Four unknown constants

Rodrigo Bañuelos
Purdue University
West Lafayette, IN 47907
banuelos@math.purdue.edu

1 Four inequalities

Let \(\Omega \subset \mathbb{R}^2 \) be an arbitrary simply connected domain in the plane. We define \(R_\Omega = \sup_{z \in \Omega} d_\Omega(z) \) (the inradius of the domain) where \(d_\Omega(z) \) is the distance from \(z \) to the boundary of \(\Omega \). Let \(\sigma_\Omega(z) \) be the density of the hyperbolic metric in \(\Omega \) and let \(\sigma_\Omega = \inf_{z \in \Omega} \sigma_\Omega(z) \). Finally, denote by \(\lambda_1 \) the lowest eigenvalue for the Dirichlet Laplacian in \(\Omega \) and denote by \(\tau_\Omega \) the first exit time of Brownian motion from \(\Omega \). The following four inequalities hold.

1. There exists a positive constant \(C_1 \), independent of the domain, such that for all functions \(u \in C_0^\infty(\Omega) \)

\[
\int_{\Omega} \frac{|u|^2}{d_\Omega^2} \leq C_1 \int_{\Omega} |\nabla u|^2.
\]

This inequality is known as the “Hardy” inequality in the literature. It holds for domains which are more general than simply connected but does not hold for all domains, see [2]. The survey paper [11] contains a detailed account of this inequality as of around 1998. For some recent work, please see [1], [12], [13], [15], [17], [19] and references therein. In the setting of simply connected domains the inequality can be easily reduced to that of the unit disc or half-space with the aid of the Koebe \(\frac{1}{4} \)-theorem. In fact, the Koebe \(\frac{1}{4} \)-theorem proof gives the inequality with \(C_1 = 16 \), (see [2]).

2. There exists a positive constant \(C_2 \), independent of the domain, such that

\[
\frac{C_2}{R_\Omega^2} \leq \lambda_1 \leq \frac{j_0^2}{R_\Omega^2}.
\]

The right hand side inequality is trivial by domain monotonicity of the eigenvalue—the larger the domain the smaller the eigenvalue. The constant \(j_0 \) is the smallest positive zero of the first Bessel function \(J_0 \). Of course, the right hand side inequality is sharp. The left hand side inequality follows from the variational characterization of

*Many thanks to Ari Laptev and Tom Carroll for pointing out several recent papers related to these constants.
the eigenvalue and the Hardy inequality (1.1). As above, the left hand side inequality holds
for more general domains than just simply connected domains but not all.
(Adding points to a domain has no affect on the eigenvalue but it can have a drastic
affect on the inradius.) This inequality also has a long and interesting history, see [3]
and [4].

3. There exists a positive constant C_3, independent of the domain, such that

$$\frac{1}{2} R^2_{\Omega} \leq \sup_{z \in \Omega} E_z(\tau_\Omega) \leq C_3 R^2_{\Omega}. \tag{1.3}$$

Here we use E_z to denote the expectation with respect to the Brownian motion starting
at the point $z \in \Omega$. Again, the lower bound is trivial by domain monotonicity (the
larger the domain the larger the lifetime). A necessary and sufficient condition (which
includes all simply connected domains in \mathbb{R}^2) for a domain in \mathbb{R}^d to have (1.3) is given
in [8]. Again, since Brownian motion does not “see” points in two dimensions, the
right hand side inequality cannot hold for all domains.

4. There exist a positive constant C_4, independent of the domain, such that

$$\frac{C_4}{R_{\Omega}} \leq \sigma_{\Omega} \leq \frac{1}{R_{\Omega}}. \tag{1.4}$$

As above, the upper bound is obtained by domain monotonicity and the existence of
the constant C_4 follows at once from the Koebe $\frac{1}{4}$-theorem since $\sigma_{\Omega}(z) = \frac{1}{|F'(0)|}$, where
F is the conformal mapping from the unit disc onto the domain Ω with $F(0) = z$.

Problem 1 Identify the extremal constants C_1, C_2, C_3, C_4 in the above inequalities and the
geometry of the “extremal” domains (whenever they exist).

2 Convex domains

In the case of convex domains, all constants are known:

1. $C_1(\text{convex}) = 4$ which is the constant for the half space (or even the one dimensional
half-line). For a proof of this, see Davies [11]. There are also other sharper general-
izations such as the one given in [1]. (Please also consult references given in [1] for
more on these kind of extensions.) These results hold for convex domains in \mathbb{R}^d.

2. $C_2(\text{convex}) = \pi^2/4$ and the extremal domain is an infinite strip. The same constant
works also for any convex domain in \mathbb{R}^d. There are several proofs of this result
including the original one given by J. Hersh in [14]. (See also [1] for a proof based on
the Hardy inequality and other references.)
3. $C_3(\text{convex}) = 1$ (see R. Sperb in [18]). Again, the extremal is given by an infinite strip (which reduces the problem to an interval). Here again, there is a more general inequality which asserts that for any convex domain in \mathbb{R}^d of inradius R_Ω,

$$P_z\{\tau_\Omega > t\} \leq P_0\{\tau_{(-R_\Omega,R_\Omega)} > t\},$$

where $\tau_{(-R_\Omega,R_\Omega)}$ is the exit time from the interval $(-R_\Omega, R_\Omega)$ on the real line. (For this, see [6] and [7].) The inequality (2.1) together with the well-known classical characterization of the eigenvalue as

$$-\lambda_1 = \lim_{t \to \infty} \frac{1}{t} \log P_z\{\tau_\Omega > t\}$$

gives a different proof that $C_2(\text{convex}) = \pi^2/4$. Again, the same results holds in all dimensions where the extremal domain is the infinite slab.

4. $C_4(\text{convex}) = \pi/4$. This result was proved by Szegő in 1923 (see [3] for exact reference). Again, the extremal domain is the infinite strip.

3 Arbitrary simply connected domains

The following estimates for the optimal constants C_1, C_2, C_3, C_4 are known.

(3.1) \hspace{0.5cm} 4 \leq C_1 \leq 16

(3.2) \hspace{0.5cm} 0.6194 < C_2 < 2.095

(3.3) \hspace{0.5cm} 1.584 < C_3 < 3.228

(3.4) \hspace{0.5cm} 0.57088 < C_4 < 0.6563937

For the estimates for C_2 and C_3, and some history on these constants, we refer the reader to [3] and [9]. The paper [3] also contains some examples of simply connected domains which we conjecture are very close to the extremals for these four problems. The problem of determining the best constant C_4 (known as the Schlicht Bloch-Landau constant) has a long history in function theory. For the above estimates on C_4 we refer the reader to [16] and [10] and [9]. (The reference [10] contains many references to the literature on the Schlicht Bloch-Landau constant.) The upper estimate for C_3 follow from the lower estimate on C_4 and inequality (3.5) below. From the upper estimate on C_3 we get a lower estimate on C_2 using (3.6). The lower estimate for C_3 and upper estimate on C_2 follow from the example in [3], (see Theorems 2 and 3) and the calculations in [9]. For an approach using a Hardy-type inequality with σ_Ω replacing the distance function, see [5].

Theorem 3.1 ([3]) For any simply connected domain $\Omega \subset \mathbb{R}^2$, we have

$$\frac{1}{2\sigma_\Omega^2} \leq \sup_{z \in \Omega} E_z (\tau_\Omega) \leq \frac{7\zeta(3)}{8\sigma_\Omega^2}$$

and

$$\frac{2}{\sup_{z \in \Omega} E_z (\tau_\Omega)} \leq \lambda_\Omega \leq \frac{7\zeta(3)j_0^2}{8\sup_{z \in \Omega} E_z (\tau_\Omega)},$$

where $7\zeta(3)/8 = \sum_{n=0}^{\infty} (2n + 1)^{-3}$.

3
References

