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Multi-asset American options

1 Let S, S, . . .Sn denote the prices of n risky dividend paying assets that
satisfy the stochastic di�erential equations

dSi(t) = (µi − δi)Si(t)dt + σiSi(t)dWi ,

where dWi(t) are standard Brownian motions such that

E(dWi) = , Var(dWi) = dt, Cov(dWi , dWj) = ρi jdt.

2 If V(S, . . . , Sn , t) is the price of the European style option derived from
these assets, with payo� function Φ(S, . . . , Sn) at time T , then V must
satisfy the Black-Scholes equation

LV ∶=
∂
∂t

V +



n
∑
i , j=

αi jSiS j
∂V
∂Si∂S j

+
n
∑
i=

(r − δi)Si
∂V
∂Si

− rV =  (t < T)

V(S, . . . , Sn , T) = Φ(S, . . . , Sn).
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Multi-asset American options

1 If V(S, . . . , Sn , t) is the price of an American type option with payo�
function Φ(S, . . . , Sn), then V satis�es the variational inequality

LV ≤ , V ≥ Φ, LV(V −Φ) =  on (R+)n × (−∞, T)

V(S , T) = Φ(S).

2 Of special interest is the exercise region

E = {(S , t) ∶ V(S , t) = Φ(S), t ≤ T}.

3 Typically Φ(S) is only Lipschitz continuous
▸ n = : Φ(S) = (S − K)+ American call option
▸ n = : Φ(S) = (K − S)+ American put option
▸ n = : Φ(S) = (max{S , S} − K)+ American call max-options
▸ n = : Φ(S) = (min{S , S} − K)+ American call min-options

Not that these Φ’s are also piecewise smooth (important!)
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Multi-asset American options

Φ(S) = (S − K)+ Φ(S) = (K − S)+

Φ(S , S) = (max{S , S} − K)+ Φ(S , S) = (min{S , S} − K)+
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Parabolic obstacle problem

1 With an appropriate transformation of variables (including xi = log Si),
this can be rewritten as a variational inequality for the heat operator for a
function v = v(x , t)

(∆ − ∂t)v ≤ , v − φ ≥ , (∆ − ∂t)v(v − φ) =  in Rn
× (,∞)

v(x , ) = φ(x , ).

�is is nothing but a parabolic obstacle problem with obstacle φ.

2 �e exercise region E transforms to the coincidence set

Λ = {(x , t) ∶ v(x , t) = φ(x , t)}.

3 �e solutions of the obstacle problem are well understood when φ is
smooth. However, the general theory of free boundaries with nonsmooth
(say Lipschitz) obstacles φ is still lacking. We will discuss what
complication arise when φ is piecewise-smooth.
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Classical obstacle problem

Given
▸ Ω domain in Rn

▸ φ ∶ Ω → R (obstacle)  ∶ ∂Ω → R

(boundary values),  > φ on ∂Ω

Minimize the Dirichlet integral

DΩ(u) = ∫
Ω
∣∇u∣dx

on the closed convex set

K = {u ∈W ,
(Ω) ∣ u =  on ∂Ω, u ≥ φ on Ω}.

Ω


φ

φ

Ωu = φ

u 

�e minimizer u solves the variational inequality

∆u ≤ , u ≥ φ, (∆u)(u − φ) =  in Ω
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Classical obstacle problem

It is know that u is as regular as φ, up to
C, [Caffarelli 1998].

If φ ∈ C, then u is also C, and satis�es

∆u = ∆φχ{u=φ} in Ω.

�e set

Λ = Λ(u) ∶= {x ∈ Ω ∣ u = φ}

is known as the coincidence set.

Λ
Γ

u = φ

u 

One of the main objects of study is the free boundary

Γ(u) ∶= ∂Λ(u).

�e regularity properties of u and Γ are fairly well studied when φ ∈ C,

and ∆φ < .
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Piecewise smooth Lipschitz obstacles

Given

▸ Ω domain in Rn

▸ M smooth hypersurface,
Ω ∖M = Ω+ ∪Ω−

▸ φ ∶ Ω → R piecewise smooth

φ ∈ C,(Ω± ∪M) ∩ Lip(Ω)

∂ν+φ + ∂ν−φ ≥  onM

We call it a roo�op-like obstacle

Let u solve the obstacle problem with
obstacle φ.�en

u ∈ Lip(Ω)

Ω
Ω−

M
Ω+

φ

φφ
u

�is generally cannot be improved if φ is only Lipschitz, but our extra
structure allows an improvement.
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Piecewise smooth Lipschitz obstacles

�e minimizer u satis�es

∆u = ∆φχ{u=φ} in Ω ∖M = Ω+ ∪Ω−

Signorini conditions onM

u − φ ≥ 
∂ν+u + ∂ν−u ≥ 

(u − φ)(∂ν+u + ∂ν−u) = 

A related problem is the so-called thin
obstacle problem, where φ is given only
onM.

φ
u

φ

u

Many of our techniques has been developed �rst for this problem:
[Athanasopoulos-Caffarelli 2006], [Caffarelli-Silvestre-Salsa 2008],
[Garofalo-P. 2009], etc.
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Piecewise smooth Lipschitz obstacles

�e condition

∂ν+φ + ∂ν−φ ≥ 

allows to have a contact over the “ridge”
of φ, which makes the problem more
di�cult.

▸ �is corresponds to American call
min-options.

On the other hand, if

∂ν+φ + ∂ν−φ < 

then there could be no contact points on
the ridge.

▸ �is corresponds to American call
max-options.

φ

φ
u

φφ

u
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C,/ regularity

In the case whenM is �at, we have the following theorem.

�eorem ([P.-To 2010])

If u is a solution of the obstacle problem with roo�op-like obstacle in Ω, then

u ∈ C,/loc (Ω± ∪M).

�is is the best possible regularity.�e function

u(x, x) = Re(x + i∣x∣)/

solves the obstacle problem with φ(x) = −C∣x∣.
�e regularity is the same as in the thin obstacle problem
[Athanasopoulos-Caffarelli 2006]
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Normalization: classSM

AssumeM is �at: M = Rn− × {}.

Replacing u with u(x) − φ(x′, ) it is enough to prove the result for u in
the following class.

De�nition
We say u ∈SM if ∥u∥Lip(B) ≤ M

∆u = f in B± with ∥ f ∥L∞(B) ≤ M
u ≥ , −(∂xn+u + ∂xn−u) ≥ , u(∂xn+u + ∂xn−u) =  on B′
 ∈ Γ(u) = ∂Λ(u) = ∂{x′ ∶ u(x′, ) = }.

Notation: Rn± = {±xn > }, B± ∶= B ∩Rn±, B′ ∶= B ∩ (Rn− × {})
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C,α-regularity

Lemma

If u ∈SM then there exists α = αM ∈ (, ) and CM >  such that

∥u∥C,α(B±/∪B′/) ≤ CM

Originally by [Caffarelli 1979] when f =  then by [Ural’tseva 1985] for
bounded f .
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Almgren’s monotonicity of the frequency

�eorem (Monotonicity of the frequency, [Almgren 1979])
Let u be harmonic in B.�en the frequency function

r ↦ N(r, u) ∶=
r ∫Br

∣∇u∣

∫∂Br
u
↗ for  < r < .

Moreover, N(r, u) ≡ κ ⇐⇒ x ⋅ ∇u − κu =  in B, i.e. u is homogeneous of
degree κ in B.

[Almgren 1979] for (multi-valued) harmonic u
[Garofalo-Lin 1986-87] for divergence form elliptic operators with
applications to unique continuation
[Athanasopoulos-Caffarelli-Salsa 2007] for the thin obstacle problem
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Figure: Solution of the thin obstacle problem Re(x + i∣x∣)/
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Figure: Multi-valued harmonic function Re(x + ix)/
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Truncated frequency function

�eorem (Monotonicity of truncated frequency, [P.-To 2010])

Let u ∈SM .�en for any δ >  there exists C = C(M , δ) >  such that

r ↦ Φ(r, u) = reCr
δ d
dr
logmax{∫

∂Br
u, rn+−δ} + (eCr

δ
− )↗

for  < r < .

Originally due to [Caffarelli-Salsa-Silvestre 2008] in the thin obstacle
problem.
Proof consists in estimating the error terms.�e truncation of the growth
is needed to absorb those terms. C,α regularity is used in an essential way.
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Blowups at the origin

Let u ∈SM and for r >  consider the rescalings

ur(x) ∶=
u(rx)

( 
rn− ∫∂Br

u)/
, fr(x) ∶=

r f (rx)

( 
rn− ∫∂Br

u)/

∆ur = fr in B±/r with Signorini conditions on B
′
/r .

�e rescaling is normalized so that

∥ur∥L(∂B) = .

Moreover, if r >  is such that ∫∂Br
u ≥ rn+−δ (above truncation), then

∣ fr(x)∣ ≤ Mrδ
→ , x ∈ B/r
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Blowups at the origin

Using the monotonicity of the truncated frequency it can be shown
consequently that {ur} is uniformly bounded

W ,
(B), Lip(B/), C,α(B/)

provided Φ(+, u) < n +  − δ.

�us, for a subsequence r j → +, we may assume that

ur j → u in C(B/).

It can be shown that u is a homogeneous solution of the thin obstacle
problem

∆u =  in Rn
+ ∪Rn

−
u ≥ , −(∂xn+u+∂xn−u) ≥ , u(∂xn+u+∂xn−u) =  on Rn−

×{}.

Moreover, the degree of homogeneity κ of u is such that

Φ(+, u) = n −  + κ.
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Proof of C,/ regularity

Lemma ([Athanasopoulos-Caffarelli 2000])
Let u be a homogeneous global solution of the thin obstacle problem with
homogeneity κ.�en κ ≥ /.

Explicit solution for which κ = / is achieved is Re(x + i∣xn∣)/

From Lemma we obtain that Φ(+, u) = n− +κ ≥ n+ for any u ∈SM .
From here one can show that

∫
∂Br

u ≤ Crn+,  < r < 

and consequently that

u ∈ C,/(B±/ ∪ B′/).
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Parabolic Signorini problem

Let Ω be a bounded set in Rn,M ⊂ ∂Ω and S = ∂Ω ∖M.

Consider the solution v(x , t) of the Parabolic Signorini Problem

∆v − ∂tv = f in ΩT ∶= Ω × (, T]

v ≥ φ, ∂νv ≥ , (v − φ)∂νv =  onMT ∶= M × (, T],
v =  on ST ∶= S × (, T]

v(⋅, ) = φ on Ω ∶= Ω × {}

Here f ∶ ΩT → R, φ ∶ MT → R,  ∶ S→ R, φ ∶ Ω → R are given
functions.
In particular, this includes (locally) the parabolic obstacle problem with
piecewise smooth roo�op-like obstacles with

f = ∆φχ{u=φ} ∈ L∞(ΩT).
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Parabolic Signorini problem: known results

�eorem ([Ural’tseva 1985])
Let v be a solution of the Parabolic Signorini Problem with φ ∈ C,x ,t(MT),
φ ∈ Lip(Ω), and f ∈ L∞(ΩT).�en ∇v ∈ Cα,α/

x ,t (K) for any K ⋐ ΩT ∪MT
and

∥∇v∥Cα ,α/
x ,t (K)

≤ CK(∥φ∥C,x ,t(MT) + ∥ f ∥L∞(ΩT) + ∥φ∥Lip(Ω))

�is corresponds to C,α regularity of solutions in the elliptic case
Our goal is to extend the optimal regularity result in the elliptic case to
the time dependent case.

Arshak Petrosyan (Purdue) Obstacle problems with Lip obstacles Rutgers Math Fin PDEs 2011 22 / 30



Parabolic Signorini problem: known results

�eorem ([Ural’tseva 1985])
Let v be a solution of the Parabolic Signorini Problem with φ ∈ C,x ,t(MT),
φ ∈ Lip(Ω), and f ∈ L∞(ΩT).�en ∇v ∈ Cα,α/

x ,t (K) for any K ⋐ ΩT ∪MT
and

∥∇v∥Cα ,α/
x ,t (K)

≤ CK(∥φ∥C,x ,t(MT) + ∥ f ∥L∞(ΩT) + ∥φ∥Lip(Ω))

�is corresponds to C,α regularity of solutions in the elliptic case

Our goal is to extend the optimal regularity result in the elliptic case to
the time dependent case.

Arshak Petrosyan (Purdue) Obstacle problems with Lip obstacles Rutgers Math Fin PDEs 2011 22 / 30



Parabolic Signorini problem: known results

�eorem ([Ural’tseva 1985])
Let v be a solution of the Parabolic Signorini Problem with φ ∈ C,x ,t(MT),
φ ∈ Lip(Ω), and f ∈ L∞(ΩT).�en ∇v ∈ Cα,α/

x ,t (K) for any K ⋐ ΩT ∪MT
and

∥∇v∥Cα ,α/
x ,t (K)

≤ CK(∥φ∥C,x ,t(MT) + ∥ f ∥L∞(ΩT) + ∥φ∥Lip(Ω))

�is corresponds to C,α regularity of solutions in the elliptic case
Our goal is to extend the optimal regularity result in the elliptic case to
the time dependent case.

Arshak Petrosyan (Purdue) Obstacle problems with Lip obstacles Rutgers Math Fin PDEs 2011 22 / 30



Parabolic Signorini problem: optimal regularity

�eorem ([Danielli-Garofalo-P.-To 2011])
Let v be a solution of the Parabolic Signorini Problem with �at M and
φ ∈ C,x ,t(MT), φ ∈ Lip(Ω), and f ∈ L∞(ΩT).�en ∇v ∈ C/,/x ,t (K) for any
K ⋐ ΩT ∪MT and

∥∇v∥C/,/x ,t (K) ≤ CK(∥φ∥C,x ,t(MT) + ∥ f ∥L∞(ΩT) + ∥φ∥Lip(Ω))

�is theorem is precise in the sense that it gives the same optimal
regularity of C,/ in the time-independent case.
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Poon’s monotonicity formula

�e optimal regularity in the elliptic case was obtained with the help of
Almgren’s Frequency Function. So we need a parabolic analogue of the
frequency.

�eorem ([Poon 1996])

Let u be a caloric function (solution of the heat equation) in the strip
SR = Rn × (−R, ].�en

N(r, u) =
r ∫t=−r ∣∇u∣

G(x , r)dx

∫t=−r uG(x , r)dx
↗ for  < r < R.

Moreover, N(r, u) ≡ κ ⇐⇒ u is parabolically homogeneous of degree κ, i.e.
u(λx , λt) = λκu(x , t).

Here G(x , t) = (πt)−n/e−∣x∣
/t , t >  is the heat (Gaussian) kernel.
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Subtracting the thin obstacle

Suppose now v solves the Parabolic Signorini Problem in
Q+
 = B+ × (−, ] withM = B′.

We want to “extend” v to the half-strip S+ = Rn+ × (−, ] in the following
way.
Let η ∈ C∞ (B) be a cuto� function such that

η = η(∣x∣),  ≤ η ≤ , η∣B/ = , supp η ⊂ B/

and consider
u(x , t) = [v(x , t) − φ(x′, , t)]η(x).

�en u solves the Signorini problem in the half-strip S+ = Rn+ × (−, ]
with a modi�ed right-hand side

∆u − ∂tu = F ∶= η(x)[ f − ∆′φ + ∂tφ] + [v − φ(x′, t)]∆η + ∇v∇η

�e new right-hand side F is nonzero even if f ≡ .
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Averaged and truncated Poon’s formula

For the extended u de�ne

hu(t) = ∫
Rn
+

u(x , t)G(x ,−t)dx

iu(t) = −t∫
Rn
+

∣∇u(x , t)∣G(x ,−t)dx ,

Poon’s frequency is now given by

N(r, u) =
iu(−r)
hu(−r)

.

For our generalization, however, iu and hu are too irregular and we have
to average them to regain missing regularity:

Hu(r) =

r ∫



−r
hu(t)dt =


r ∫S+r

u(x , t)G(x ,−t)dxdt

Iu(r) =

r ∫



−r
iu(t)dt =


r ∫S+r

∣t∣∣∇u(x , t)∣G(x ,−t)dxdt
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Averaged and truncated Poon’s formula

�eorem ([Danielli-Garofalo-P.-To 2011])
Let u be obtained from the solution of the Parabolic Signorini Problem in Q+

 as
described.�en for any δ >  there exist C such that

Φu(r) =


reCr

δ d
dr
logmax{Hu(r), r−δ} +



(eCr

δ
− ) ↗

for  < r < .

Using this generalized frequency formula, as well as an estimation on
parabolic homogeneity of blowups we obtain the optimal regularity.
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Rescalings and blowups

As in the elliptic case, we consider the rescalings

ur(x , t) =
u(rx , rt)
Hu(r)/

, Fr(x , t) =
rF(rx , rt)
Hu(r)/

,

for (x , t) ∈ S+/r = Rn+ × (−/r, ]

If Φu(+) <  − δ then one can show that the family {ur} is convergent
in suitable sense on Rn+ × (−∞, ] to a parabolically homogeneous
solution u of the Parabolic Signorini Problem

∆u − ∂tu =  in Rn
+ × (−∞, ]

u ≥ , −∂xnu ≥ , u∂xnu =  on Rn−
× (−∞, ]

Parabolic homogeneity u is κ = 
Φ(+) < − δ < . Besides, because of

C,α-regularity, also κ ≥  + α > .�us:

 < κ < .
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Homogeneous global solutions

Lemma ([Danielli-Garofalo-P.-To 2011])
Let u be a parabolically homogeneous solution of the Parabolic Signorini
Problem in Rn+ × (−∞, ] with homogeneity  < κ < .�en necessarily κ = /
and

u(x , t) = C Re(x + ixn)/,

a�er a possible rotation in Rn−.

�e proof is based on a rather deep monotonicity formula of Ca�arelli to
reduce it to dimension n =  and then analysing of the principal
eigenvalues of the Ornstein-Uhlenbeck operator −∆ + 

x ⋅ ∇ in R for the
slit planes

Ωa ∶= R ∖ ((−∞, a] × {}).
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Proof of optimal regularity

From Lemma we obtain that Φu(+) ≥ , if Φu(+) <  − δ.�us,
always Φu(+) ≥ .

�is implies Hu(r) = ∫Rn
+

uG(x ,−t)dxdt ≤ Cr

�is further implies that

sup
Q+r/(x ,t)

∣u∣ ≤ Cr/

for any (x, t) ∈ Q′
/ such that u(x, t) = .

Using interior parabolic estimates one then obtains

∇u ∈ C/,/x ,t (Q+
/).
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