near one-phase points is reduced to the case already studied
by Alt and Phillips [AP86]. In particular, in dimension n = 2, δ can be chosen so
small that Bδ(x0) ∩ Γ+ will be a real-analytic surface.

3 ◦ We say that x0 is a two-phase free boundary point, if

x0 ∈ Γ+ ∩ Γ−(= Γ−).

We distinguish two types of two-phase points. The first kind is so-called branching
points, where the condition

|∇u(x0)| = 0

is satisfied. This terminology is reminiscent of the fact that in similar two-phase
free-boundary problems this condition holds automatically at x0 ∈ Γ+ ∩ Γ− ∩
{u = 0}◦, i.e., at points x0 where the free boundary branches out to Γ±. By 1)
above, the branching in this narrow sense can never occur in our case; however,
apriori we may not exclude the existence of two-phase points with vanishing gradi-
ent. In fact, the proof of Theorem I consists in showing that such points don’t exist
when n = 2 and 1− ε0 < p < 1.

The second kind of two-phase points are the non-branching points is where

|∇u(x0)| > 0.
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Since u ∈ C1,β−1
loc (D), the implicit function theorem implies that for such points

there exists a small δ such that Bδ(x0) ∩ Γ+ = Bδ(x0) ∩ Γ− is a graph of a C1,α

function.

3. Rescalings and Blowups

3.1. Rescalings. One of the key ideas in studying the infinitesimal properties of
the free boundary is to make an infinite “zoom-in” (or “blowup”) at a free boundary
point.

More specifically, given a minimizer u of (1.1), x0 ∈ Γ+ ∪ Γ−(= Γ+) and r > 0
define the rescaling

ux0,r(x) :=
u(x0 + rx)

rβ
, β =

2

2− p

for x ∈ Dx0,r = 1
r (D − x0). We will use the notation ur for ux0,r if x0 = 0. If

x0 ∈ (Γ+ ∪Γ−)∩K for K b D and is such that |∇u(x0)| = 0, we have the uniform
estimates

|ux0,r(x)| ≤ CK |x|β , for |x| ≤ δ

r
,

where δ = 1
2 dist(K, ∂Ω). This follows from the optimal C1,β−1

loc -regularity of u.
Hence, for a fixed x0, we may extract a sequence rj → 0 such that

ux0,rj → u0 in C1
loc(Rn),

where u0 ∈ C1,β−1(Rn). We will call u0 a blowup of u at x0. It is a simple
exercise to show that u0 is a global minimizer of functional J , i.e. it minimizes J
on every subdomain U ⊂ Rn among the functions in W 1,2(U) with the same trace
on ∂U as u. Note that the blowup is not defined at free boundary points x0 where
|∇u(x0)| > 0, i.e. at non-branching points. Moreover, at points where blowups
exist, it is not clear apriori if the blowup is unique. Namely, taking a different
subsequence r′j → 0 may result in convergence of ux0,r′j

to a different blowup u′0.

This may happen, e.g. when the free boundary “spirals” near x0, see Fig. 2.

u>0 u<0

Figure 2. Possible nonuniqueness of blowups: spiraling free boundary

3.2. Nondegeneracy. Another possibility that needs to be ruled out is that u0

vanishes identically in Rn. This is accomplished with the help of the following
nondegeneracy lemma.
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Lemma 3.1 (Nondegeneracy). Let u be a minimizer of (1.1) and let x0 ∈ Ω+∪Γ+.
Then for any r > 0 with Br(x0) b D we have

sup
Ω+∩∂Br(x0)

u ≥ c0 rβ ,

with c0 = c0(λ, n, p) > 0.

In fact, we will need the following more refined version of the nondegeneracy
lemma.

Lemma 3.2 (Nondegeneracy in connected components). Let u be a minimizer of
(1.1) and let x0 ∈ D. For any Br(x0) b D, let V be a connected component of
Ω+
r = Ω+ ∩Br(x0) such that V ∩Br/2(x0) 6= ∅. Then

sup
∂V ∩∂Br(x0)

u ≥ c0 rβ

with c0 = c0(λ, n, p) > 0.

Proof. The proof is a slight modification of the one in [LP08], which in turn is
similar to the one in [Phi83a], which follows the original idea in [CR76].

Fix a connected component V of Ω+ ∩Br(x0). Then we can write

∂V = E ∪ F,
where

E := ∂V ∩Br(x0) ⊂ Γ+

F := ∂V ∩ ∂Br(x0) ⊂ ∂Br(x0).

Next, pick y0 ∈ V ∩Br/2(x0) and consider

w(x) = |u(x)|2/β − c|x− y0|2, x ∈ D
for some constant c > 0 to be specified later. Then by a direct computation, we
have

∆w = (2/β)pλ+ (2/β)(2/β − 1)|∇u|2|u|−p − 2nc in V.

Hence, by choosing c = pλ/βn, we make ∆w ≥ 0 in V . Since w(y0) > 0 and w is
subharmonic, there must exist z0 ∈ ∂V such that w(z0) > 0. On the other hand,
since w ≤ 0 on E ⊂ Γ+, necessarily z0 ∈ F , which gives that

sup
F
w > 0.

By construction we have that |x− y0| ≥ r/2 for any x ∈ F ⊂ Br(x0) and therefore
we obtain that

sup
F
u2/β > cr2/4,

which completes the proof of the lemma with c0 = (c/4)β/2. �

3.3. Homogeneity of blowups. The next proposition characterizes the blowups
of solutions.

Proposition 3.3 (Homogeneity of blowps). Let u be a minimizer of (1.1) and
x0 ∈ (Γ+ ∪ Γ−) ∩ {|∇u| = 0}. Then any blowup u0 of u at x0 is a homogeneous
function of degree β with respect to the origin, i.e.,

u0(rx) = rβu0(x), x ∈ Rn, r > 0.
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The proof of this proposition is based on the monotonicity formula due to Weiss
[Wei98]:

Lemma 3.4 (Weiss’s monotonicity formula). Let u be a minimizer of (1.1) and

W (r, x0) =
1

rn+2β−2

∫
Br(x0)

[|∇u|2 + 2F (u)] dx− β

rn+2β−1

∫
∂Br(x0)

u2(x) dσ,

for r > 0 such that Br(x0) b D. Then W is monotonically increasing with respect
to r. Moreover, W (r, x0) = 0 for 0 < r < r0 iff u is a homogeneous function of
degree β with respect to x0 in Br0(x0).

Sometimes we will use the abbreviated notation W (r) for W (r, x0) if the point
x0 is clear from the context, and more expanded notation W (r, x0, u), if we want
to specify the function u.

Proof. For the complete proof we refer to the original paper of Weiss [Wei98]. Here
we just indicate that using the identity

W (r, x0, u) = W (1, 0, ux0,r),

where ux0,r(x) = u(x0 + rx)/rβ , one can show that

W ′(r) =
2

rn+2β−1

∫
∂Br(x0)

((x− x0) · ∇u− βu)2 dσ.

The last part of the lemma follows from the fact that (x − x0) · ∇u − βu = 0 in
Br0(x0) is equivalent to the homogeneity of u. �

By using this monotonicity formula, one can give a quick proof of Proposition 3.3.

Proof of Proposition 3.3. Let ux0,rj → u0 in C1
loc(Rn). Then for any ρ > 0, we

have

W (ρ, 0, u0) = lim
j→∞

W (ρ, 0, ux0,rj ) = lim
j→∞

W (rjρ, x0, u) = W (0+, x0, u).

HenceW (ρ, 0, u0) is constant in ρ, which implies that u0 is homogeneous of degree β.
�

3.4. Classification of homogeneous global minimizers. Since the blowups of
minimizers u are homogeneous of degree β, it would be desirable to obtain the
classification of such global minimizers. This poses a challenging open problem
even in the one-phase case in higher dimensions. In dimension n = 2, the problem
is much simpler and, loosely speaking, reduces to identifying the solutions of an
ODE with period 2π.

Proposition 3.5 (Classification of blowups). Let u0 be a homogeneous global min-
imizer of J in dimension n = 2. Then after a suitable rotation of coordinate axes

u0(x) = C0(x+
1 )β ,

where C0 = C0(p) > 0.

The proof is based on the analysis of positivity and negativity sets of u0, which
are unions of cones. This is done in the next two lemmas. For convenience, we use
the polar coordinates in the statement of these lemmas.
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Lemma 3.6 (Positive solutions in angles). Let u(r, θ) = rβf(θ) be a positive
solution of ∆u = pλup−1 in the cone Cγ = {(r, θ) : r > 0, θ ∈ (0, γ)}, vanishing

continuously on ∂Cγ : u(r, 0) = u(r, γ) = 0. Suppose also that u ∈ C1
(
Cγ
)
. Then

π

β
≤ γ ≤ π.

Furthermore, if f ′(0) = 0 or f ′(γ) = 0 then γ = π. Conversely, if γ = π then
necessarily f ′(0) = f ′(π) = 0. Moreover, in this case f(θ) = C0(sin θ)β for some
C0 = C0(λ, p).

Proof. See the proof of [LP08, Lemma 4.2]. �

Lemma 3.7 (Negative solutions in angles). Let u(r, θ) = rβf(θ) be a negative
harmonic function in the cone Cγ , continuously vanishing on ∂Cγ . Then

γ =
π

β

and f(θ) = −C sin(βθ) for some C > 0. In particular, |f ′(0)| = |f ′(γ)| > 0.

Proof. Proof is a simple exercise. �

Proof of Proposition 3.5. Consider two cases:

1 ◦ 0 is a positive one-phase point, i.e., 0 ∈ Γ+(u0) \ Γ−(u0). In this case u0 ≥ 0.
Consider then the positivity set Ω+(u0). From the homogeneity, the connected
components of Ω+ are cones. Lemma 3.6 implies that the cones have openings
between π/β and π. In fact, since |∇u0| = 0 on Γ+ for nonnegative solutions, the
openings of the components of Ω+ are exactly π. Hence, there are either two, or
just one components of Ω+ of opening π, which after a rotation, correspond to

u0(x) = C0|x1|β

and
u0(x) = C0(x+

1 )β ,

respectively. The former case is actually impossible, since for nonnegative mini-
mizers the zero set {u0 = 0} must have nonzero Lebesgue density at free boundary
points, see [Phi83b].

2 ◦ 0 is a two-phase point, i.e., 0 ∈ Γ+(u0) ∩ Γ−(u0). In this case both Ω+ and
Ω− are nonempty. By Lemmas 3.6–3.7 each component of Ω± is a cone of opening
between π/β and π. Since β < 2 there could be no more than 3 different components
in Ω±.

If there are three components, then we have two possibilities: either there are
two components of the same sign sharing a common side, or the set {u = 0} has
a nonempty interior. In both cases, |∇u| = 0 on one side of at least two of the
components. By Lemmas 3.6–3.7, these components must be positive and have
opening π. This doesn’t leave space for the third component.

Hence, there are precisely two components, one necessarily in Ω+, the other in
Ω−, since we assume that 0 is a two-phase free boundary point. Since the negative
component must have opening π/β < π and the positive one at most π, the zero
set {u = 0} will have nonempty interior and therefore |∇u| = 0 on one side of
both components. But then again by Lemmas 3.6–3.7, both components must be
positive, which is a contradiction. Thus, 0 cannot be a two-phase free boundary
point. �
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4. Proof of the main theorem

The main ingredient in the proof of Theorem I is the following fact:

Proposition 4.1. Let u be a minimizer of (1.1). Then there exist no free boundary
branching points, i.e., Γ+ ∩ Γ− ∩ {|∇u| = 0} = ∅, provided p is close enough to 1.

In fact, we are going to reformulate this proposition as follows.

Proposition 4.2. Let u be a minimizer of (1.1) in B1 and suppose that

0 ∈ Γ+, |∇u(0)| = 0.

If p is close enough to 1, then there exists a small r = ru > 0 such that u ≥ 0 in
Br.

The proof of this proposition is subdivided into four steps.

1 ◦ We start by showing that the free boundary becomes flatter as we approach to
the origin.

Claim 1. For any σ > 0, there exists an rσ > 0 such that for all 0 < r < rσ there
exists a direction er ∈ R2, |er| = 1 such that

u > 0 in {x · er > σr} ∩Br =: D+
σ,r,

u ≤ 0 in {x · er < −σr} ∩Br =: D−σ,r.

eru>0
u≤0

Br

D+
σ,rD−σ,r

Figure 3. Claim 1

Proof. The proof follows from the fact that any blowup is a halfspace solution and
that u+ is nondegenerate. Indeed, suppose that the claim fails. Then there exist a
sequence rj → 0+ such that for the rescalings

urj (x) = u0,rj (x) =
u(rjx)

rβj

at least one of the conditions

urj > 0 in {x · e > σ} ∩B1,

urj ≤ 0 in {x · e < −σ} ∩B1
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fails for any choice of the direction e. Passing to a subsequence, if necessary, we
may assume that urj → u0 in C1,α

loc (R2). By Propositions 3.3 and 3.5 we have that

u0(x) = C0(x+
1 )β , after a suitable rotation of coordinate axes. Then we claim that

urj > 0 in {x1 > σ} ∩B1,

urj ≤ 0 in {x1 < −σ} ∩B1

for sufficiently large j. Indeed, the first inequality follows from the uniform con-
vergence of urj → u0. The second one is a direct corollary of the nondegeneracy
(see Lemma 3.1): if {urj > 0} ∩ {x1 < −σ} ∩ B1 6= ∅, then sup{x1<−σ/2}∩B2

urj ≥
c0(σ/2)β and consequently sup{x1<−σ/2}∩B2

u0 ≥ c0(σ/2)β , which is a contradic-
tion. Thus, we also arrive at a contradiction with the assumption made on urj .
This proves the claim. �

2 ◦ Since u is harmonic in {u ≤ 0}◦, by the maximum principle, in D−σ,r =
{x · er < −σr} there are two possibilities:

i◦ u ≡ 0 in D−σ,r
ii◦ u < 0 in D−σ,r

and in principle different alternatives may hold for different r. However, our next
claim says that the same alternative holds for all small r.

Claim 2. If u < 0 in D−σ,r for some r = r0 < rσ, then also u < 0 in D−σ,r for all
0 < r ≤ r0 provided σ is small enough.

Proof. Suppose r0 ≥ r ≥ r0(1 − σ). From Claim 1 we know that D−σ,r cannot

intersect D+
σ,r0 . But then D−σ,r must intersect D−σ,r0 , since otherwise D−σ,r should be

contained in a strip |x · er0 | < σr0, which is too narrow if σ is small. This yields
that u < 0 in D−σ,r. By iteration, the claim follows. �

Br0

D+
σ,r0D−σ,r0

D+
σ,rD−σ,r

Figure 4. Claim 2

3 ◦ Now let us show, that

Claim 3. If the exponent p ∈ (0, 1) in (1.1) is sufficiently close to 1, the alternative
u < 0 in D−σ,r for r < rσ is not possible for small σ.
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Proof. Let σ = ε/N , with ε > 0 small and N large to be specified later. For some
r0 < rε/N consider the sequence of radii

rn = r0(1− ε)n

as well as a sequence of points

Pn = −1

2
rnern ,

where er, r = rn, are as in Claim 1.
The proof consists of the repetitive application of the Harnack inequality, to

obtain an estimate for |u(Pn)| from below, which will contradict to the growth
estimate |u(x)| ≤ C|x|β . More detailed outline is as follows:

Step 1 : Estimate the distance between Pn and Pn+1.

Step 2 : Apply the Harnack inequality with precise constants to u in D−ε
N ,r

at points

Pn and Pn+1 to obtain

(4.1) −u(Pn+1) > −λu(Pn),

which implies −u(Pn) > αλn, where α = −u(P0)

Step 3 : On the other hand, we have that

|u(Pn)| ≤ Crβn = Crβ0 (1− ε)βn.

Thus, if we show that (4.1) holds with λ > (1 − ε)β then we will arrive at a
contradiction.

We now start implementing this strategy.

Step 1: Distance between Pn and Pn+1.

Actually, we will estimate the distance between P0 and P1, since the general case
can be easily obtained from this by scaling.

er0

er1

Br0

P0

P1

D−ε
N
,r0

Figure 5. Claim 3: Step 1

We start by estimating the rotation of the unit vector er. Namely, we want to
find a control of

θ = angle(er0 , er1).
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Since D+
ε
N ,r1

cannot intersect D−ε
N ,r0

, using elementary geometry we obtain that

sin θ ≤ ε/N

1− ε
,

cos θ ≥

√
1− ε2/N2

(1− ε)2
.

Then, recalling that

P0 = −1

2
r0er0 , P1 = −1

2
r0(1− ε)er1 ,

we obtain

dist(P0, P1)2 =
r2
0

4

(
1 + (1− ε)2 − 2(1− ε) cos θ

)
≤ r2

0

4

(
1 + (1− ε)2 − 2

√
(1− ε)2 − ε2

N2

)

=
r2
0

4

[(
1 +

1

N2

)
ε2 +O(ε3)

]
.

This implies that

dist(P0, P1) <
r0ε

2
(1 + δ),

where δ = δε,N > 0 can be made arbitrarily small if ε > 0 is sufficiently small and
N is large.

Step 2: The Harnack constant in dimension 2.

To simplify the notations in this step we will assume r0 = 1 and er0 = (0,−1).
This will not affect the generality, since the estimates that we are going to use will
be scale and rotation invariant. We start by observation that

B 1
2−

ε
N (P0) ⊂ D−ε

N ,1

and

P1 ∈ B ε
2 (1+δ)(P0).

Now, if u < 0 satisfies

∆u = 0 in BR(P0),

for a certain R > 0 then the Harnack inequality for balls in R2 gives

R− r
R+ r

≤ u (P0)

u (P1)
≤ R+ r

R− r
.

In our case

R =
1

2
− ε

N
and r =

ε

2
(1 + δ) .

However, it turns out that this estimate is not enough for our purposes. Since u < 0
actually in a larger set D−ε

N ,1
, we can improve this estimate as follows. Consider a

bijective conformal mapping

φ : D−ε
N ,1
→ BR such that φ(P0) = 0.

Since BR(P0) ⊂ D−ε
N ,1

, then using complex notations, we have

|φ′(P0)| < 1.
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P0

P1

R=r0(
1
2−σ)

r=r0ε(1+δ)/2

Figure 6. Claim 3: Step 2

Consequently, for small r we have

φ (Br(P0)) ⊂ B(1−κ)r,

for some κ > 0, which can be regarded as an absolute constant if ε/N is small.
Applying the Harnack inequality to u ◦φ−1 for balls B(1−κ)r ⊂ BR, we obtain that
for our u we have

u(P0)

u(P1)
≤ R+ (1− κ)r

R− (1− κ)r
.

Thus, we get
−u(P1) ≥ −λu(P0)

with

λ :=
R− (1− κ)r

R+ (1− κ)r
=

1− 2ε
N − (1− κ)(1 + δ)ε

1− 2ε
N + (1− κ)(1 + δ)ε

.

Similarly, we obtain that
−u(Pn+1) ≥ −λu(Pn)

for any n and as a corollary that

|u(Pn)| ≥ λn|u(P0)|.

Step 3: Estimating λ.

Using that (1 + x)/(1− y) = (1 + x)(1 + y + O(y2)) = 1 + x + y + O(x2 + y2),
we find that

λ =
1− 2ε

N − (1− κ)(1 + δ)ε

1− 2ε
N + (1− κ)(1 + δ)ε

= 1− 2ε

N
− (1− κ) (1 + δ) ε+

2ε

N
− (1− κ) (1 + δ) ε+O

(
ε2
)

= 1− 2 (1− κ) (1 + δ) ε+O
(
ε2
)
.
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Now recall that κ is an absolute constant and δ can be chosen as small as we wish.
Thus, we can make

(1− κ)(1 + δ) < 1− κ/2,
and consequently

λ ≥ 1− 2(1− κ/2)ε+O(ε2) ≥ (1− ε)2−κ/2,

provided ε is sufficiently small. This implies that

|u(Pn)| ≥ λn|u(P0)| ≥ c|Pn|2−κ/2,

with c > 0. On the other hand, we have the growth estimate

|u(Pn)| ≤ C|Pn|β

and to arrive at a contradiction we note that

β =
2

2− p
> 2− κ/2

if p is close enough to 1. �

4 ◦ So far we have proved that for r ≤ r0

u > 0 in D+
σ,r

u ≡ 0 in D−σ,r,

provided p is close enough to 1.
In this step, rescaling and rotating if necessary, we will assume that r0 = 1 and

er0 = (1, 0).

Claim 4. Under the assumption above, u ≥ 0 in B 1
4
.

Proof. Assume the contrary and let W be a connected component of {u < 0} ∩B1

such that W ∩B 1
4
6= ∅. Observe that W must be contained in the strip {|x1| < σ}.

We then consider two cases.

i◦ W b B 3
4
. Here we will have a contradiction to the maximum principle, since u

is harmonic in W and must vanish on ∂W .

ii◦ W ∩ ∂B 3
4
6= ∅. Then we can find a point P ∈ W such that |P | = 1

2 . Take

a narrow horizontal box R containing P and connecting it to {x1 < −σ}. Then
there exists a point Q ∈ R such that u(Q) > 0. Otherwise u ≤ 0 in R and thus
u ≤ 0 in {x1 < −σ} ∪ R ∪W . However, u ≡ 0 in {x1 < −σ}, u < 0 in W and
u is harmonic in the union {x1 < −σ} ∪ R ∪W . This contradicts to the strong
maximum principle.

Thus, there exists Q ∈ R with u(Q) > 0 that lies “between” W and {x1 < −σ}.
Taking R narrow enough, we can guarantee that 3

8 ≤ |Q| ≤
5
8 . Now consider the

intersection

B 1
8
(Q) ∩ {u > 0}.

Since W is connected and intersects both ∂B 1
4

and ∂B 3
4
, there exists a connected

component V of the above set such that

Q ∈ V ⊂ {|x1| < σ}.

Note that here we have strongly used the topological properties of R2.
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PQ

W

V

R
�

Figure 7. Claim 4: alternative ii◦

Next, we apply the nondegeneracy lemma in connected components to arrive at
a contradiction. Namely, by Lemma 3.2 we must have

sup
∂B 1

8
(Q)∩V

u ≥ c0
(

1

8

)β
.

On the other hand, since u ≡ 0 in {x1 < −σ}, and u ∈ C1,β−1, we have

|u| ≤ C0σ
β in {|x1| < σ} ∩B1.

which is a contradiction if σ is small.

This proves the claim. �

Proof of Proposition 4.2. Note that Claim 4 is just the rescaled version of Propo-
sition 4.2. �

We are now ready to prove the main theorem.

Proof of Theorem I. By Proposition 4.1, we have that |∇u| does not vanish on
Γ− = Γ− ∩ Γ+, provided p is close enough to 1. Hence, by the implicit function
theorem, Γ− is locally a C1 graph. On the other hand, u ≥ 0 in a neighborhood of
any point on Γ+ \ Γ− and therefore using the result of [AP86] in dimension 2 we
conclude that Γ+ \ Γ− is C1 regular as well. �
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