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Laplacian in regions D c RY. Always |D| < oo and |0D| < oo.
D open connected finite volume, Ap Dirichlet Laplacian.

Zp(t) = trace(e!®r) = Ze‘“/:/pf’x,x)dx
: D
J=0
’

' [p X; =
(47rt)d/2/D {7D > t|X; = x}dx,

Tp exit time from D of Brownian motion. In fact,

1 —|x—y|?

PtD(XaY) = We aw Py{tp > t|Br =y}

= pi(x —y) = E* (7p < t, P(t—rp)(X(7D). ¥))
= pt(X—_}/) - rtD(X>.y)‘

The function rP(x, y) is called a killing measure.
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Theorem (M. Kac ’51 (?))

For any D c RY of finite volume

L d)2 _ o

Corollary
Then (Karamata tauberian theorem)

oo A
1 Y —tA = i =¥ =
l!irg)t /0 e du(\)=A= aILmOO a "ul0, a) M+ 1)

gives Weyl's asymptotics:

m AEN) = rf;/%)LDL )

N(X) be the number of eigenvalues {\;} which not exceeding X
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Theorem (Minakshiusundaram ’53)
D c RY bounded “smooth". Then

1 K _
Z0(1) ~ gamgias D2 G/% = OU™D/3), Lo
j=0
C1 = |D|, Co = ﬁ|3D|.

2
Theorem (McKean '67)
D c R? with r holes. Then

| ol 9Dl \_(1-r)
')[Q{ZD“) 4nt a4 2 6

Theorem (C'-domains: Brossard-Carmona ’86. Lipschitz domains: R.
Brown ’93. )

vt
2
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Zp(t) = (4rt)~/2 (DI - — 19D + 0(1‘1/2)) , 110



Uniform bounds

There are many uniform bounds on the trace.

Theorem (R-smooth domains: van den Berg ’87)
If OD satisfies uniform inner and outer ball condition with radius R

_ vt d* |D|t
Zp(t) — (4nt)~9/? (\Dy—zyaoy ng/ZtO‘,/Z’RZ, t>0.
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Problem: Investigate similar properties for “other” Lévy
processes, and especially those subordinate to Brownian motion
whose generators are simple transformations of the Laplacian
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Problem: Investigate similar properties for “other” Lévy
processes, and especially those subordinate to Brownian motion
whose generators are simple transformations of the Laplacian

Definition
A Lévy Process is a stochastic process X = (X;), t > 0 with
@ X has independent and stationary increments

@ Xp = 0 (with probability 1)

@ X is stochastically continuous: For all £ > 0,

lim P{|X; — Xs| > <} =0
—S
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@ Stationary increments: 0 < s < t < 0o, A € RY Borel
P{X; — Xs € A} = P{X;_s € A}
@ Independent increments: For any given sequence of ordered times
O<h<b< - <lp<oo,
the random variables
Xy — Xo, X, — Xy, Xi, — Xt
are independent.

The characteristic function of X; is

wi(€) = E () = / &' py(alx) = (2m)/2pi(¢)
where p; is the distribution of X;. Notation (same with measures)

(€)= (27:)(1/2 /Rd eX¢f(x)dx, f(x)= (27:)d/2 /Rd e~ X Ef(&)de
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The Lévy—Khintchine Formula

The characteristic function has the form o(¢) = e'*(€), where
) 1 e .
pe) =it~ g6 At | (% —1 i xT a1y () (oK)

for some b € R?, a non—negative definite symmetric n x n matrix A and a
Borel measure v on RY with »{0} = 0 and

/d min (|x|2, 1)u(dx) < 00

p(&) is called the symbol of the process or the characteristic exponent. The
triple (b, A, v) is called the characteristics of the process.

v

Converse also true. Given such a triple we can construct a Lévy
process.

v
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These are self-similar processes, denoted by X, in R? with symbol

p(&) = —I¢%, 0<a<2
a = 2 is Brownian motion. « = 1 is the Cauchy processes.

According to quantum mechanics, a particle of mass m moving with
momentum p has kinetic energy

E(p) = \/m2c* + c2|p|2 — mc?

where c is speed of light. Then p(p) = —E(p) is the symbol of a Lévy
process, called ‘“relativistic Brownian motion."

In fact, these are Lévy processes of the form X; = By, where B; is Brownian
motion and T; is a “subordinator" independent of B;.
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A subordinator is a one-dimensional Lévy process {T;} such that
(i) ;>0a.s.foreacht >0

(if) Ty, < T, a.s. whenevertj < b

Theorem (Laplace transforms)
E(e™?™)=e WM x>0,
PY(A) = bA+ / (1 — e ) v(ds)
0

b > 0 and the Lévy measure satisfies v(—oo,0) = 0 and
Jo” min(s, 1)v(ds) < cc. 1 is called the Laplace exponent of the subordinator.

P(N) = A*/2,0 < a < 2 gives the stable with b = 0 and

/2
e
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O<a<2andm>0,V(\) = (\+m?/*)*/2 —m

04/2 —m?/%s o—1—a/2
v(ds) = —F(1 —a/2) S ds

Many others: “Gamma subordinators, Geometric stable subordinators,
iterated geometric stable subordinators, Bessel subordinators,..."

Theorem

If X is an arbitrary Lévy process and T is a subordinator independent of X,
then Z; = Xr, is a Lévy process. For any Borel A C RY,

pZt / st th(ds)
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Symmetric Stable Transition Densities, 0 < o < 2

P (X7 € A) = /A pi (% — y)dy,

prO) =ty ().

Heat Semigroup in D is the self-adjoint operator

P10 = B[ o> 1] = [ pPo(xf)ey.

1 @
D, < p@ o (o —d/a  _ / — €] —d/a
py (X, y) < pi(x —y) < pi(0)t <(27T)d LE d¢ |t
_  4—d/a _Wd ® s (Z-1)
t (27T)da/0 e °s as

4wl (d/0)
2m)da

wg = 0(Sy)
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As before,

pr(x,y) = pPP(x—y)—E*(mp < t,pf . (X(10),Y))
= pr(x—y)—rP(x).

and
o0 (o) 1 e
Py = [ PPt s = | e g, a1, ) o

where
Ja/2(t, 8) = density of T;

This leads to:

o t 1
’D’(X_Y)SC<X_y|d+a/\td/a)’ X7y€Rd7 t>0

and

t
6d+a(X) A td/ o )’
D
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Relativistic Symmetric Stable,0 <a <2, m>0
Two expressions for the “free density”

o e 1 —Ix2 _1/8
p; ’m(X):emt/O We s el=M "9 g, o(t, 5)ds,

(e 1 i _ 2/ 2 @/2_
pt ,m(X) _ (27r)d /Rd eIX §e t{(m -Hf‘ ) m}dg

om md/a—d/2 1 y
P (x —y) s elad)y —gm—+ gm (» XY ERS 1>0
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Relativistic Symmetric Stable,0 <a <2, m>0
Two expressions for the “free density”

o e 1 —Ix2 /8
p; ’m(X):emt/O We s el=M "9 g, o(t, 5)ds,

. 1 e 2/ 2\a/2
pf’m(x):(zw)*d/we“e (e el)™=m e

om md/a—d/2 1 ;
pr(x—y)sclad —gm—+ G (» XY ERYL >0

te-al s 1
‘X _ y|d+0¢ td/a

an’m(x—}’)ﬁﬁemt{ } x,yeRY t>0

te=@%o() 1
N
5D(X)d+04 td/a

; a,m —mtsd/o _ _ wql (d/a)
;LrTg)pt (0)e~" Ci(a.d) (2m)9a ’
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Trace, stable and relativistic stable (we drop the «, and m)

Zp(t)

/DpD(t,x,x)dx:/Dpt(x—x)dx—/Dr,D(nx)dx

pt(0)|D|—/DrP(x,x)dx

Lemma (Both Stable and Relativistic Stable)

lim td/o‘/ rP(x,x)dx =0
D

t—0

Proof.

Recall t9/*rP(x, x) < C(% A1).Set Dy = {x € D: dy(x) > t'/2>}. Then
D

td/"‘/ rP(x,x)dx < C|D\ Dy,
D\ Dy

/0 / rP(x, X)dx < Ct/2*H1/2p|, < 1
Dy
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Corollary (For any set of finite volume D)
wgl (d/a)
(27)%
wgl (d/a)
(27)%

lim 1/ Zp(t) = Ci(a, )| D] = ID|, Stable

lim t9/ve=MZp(t) = Cy(a, d)|D| = |D|, Relativistic Stable

Stable proved under assumption voly(0D) = 0 by Blumenthal-Getoor
1959.
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From now on, only a-stable, 0 < o < 2

Theorem (R-smooth domains: B.—Kulczycki ’08)

Ci(o, d)ID| Co(a, d)|OD|t/ | _ Cs|DJt2/

Zp(t) - td/a td/a = TRe2tdja

t>0.

Theorem (Lipschitz domains: B.—Kulczycki-Siudeja (preprint))

19/ Zp(1) = C1(e, 0)|D| ~ Cala, )]t/ + 0 (£1/%), t10

wal (d/a)

Ci(er,0) = P (0) = “G 53"

Cg(a,d):/ rf(g,0,...,0),(q,0,...,0))dq, where H = {x : x; > 0} .
0
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Idea of Proof for Uniform bound on R-smooth domains

Lemma (M. van den Berg)
Let D c R? be R-smooth. Set Dg = {x € D : dp(x) > q}. Then

R—q\%" g \¢1
R < -
( = ) 6D|_|8Dq§(R_q> 0D, 0<qg<R.

Corollary (Forany 0 < g < R/2)
(i)
2-9H19D| < |9Dy| < 2971100,
(i)
2“’ID\

D| <
00 < =

(iif)
27dq|oD| _ 229dg|D)|
R ~ R

|0Dq| — |0D]] <
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Proof.

(i) follows directly from van den Berg, under our restriction on g.
By (i) we obtain

R/2
WHEW\Dmﬂ=/) 10Dq| dg > 2-%D|R,
0

which gives (ii).
Again by van den Berg,

((Fﬁ;q)d_1—1>|angaDﬂ—waD|s ((Fﬂqq)d_1—1>|00+

Now (iii) follows from the mean value theorem and the fact that the derivatives
of both (2~ 5% "and (B59)4-1 with respect to q € (0, R/2] are bounded by

29dR-1. O
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Proposition (t'/* > R/2)

Gi|D] _ Ci|D|f>
Zp(t) < e = Reidja
and by (ii),
Co|0D|t"/« - 29C,|D| "/« - 29+1C,|D| 2/
td/« — Rtd/« - R2td/

This implies Theorem for t'/® > R/2.

Cy|D
2o(0) - Sy = [ Plexox—- |

Dg/2

rP(x, x)dx —/ rP (x, x)dx
D\Dgy>
As before, for t'/* < R/2,

C\D|t2/°’
D

rP(x, x)dx < ————
;/;;WZ t ( ) thd/a
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Lemma

For x € D\ Dgy2, let x. € 0D with dp(x) = |x — x.|. Let By(z1, R) and

Bx>(zo, R) be the balls of radius R passing through x. with By C D and

B, c D°. Let H(x) be the half space containing By perpendicular to z1z,. For
'/« <R,

2/
/ r,D(x,x)dx—/ 7 (x, x)dx| < %
D\Dg/>» D\Dgy> Ret
Recall
H={(x,%,...,x4) €RY: x; >0}
Set
fu(t,q) = rf((9,0,...,0),(q,0,...,0)), g>0
Then,
19 (x, %) = fu(t, dhiy (X))
and

fu(t,q) = t79fy(1,qt7 "), f4(1,9) < c(g 9 A 1).
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R/2
PO (x, x)dx = 10Dy |fu(t, u) du
t
D\ DR/2 0

1

R/2
- td/a/O 10D, |fu(1, ut="/*) du

e pR/@/)
— x| 10Dugli(1.q)da,

= (by part (iii) of Corollary above)

fi/o (RIS c|D|2/e [A/@)
@m | 10D 10Dl (. @da < Sg [T am1.ad
clD t2/a 00 o
< l|?2z|‘d/a/0 q(q=9 > A1) de
- c|D|t3/
— R2td/a *

v
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Remains to show:

t/eaD| [R/@) t'/%|9D| _ clojee
td/o 0 (17q) dq_ td/a / fH(1 = Rgtd/a :
or
tV/>oD| | [ c|D|t?/>
—_— fw(1,9)dq| < ————.
td/a /R/(zﬂ/a) 1(1,q9) dg| < R2td/c
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Remains to show:

t1/a|aD‘ R/( 2[1/0‘) t1/a|8D|
td/c . ( q)d - td/c / f

or
t'/«|oD|
td/ o

/ fv(1,9) dq| <
R/(2t1/)

Recall: R/(2t'/*) > 1. Thus, for g > R/(2t"/*) we have

fu(1,9) <cq % < cq~?

c|D|t?/>
Retdla

= "R2td/a

‘ o|D|/

= [ wtedse[ W LT
R/(2t!/) R/(2t1/) q? R
Again, use )
|oD| < 2 ,LD |
to conclude.
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Proposition

D c RY, d > 2 with R-smooth boundary. For any x € D\ Dg/» and
t'/« < R/2, then

1/ 1/« d+a/2-1
D . H(x) ct t
1706 X) = (6 X)| < par <<5D(X)> A 1) :

Note that .
By c D c (B)S,

and -
By C H(x) C (Bo)°.

For any open sets Ay, Ao such that Ay C A we have

i (x,y) > rf2(x,y)

SO
(B2)°

1P (x, x) — X (x, x)| < 1B (x, x) — %) (x, x).
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Recall and B; and B be the balls with radius R such that By c D,
B> C R4 \ (DU (‘)D), 0By NoB> = x,.

Assume x, = 0 and choose an orthonormal coordinate system (xi, ..., Xg) SO

that the positive axis 0x; is in the direction of O_b where p is the center of the
ball By. Note that x lies on the interval 0p so x = (|x|,0,...,0). Note also that

1 B/t [ X X Bo)e/te (X X
td/a{’1 (77 772) =" (7= 77%)

Ct1 /o t1/a .
< P
= R (5D(x)> Mo

forany x = (|x|,0,...,0), |x| € (0, R/2].

Lemma
Let D, F c RY such that D c F Then for any x,y € D we have

Pr(t, x,y) — po(t, x,y) = EX(rp < t, X(p) € F \ D; pr(t — 70, X(7D), ¥))-
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Set W = B;/t"/*, U = (B)¢/t"/* and s = R/t'/*. Note that s is the radius of

W.

Replacing x/t'/« by x, it follows that in order to prove the proposition it
suffices to show

rw(1,%,%) = ru(1, %, x) < s (|x|79 /2T A1),

forany x = (|x|,0,...,0), |x] € (0,s/2].

FINALLY, NEED TO PROVE: ‘

EX(rw < 1,X(rw) € U\ W; pu(1 — 7w, X(7w), X)) <

CSi1 (|X|fdfa/2+1 A1 ),

forany x = (|x|,0,...,0), |x] € (0,s/2].
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