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1. INTRODUCTION

The two mathematicians who have most advanced martingale theory in
the last seventy years are Joseph Doob and Donald Burkholder. Martingales
as a remarkably flexible tool are used throughout probability and its appli-
cations to other areas of mathematics. They are central to modern stochastic
analysis. And martingales, which can be defined in terms of fair games, lie
at the core of mathematical finance. Burkholder’s research has profoundly
advanced not only martingale theory but also, via martingale connections,
harmonic and functional analysis.

The work of Burkholder and Gundy on martingales in the late sixties and
early seventies, which followed Burkholder’s seminal 1966 paper Martin-
gale Transforms [29], led to applications in analysis which revolutionized
parts of this subject. Burkholder’s outstanding work in the geometry of
Banach spaces, described by Gilles Pisier in this volume, arose from his ex-
tension of martingale inequalities to settings beyond Hilbert spaces where
the square function approach used in [29] fails. His work in the eighties and
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nineties on martingale inequalities with emphasis on identifying best con-
stants has become of great importance recently in the investigations of two
well known open problems. One of these concerns optimal Lp bounds for a
singular integral operator (the two dimensional Hilbert transform) and their
ramifications in quasiconformal mappings. The other relates to a longstand-
ing conjecture in the calculus of variations dealing with rank-one convex
and quasiconvex functions. These conjectures, which have received much
attention in recent years largely due to the beautiful and original techniques
developed by Burkholder in his work on sharp martingale inequalities, come
from fields which on the surface are far removed from martingales.

We will describe in some detail a remarkable technique discovered by
Burkholder and Gundy, which shows how certain integral inequalities be-
tween two nonnegative functions on a measure space follow from inequal-
ities involving only parts of their distribution. This seemingly simple but
incredibly elegant technique, often, and here, referred to as “the good–λ
method,” revolutionized the way probabilists and analysts think of norm
comparison problems. It is now widely used in areas of mathematics which
involve integrals and operators.

It is interesting to note that since 1973, Burkholder has written only two
papers with a co-author and that he has written more than one paper only
with Richard Gundy. The papers [56] of Burkholder and Gundy and [59] of
Burkholder, Gundy, and Silverstein are exceptionally important. The results
of [56] include the good–λ inequalities and fundamental integral inequali-
ties comparing the maximal function and the square function, or quadratic
variation, of martingales having controlled jumps or continuous paths. A
very large share of the extensive applications of these kinds of martingale
inequalities, both in probability and other areas of mathematics, involve
continuous path martingales. The paper [59] strikingly improved and com-
pleted work of Hardy and Littlewood on the characterization of the Hardy
Hp spaces via the integrability of certain maximal functions. While proba-
bilistic techniques had already gained the respect of many analysts studying
harmonic functions and potential theory, due in part to earlier work Doob,
Kakutani, Wiener and others, this landmark paper had a profound influence
in harmonic analysis and propelled many analysts to learn probability.

The next section begins with a brief introduction to the good–λ method,
in the context of its original application to martingales. We then trace the
rest of the development of the theory of martingale square functions and
transforms in the late sixties and early seventies, pioneered by Burkholder.
We follow this with a discussion of [59] and the subsequent study of Hp

theory by a number of researchers, and much more on the surprisingly rich
good-λ inequalities. In the final sections we discuss Burkholder’s later work
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on sharp martingale inequalities and some of the remarkable spread of his
ideas over other areas of mathematics.

2. MARTINGALE INEQUALITIES

Brownian motion stopped at a stopping time is a continuous martingale,
and the continuous martingale inequalities of [56] follow from their validity
just for stopped Brownian motions. We will elaborate on this later. We will
useB = {Bt; t ≥ 0} to denote standard Brownian motion. This means that
B is a stochastic process with continuous paths, that its increment Bt − Bs

over the interval [s, t] has a normal distribution with mean 0 and variance
t − s, that its increments over each of a collection of disjoint intervals are
independent, and that B0 = 0. We recall that if the random variable τ is
a stopping time for B then τ ≥ 0 and if P (τ > s) > 0 and t > s, the
conditional distribution, given τ > s, of Bt − Bs is normal with mean zero
and variance t − s. The maximal function of B up to the stopping time τ
will be denoted by B∗τ = sup{|Bs| : 0 ≤ s < τ}. The following theorem is
from [56].

Theorem 2.1. Let Φ be a continuous nondecreasing function on [0,∞)
satisfying Φ(0) = 0 and Φ(2λ) ≤ KΦ(λ), λ ≥ 0, for some constant K.
Then there are positive constants c and C, which depend only on K, such
that for any stopping time τ for B,

(2.1) cEΦ(
√
τ) ≤ EΦ(B∗τ ) ≤ CEΦ(

√
τ).

Remark 2.1. Two important examples of functions Φ satisfying this “mod-
erate” growth property are Φ(x) = xp, 0 < p < ∞, and Φ(x) = x +
x ln+(x).

To illustrate the good-λ method used by Burkholder and Gundy in [56],
we give a direct proof of the left hand side of (2.1) in the case Φ(x) = x
which gives c = 1

1200
. This proof, which requires virtually no specialized

knowledge, is a slight alteration of the proof in [56], as it uses summation
rather than integration. Later, in Theorems 4.1and 4.2, we present a general
form of the good–λ method, together with inequalities for stopped Brown-
ian motion, which imply Theorem 2.1.

Denote the integers by Z. Let ak ≥ 0, k ∈ Z, satisfy limk→−∞ ak = 0
and ak+1 ≤ 2ak. For 0 < r < 1, let J(r) = {k : ak+1 > rak}. If k is in
J(r), but none of k + i, for 1 ≤ i ≤ m, are in J(r), then

m∑
i=1

ak+i ≤ ak+1(1 + r + r2 + . . . rm−1) <
2ak

1− r
,
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which implies

(2.2)
∑
k∈J(r)

ak ≥
1− r
3− r

∑
k∈Z

ak.

The k in J(r) are the “good” k. Now nonnegative random variables X
satisfy

(2.3) EX ≤
∑
k∈Z

2kP (X ≥ 2k) ≤ 2EX.

If N is a standard normal random variable then, using tables or that the
density of N is bounded by 1√

2π
, we get P

(
|N | < 1

10

)
< 1

12
, so for an event

A,

(2.4) P

(
|N | ≥ 1

10
, A

)
≥ 1

6
, if P (A) ≥ 1

4
.

Let Ak = {
√
τ ≥ 2k}, k ∈ Z, and let J = {k : P (Ak+1) ≥ P (Ak)

4
}. The left

hand side of (2.3), and (2.2) with r = 1/2 and ak = 2kP (Ak), give

(2.5) E
√
τ ≤ 5Σk∈J2kP (Ak).

Since 2B∗t ≥ |Ba − Bb|, if 0 ≤ a ≤ b ≤ t, 2B∗τ ≥ |B22(k+1) − B22k | on
Ak+1. With (2.4) this gives

P (20B∗τ ≥ 2k) ≥ P (2B∗τ ≥
1

10
2k
√

3, Ak+1) ≥ 1

6
P (Ak), k ∈ J,

which with the right side of (2.3) and (2.5) yields

2E20B∗τ ≥
∑
k∈Z

P (20B∗τ ≥ 2k)2k ≥ 1

6

∑
k∈J

P (Ak)2
k ≥ 1

30
E
√
τ .

As noted in [31], Skorohod and others had before [56] proved the in-
equalities (2.1) for the case Φ(x) = xp, p ≥ 2, and P. W. Millar [120], using
results of [29], extended these to all p > 1. Also A. A. Novikov [130],
working independently of [56], used stochastic calculus to study questions
raised by Millar’s paper and proved some interesting results related to those
of [56].

The growth condition on Φ involving K of Theorem 2.1 is necessary
for the truth of any of the inequalities in (2.1), in the sense that if Φ is a
continuous nondecreasing function which does not satisfy this condition for
any K there are stopping times τ for B such that (either) one of EΦ(B∗τ ),
EΦ(
√
τ) is finite and the other is infinite.

Next we turn to discrete time martingales. After a very brief history of
martingales before Doob we provide an overview of the work of the late six-
ties and seventies involving the martingale square function. More general
results, with proofs and extensive references, may be found in Burkholder’s
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Wald Memorial Lecture paper [31]. We have tried to be true to the spirit if
not the letter of the papers we describe.

Paul Lévy defined martingales without the name, which was given by
Doob. Before martingales were formally defined, several probabilists other
than Lévy, and several analysts, worked on objects that were martingales.
For example, R.E.A.C. Paley [138] proved an inequality for the Haar system
which is a special case of the results of Burkholder in his 1966 paper. (See
[42] for a sharp version of the Paley result.) Although the definition of
martingales was made by a probabilist, there is no reason it couldn’t have
come from an analyst instead. Sequences of piecewise constant functions
on the Lebesgue unit interval which are martingales seem now a natural
generalization of Haar series, and are in a distributional sense all of the
discrete (as described in the next paragraph) martingales. Of course, there’s
nothing like hindsight to clarify thinking. In another direction Courant,
Fredricks, and Lewy in 1928 [70] used ideas related to martingale ideas,
although without randomness, to study harmonic functions, in the paper
which introduced the finite element method for numerical approximation of
solutions of partial differential equations.

We begin with a description of martingales when time is discrete and the
random variables which compose them are discrete, that is, have a discrete
distribution. A sequence of discrete random variables {Di, i ≥ 0}, is a
martingale difference sequence if each Di has finite expectation and if for
n > 0,

(2.6) E(Dn|Di = ai, 0 ≤ i < n) = 0, if P (Di = ai, 0 ≤ i < n) > 0.

We may think of a gambler as having initial stakeD0 and playing a sequence
of games with the amount won or lost upon playing the ith game being Di.
The game the gambler plays at time n may differ depending on her initial
stake and her history of wins and losses in the first (n − 1) games, but the
game she will play at time n always has expectation zero. Of course the
sequence of partial sums

∑n
i=0Di, n ≥ 0, is the martingale corresponding

to the difference sequence. Except for some technicalities, the study of
these fully discrete martingales is invested with all the difficulties connected
with the more general discrete time martingales described below.

We start with a probability space (Ω,A, P ), and a sequence A0,A1, . . .
of σ-fields contained in A such that An ⊂ An+1, n ≥ 0. A sequence
of random variables f = {fn, n ≥ 0}, on Ω is a martingale with re-
spect to these σ-fields if each fi is Ai measurable and integrable and if
E(di|Ai−1) = 0, i > 0, where di = fi − fi−1, d0 = f0.
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The maximal function f ∗ and the square function S(f) of a martingale f
with difference sequence d are defined by

f ∗ = sup
n
|fn|, and S(f) =

(
∞∑
i=0

d2
i

)1/2

.

The conditional version of Jensen’s inequality implies that E|fn|p is non-
decreasing for 1 ≤ p < ∞, so that limn→∞(E|fn|p)1/p makes sense. This
limit is called the Lp norm of f and denoted ‖f‖p and if ‖f‖p < ∞, f is
said to be Lp bounded. The celebrated maximal inequalities of Doob assert
that for any martingale f ,

(2.7) P{f ∗ > λ} ≤ 1

λ
‖f‖1, λ > 0,

and

(2.8) ‖f ∗‖p ≤
p

p− 1
‖f‖p, 1 < p <∞.

The martingale differences {dn, n ≥ 0} of any L2 bounded martingale f
are orthogonal and it follows trivially that ‖S(f)‖2 = ‖f‖2, which implies
S(f) < ∞ a.s. (almost surely). D. Austin in his 1966 paper [5] strength-
ened this by showing that S(f) <∞ a.s. if f is an L1 bounded martingale.
Burkholder in [29] in turn strengthened Austin’s result by proving that the
operator f → S(f) is weak-type (1, 1). That is, he proved that there is a
universal constant C such that if f is an L1 bounded martingale then

(2.9) P{S(f) > λ} ≤ C

λ
‖f‖1, λ > 0.

That (2.9) might be true was informed by both Austin’s result and earlier
work of Burkholder himself, especially his paper [28], Maximal inequalities
as necessary conditions for almost everywhere convergence. We sketch just
the start of this argument. If (2.9) does not hold for any C then neither does
it hold for any C for all martingales having a finite index (time) set and
with initial value (i.e. d0) equal to 0. So there is a sequence g1, g2, . . . of
such martingales satisfying

P{S(gi) ≥ yn} ≥
Cn
yn
‖gi‖1,

for some positive numbers yn and Cn such that Cn → ∞, as n → ∞.
However, from these martingales a martingale which has finite L1 norm
and almost surely infinite square function can be constructed, by putting
independent copies of the martingales knigni sequentially, where ni, i ≥ 0,
is a sequence of positive integers (with some integers repeated) and the ki
are constants. This would contradict Austin’s theorem. Burkholder in [31]
gives an elementary proof of (2.9) with C = 3. Later, in [35], he proves the
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inequality with C = 2. In [71] Cox proves the inequality with C = e1/2

and shows that this is best possible.
Burkholder also showed in [29] that there are constants cp and Cp such

that for any martingale

(2.10) cp‖f‖p ≤ ‖S(f)‖p ≤ Cp‖f‖p, 1 < p <∞.

This starts to suggest the interchangeability of f ∗ and S(f) that appears
in so many of the results of [56]. An example of such interchangeability,
which follows quickly from results of [29], comes from combining (2.8)
and (2.10) to get the existence of positive constants kp and Kp such that for
any martingale,

(2.11) kp‖f ∗‖p ≤ ‖S(f)‖p ≤ Kp‖f ∗‖p, 1 < p <∞.

If f and g are martingales with difference sequences d and e, respectively,
satisfying |ei| ≤ |di| for all i, we say that g is differentially subordinate to
f . In this case S(g) ≤ S(f) and so (2.10) gives that if f is in Lp for
some p > 1, then so is g. Differential subordination sometimes occurs
when g and f are both constructed from the same process or when one is
constructed from the other, for example when g is a martingale transform
of f . Martingale transforms are discrete versions of Itô integrals. If f is
a martingale with respect to the sequence of σ–fields {Ai, i ≥ 0}, with
difference sequence d, and if v = {vi, i ≥ 0} is a sequence of random
variables with the property that vi is Ai−1 measurable, i > 0 and v0 is
a constant (such a sequence of random variables is said to be predictable
relative to the family of σ-fields {Ai}), then the process with difference
sequence vidi is called a martingale transform of f and denoted v ∗ f . (In
the completely discrete case of the gambler described above, if we take
the σ–fields to be those generated by the random variables, then vn will
be constant on each of the events {Di = ai, 0 ≤ i < n} conditioned
on in (2.6). So the transformed gambler still always plays a fair game,
derived from the original game by changing the stakes and/or the gambler
changing places with her opponent.) This transformation of the martingale
difference sequence of f may not yield a martingale because vidi may not
be integrable. However, under the assumption that |vi| ≤ 1 for all i, this
problem does not arise, and the difference sequence {vidi, i ≥ 0} generates
a new martingale. Furthermore S(v ∗ f) ≤ S(f), so (2.10) implies that the
operation f → v ∗ f is bounded in Lp for 1 < p < ∞. The following
theorem is from [29].

Theorem 2.2. Let f be a martingale on the sequence of σ-fields {Ai, i ≥ 0}
with difference sequence d. Let {vi, i ≥ 0} be a predictable sequence with
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|vi| ≤ 1 a.s. for all i. Then there are constants C1 and Cp such that

(2.12) P{(v ∗ f)∗ > λ} ≤ C1

λ
‖f‖1, λ > 0

and

(2.13) ‖v ∗ f‖p ≤ Cp‖f‖p, 1 < p <∞.

A process Y = {Yt, t ≥ 0} which has continuous paths is a martingale if
for every positive integer n, the discrete time process Yn = {Y k

n
, k ≥ 0}, is

a martingale. The maximal function of Y equals supt |Yt|, while the analog
of the square function, called the quadratic variation of Y and denoted 〈Y 〉,
can be defined as either the limit of the square functions of the Yn for n
increasing sufficiently fast, or as the quantity that needs to be subtracted
from the submartingale Y 2 to make it a martingale. 〈Y 〉 is also the stopping
time that results when Y is time changed to a stopped Brownian motion.
See [143]. The standard Itô integral with respect to Brownian motion is
a continuous martingale. It is interesting that all continuous martingales
on the σ–fields generated by a Brownian motion can be represented as Itô
integrals.

As mentioned earlier, it was proved in [56] that if Φ is as in Theorem 2.1
then for any continuous martingale Y which starts at 0,

(2.14) cEΦ
(
〈Y 〉1/2

)
≤ EΦ (Y ∗) ≤ CEΦ

(
〈Y 〉1/2

)
where the constants c and C are the same as in (2.1). A number of integral
inequalities for discrete martingales are proved in [56] using the good–λ
method and other techniques. We confine ourselves here to those relating
integrals of the maximal and the square function, but there are numerous
other operators considered in [56]. The next two theorems from [56] give
versions of (2.14) for large classes of martingales for which the jump size,
that is the distributions of the di, is controlled. The martingales to which
the next theorem applies include stopped random walks where the jumps
are iid with mean zero and finite variance. In the following two theorems f
is a martingale with difference sequence d with respect to the sigma fields
Ai as above.

Theorem 2.3. Suppose E(d2
i |Ai−1) ≤M [E(|di||Ai−1)]2, i > 0, for a posi-

tive constant M . Then if Φ and K are as Theorem 2.1 there exist constants
c and C which depend only on K and M such that

(2.15) cEΦ(f ∗) ≤ EΦ((S(f)) ≤ CEΦ(f ∗).

Another result from [56] is the following.
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Theorem 2.4. Suppose there is a numberM such that |di| ≤M , i ≥ 0, and
that Φ and K are as in Theorem 2.1. Then there is a constant c depending
only on K such that

EΦ(S(f)) ≤ cEΦ(f ∗) + cΦ(M)

and
EΦ(f ∗) ≤ cEΦ(S(f) + cΦ(M).

Remark 2.2. In particular, these inequalities imply that for martingales
with uniformly bounded difference sequences if one ofEΦ(f ∗) orEΦ(S(f))
is finite then the other is, which is often enough in applications.

Old examples of Marcenkeiwicz and Zygmund, noted in [56], show that
for every p ∈ (0, 1), there are martingales for which ‖f ∗‖p is finite but
‖S(f)‖p is infinite. Similar examples are given showing that for every p ∈
(0, 1) there are martingales for which ‖S(f)‖p is finite but ‖f ∗‖p is infinite.
These examples show that neither side of (2.11) extends to 0 < p < 1.

In [75], (2.11) was extended to p = 1 using a decomposition which trims
the big jumps from a martingale, leaving a martingale with controllable
jumps, which was handled with a method from [56]. See Garsia [93] for
a very different proof. Later, Burkholder, Davis and Gundy [55] used this
decomposition and techniques related to the good–λ method to prove that
for every function Φ as in Theorem 2.1 which is also convex, there are
constants c and C, which depend only on K, such that for every martingale,

(2.16) cEΦ(f ∗) ≤ EΦ(S(f)) ≤ CEΦ(f ∗).

See Garsia [94] and [95] for a different approach to some of the inequalities
of [55] and for related martingale inequalities.

3. MARTINGALE INEQUALITIES AND HARDY SPACES

We now turn to applications of (2.14) and the good–λmethod to analysis,
beginning by quoting the first seven lines of the Burkholder, Gundy and
Silverstein paper [59] “A maximal function characterization of the class
Hp.”

“Hardy and Littlewood have shown [[104]; also page 278 of vol. 1 of
Zygmund’s book [167]] that if F (z) is analytic in the unit disc D = {z ∈
C : |z| < 1}, and if Ωσ(θ) is the Stoltz domain given by the interior of the
smallest convex set containing the disc {z ∈ C : |z| < σ} and the point eiθ,
then

(3.1)
∫ 2π

0

sup
z∈Ωσ(θ)

|ReF (z)|p dθ ≤ Cσ,p sup
0<r<1

∫ 2π

0

|F (reiθ)|pdθ
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for all p > 0, 0 < σ < 1. In this paper we prove the converse inequality
which, together with the above theorem of Hardy and Littlewood, gives a
maximal function characterization of the Hardy class Hp.”

The discussion of [59] we now provide is essentially a partial summary
of Burkholder’s survey paper [37], included in this volume.

We let G(z) = u(z) + iv(z), where G is continuous in |z| ≤ 1 and
analytic in |z| < 1. We will refer to u and v as “conjugate” harmonic
functions. The boundary function of u is denoted by U , where U(eiθ) =
u(eiθ), with a similar notation for V . We assume that u(0) = v(0) = 0.
Under this assumption u and v determine each other, but while this is easy
to show, it is difficult to say much about many aspects of the connection
between u and v. It is, however, easy to show that the (squares of the) L2

norms of U and V are the same, that is
∫ 2π

0
|U(eiθ)|2 dθ =

∫ 2π

0
|V (eiθ)|2 dθ.

While equality need not hold if the exponent 2 is replaced by any other
positive number p, M. Riesz showed that for p > 1 the Lp norm of V
cannot be more than a constant Cp times the Lp norm of U . For p = 1 even
this does not hold, but Kolmogorov’s weak type inequality provides some
control of V by the L1 norm of U .

Before we state the Burkholder-Gundy-Silverstein result from which the
converse of (3.1) is derived, we recall that for any function f in the unit
disc, the function

Nσf(θ) = sup{|f(z)| : z ∈ Ωσ(θ)}
is called the nontangential maximal function of f .

The following theorem, proved in [59], immediately implies the appro-
priate, that is, with F(0)=0, converse of (3.1) asserted in the statement
quoted above from [59].

Theorem 3.1. Let u and v be conjugate harmonic functions with u(0) =
v(0) = 0. Let Φ and K be as in Theorem 2.1. There are positive constants
cK,σ and CK,σ depending only K and σ such that

(3.2)

cK,σ

∫ 2π

0

Φ (Nσu(θ)) dθ ≤
∫ 2π

0

Φ (Nσv(θ)) dθ ≤ CK,σ

∫ 2π

0

Φ (Nσu(θ)) dθ.

As pointed out by Burkholder in [37], these inequalities in the cases
Φ(x) = xp, p > 0, may be viewed as an extension of the Riesz inequal-
ities to 0 < p <∞.

The proof of this theorem uses (2.14) applied to martingales obtained by
composing harmonic functions with Brownian motion. More precisely, we
recall that if B is Brownian motion in D and τ denotes the first time B hits
the unit circle, the process u(Bt∧τ ) is a martingale whenever u is harmonic
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in the open unit disc and continuous in its closure. The maximal function of
this martingale, denoted by u∗, is called the Brownian maximal function of
u. If we continue with the normalization u(0) = 0, then by the Itô formula,
the quadratic variation of this martingale is

(3.3) 〈u〉t =

∫ t∧τ

0

|∇(Bs)|2 ds.

This quantity is called the Brownian square function of u. A key observa-
tion is that whenever u and v are conjugate harmonic functions as above,
then by the Cauchy–Riemann equations |∇u| = |∇v| and hence u and v
have the same Brownian square functions. Thus the following theorem is
an immediate consequence of (2.14).

Theorem 3.2. Let u and v be conjugate harmonic functions. Let Φ be as in
the statement of Theorem 2.1. There are constants c and C depending only
on K such that

(3.4) cEΦ(u∗) ≤ EΦ(v∗) ≤ CEΦ(u∗).

This is a Brownian version of (3.2). This theorem together with the fol-
lowing very surprising and beautiful result from [59] implies Theorem 3.1.

Theorem 3.3. Let u be a harmonic function in the unit disc. There are
constants cσ and Cσ depending only on σ such that

(3.5) cσm{θ : Nσu(θ) > λ} ≤ P{u∗ > λ} ≤ Cσm{θ : Nσu(θ) > λ}
for all λ > 0. Here, m denotes the Lebesgue measure on the circle.

From this distribution inequality and (3.4), it follows that for Φ as in
Theorem 2.1,

(3.6)
∫ 2π

0

Φ (Nσu(θ)) dθ ≈ EΦ(u∗) ≈ EΦ(v∗) ≈
∫ 2π

0

Φ (Nσv(θ)) dθ

with constants depending only on σ and K, and Theorem 3.1 follows. Here
the middle ≈ is notation for (3.4) and the first and last ≈ follow from (3.6).

These inequalities with Φ(x) = xp for any 0 < p <∞ give

sup
0<r<1

∫ 2π

0

|F (reiθ)|p dθ ≤ 2p
{∫ 2π

0

|Nσu(θ)|p dθ +

∫ 2π

0

|Nσv(θ)|p dθ
}

≤ Cp,σ

∫ 2π

0

|Nσu(θ)|p dθ,

and this proves the converse of (3.1).
The paper [59] also proves versions of the above inequalities for the upper

half-space IR2
+. It is hard to overstate the influence of this paper, in both the

probabilistic and analytic theory of Hardy spaces, in the 40 years since its
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publication. It would be virtually impossible to review here the literature
that has its roots at least partially in [59], and we do not make the attempt.
This paper was followed by the seminal paper of C. Fefferman and Stein
[90], and the theory of Hp spaces (which had already been a hot area of
research for many analysts) exploded from there. For an account of Hp

theory and its connections to other subjects, see Stein [153], Grafakos [98]
and the literature referenced therein.

4. THE GOOD-λ METHOD

We begin by showing how to prove Theorem 2.1 using the good-λmethod.
This involves proving distribution inequalities for the random variables τ 1/2

andB∗τ which, by a theorem that embodies the good-λmethod, immediately
establish Theorem 2.1. We first give the distribution inequalities and then
state the theorem which generates Theorem 2.1 from them. The inequalities
of the following theorem are from [31]. Although perhaps more “elegant”
and “cleaner” than their original formulation in [56], they may at first seem
somewhat more mysterious.

Theorem 4.1. For all 0 < ε < 1, δ > 1 and λ > 0,

(4.1) P{B∗τ > δλ, τ 1/2 ≤ ελ} ≤ ε2

(δ − 1)2
P{B∗τ > λ}

and

(4.2) P{τ 1/2 > δλ,B∗τ ≤ ελ} ≤ ε2

(δ2 − 1)
P{τ 1/2 > λ}.

The following version of the good–λ method from [31], valid even for
measure spaces of infinite measure, together with the inequalities just above,
establishes Theorem 2.1.

Theorem 4.2. Let Φ be as in the statement of Theorem 2.1. Suppose that f
and g are nonnegative functions on a measure space (Ω,A, µ), and δ > 1,
0 < ε < 1, and 0 < γ < 1 are real numbers such that

(4.3) µ{g > δλ, f ≤ ελ} ≤ γµ{g > λ},
for every λ > 0. Let ρ and ν be real numbers satisfying

Φ(δλ) ≤ ρΦ(λ) and Φ(ε−1λ) ≤ νΦ(λ)

for every λ > 0. Finally, suppose that

(4.4) ργ < 1 and that
∫

Ω

Φ(min{1, g})dµ <∞.

Then ∫
Ω

Φ(g)dµ ≤ ρν

1− ργ

∫
Ω

Φ(f)dµ.
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We note that in a space of finite measure, which is the case dealt with by
Burkholder and Gundy in [56], the assumption

∫
Ω

Φ(min{1, g})dµ < ∞
is not needed, as it always holds. For the general case it is known that this
assumption is needed for the validity of the theorem; see [113] and [124].

Let us briefly outline the proof of this theorem following [31]. First note
that

µ{g > δλ} ≤ µ{g > δλ, f ≤ ελ}+ µ{f > ελ}(4.5)
≤ γµ{g > λ}+ µ{f > ελ}.

Multiplying by Φ′(λ) and integrating in λ gives

(4.6)
∫

Ω

Φ
(g
δ

)
dµ ≤ γ

∫
Ω

Φ(g) dµ+

∫
Ω

Φ

(
f

ε

)
dµ.

But ∫
Ω

Φ(g) dµ =

∫
Ω

Φ
(
δδ−1g

)
dµ ≤ ρ

∫
Ω

Φ
(g
δ

)
dµ.

This together with (4.4) implies the theorem. (For full details, see [31].)
The fact that both ε2

(δ−1)2
and ε2

(δ2−1)
in (4.1) and (4.2) go to zero as ε goes

to zero for any fixed δ is crucial in deriving Theorem 2.1 from Theorem 4.2.
In the cases Φ(x) = xp, 0 < p <∞, which give the inequalities

(4.7) ap‖τ 1/2‖p ≤ ‖B∗τ‖p ≤ Ap‖τ 1/2‖p,
the better the decay in (4.1) and (4.2), as ε goes to zero, the better the
information obtained from Theorem 4.1 on the constants Ap and ap and
the wider the applications to many other functionals involving B∗τ and τ .
In [33], Burkholder uses the good-λ method to prove inequalities compar-
ing B∗τ and τ where B is Brownian motion in IRn, n ≥ 1; see also [77].
It follows from these argument that the optimal bounds on the right hand
sides of (4.1) and (4.2) are C1 exp

(
− (δ−1)2

2ε2

)
and C2 exp

(
−C3

(δ2−1)
ε2

)
, re-

spectively, where C1, C2 and C3 are constants independent of δ and ε. An
explicit value of C3 can also be given. (It should be noted that the proofs
in [33] produce quantities which are denoted by Rn(δ, ε) and Ln(δ, ε) in
place of the exponentials. An explicit computation for the case n = 1 pre-
sented here provides the expressions given above; see [12] for details.) The
proofs in [33] not only provide this “gaussian” decay, which is best possi-
ble, but are extremely elegant and fairly simple, crystalizing, perhaps more
than previous proofs, that what matters for the good-λ method in the prob-
abilistic setting is scaling and the strong Markov property. The arguments
in [33] can be extended to other functionals of Brownian motion such as
the maximal local time and good–λ method proofs can be given of inequal-
ities of Barlow and Yor [18, 19] which compare the norms of maximal local
time to maximal functions and square functions, including various ratios of
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these quantities. For more on this, see [12], [20], [76], [143], and references
therein.

Let us also mention here that the paper [33] (see also [34]) contains sev-
eral results which have had a profound influence on probabilistic potential
theory. These include characterizations of Hardy spaces in domains of Eu-
clidean space in terms of exit times of Brownian motion from the domains,
and the computation of the exact exponent p for which the exit time τ for
Brownian motion from an infinite cone in IRn has finite p-moment. This
exponent is given in terms of zeros of confluent hypergeometric functions.
This led to many results on the exact growth (decay) of harmonic functions
(and harmonic measure) on unbounded regions in IRn and other applications
to “harmonic majorization” problems; see for example [88], [89]. There are
also numerous other applications of these ideas to conditioned Brownian
motion and stable processes in more general cone-type regions. The exact
exponent of integrability of the exit time of these processes is related to the
eigenvalues of the Laplace–Beltrami operator on the region of the sphere
which generates the cone. This also leads to connections with heat kernels
for “singular” manifolds as in Cheeger [65]. (See [73], [74], [7], [13], and
references therein.)

Motivated by their work on martingales in [56], Burkholder and Gundy
gave in [57] the first application of the good-λmethod which did not involve
probability in either the application of the method or the theorem proved.
Denote the upper half-space by IRn+1

+ = {(x, y) : x ∈ IRn, y > 0} and the
cone with vertex at x and aperture α (for any α > 0) by Γα(x) = {(x̄, y) ∈
IRn+1

+ : |x − x̄| < αy}. For any harmonic function u defined on IRn+1
+ ,

consider its nontangential maximal function (the upper half plane analogue
of the function in (3))

Nαu(x) = sup
(x̄,y)∈Γα(x)

|u(x̄, y)|

and its Lusin area function

Aαu(x) =

(∫
Γα(x)

y1−n|∇u(x̄, y)|2dx̄ dy
)1/2

.

These are harmonic function analogues of Y ∗ and 〈Y 〉1/2 for martingales.
They have played a fundamental role in the development of harmonic anal-
ysis for the past seventy-five years. For an account of some of these applica-
tions; see Stein [149, 150]. Because of the papers of Burkholder and Gundy
[57] and Burkholder, Gundy and Silverstein [59] (already described above),
the area and nontangental maximal functions and their use in Littlewood–
Paley theory have been inextricably connected to martingales and Brown-
ian motion for the past 35-40 years. In addition to the expository papers of
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Burkholder in this volume on this subject, we refer the reader to Bass [21],
Durrett [87] and Gundy [99] and Varopoulos [159]. The following version
for the operators Aα and Nα of Theorem 2.1 is proved in [57].

Theorem 4.3. Let Φ be as in Theorem 2.1. There is a constant C1 depend-
ing on α, n and K such that

(4.8)
∫

IRn
Φ(Aαu(x))dx ≤ C1

∫
IRn

Φ(Nα(u)(x))dx.

If the left hand side is finite, then limy→∞ u(x, y) exists and does not depend
on x. If u is normalized so that this limit is zero then there is a constant C2

also depending on α, n and K such that

(4.9)
∫

IRn
Φ(Nαu(x))dx ≤ C2

∫
IRn

Φ(Aα(u)(x))dx.

The good-λ inequalities proved in [57] can be formulated as in Theorem
4.1 as follows (m denotes the Lebesgue measure in IRn).

Theorem 4.4. Let 0 < β < α. There is a constant γ > 1 and constants
C1 and C2 depending only on α, β and n such that for all 0 < ε < 1 and
λ > 0,
(4.10)
m{x ∈ IRn : Nβu(x) > γλ,Aαu(x) ≤ ελ} ≤ C1 ε

2m{x ∈ IRn : Nβu(x) > λ}
and
(4.11)
m{x ∈ IRn : Aβu(x) > γλ,Nαu(x) ≤ ελ} ≤ C2 ε

2m{x ∈ IRn : Aβu(x) > λ}.
Because of the “local” nature of the proofs of these inequalities, their

proofs extends to measures other than Lebesgue measure which have den-
sities that belong to the Muckenhoup A∞ class. For this, the reader can see
Gundy and Wheeden [100] and Burkholder [36].

There are important applications of the good-λmethod to many other op-
erators of fundamental importance in analysis and its applications such as
the the Hardy–Littlewood maximal function and Calderón–Zygmund sin-
gular integrals (Coifman [63] and Coifman-Fefferman [64]), to parabolic
(heat equation) versions of Aα and Nα (Calderón-Torchisky [62]) as well
as versions of these in the setting of Lipshitz domains and elliptic operators
(Dahlberg [78] and Dahlberg-Jerison-Kenig [79]). For more on applica-
tions and further literature, see Garnett [92], Kenig [114], Stein [148] and
Torchisky [158].

As in the case of martingales, the better the decay of the quantities on the
right sides of (4.10) and (4.11) as ε goes to zero, the wider the applications.
The exponent ε2 was improved to εk for any positive integer k by R. Feffer-
man, Gundy, Silverstein and Stein [91] and by Murai and Uchiyma [123] to
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exponential exp (−C/ε) decay. The full subgaussian exp (−C/ε2) decay
as in the case of the martingale inequalities is proved in [12].

The original good-λ inequalities in [57] imply the result of Privalov [142],
Marcinkiewicz and Zygmund [116], Spencer [147], Calderón [60], [61]
and Stein [148] asserting that, except for sets of Lebesgue measure zero,
the nontangential maximal functions and the Lusin area function are fi-
nite or infinite on the same sets and that on the sets where these are fi-
nite, the harmonic function has nontangential boundary limits; see [57],
§3. In [12], the good-λ gaussian decay inequalities are explored to prove a
more quantitative version of these results which involve the law of the iter-
ated logarithm. The philosophy pioneered by Burkholder and Gundy, and
Burkholder, Gundy and Silverstein, that these operators should be modeled
after those for martingales with continuous paths and hence after stopped
Brownian motion, drives the results presented in [12].

The paper [58] also studies boundary behavior of harmonic functions
in the upper half space. If u is a harmonic function in the upper half-
space IRn+1

+ and B is Brownian motion in IRn+1
+ and τ is the first time it

leaves the upper half-space, then as before u(Bt∧τ ) is a martingale with
Brownian maximal function u∗ and Brownian square function 〈u〉. In [58],
these quantities are used, in combination with techniques for (Doob’s) con-
ditioned Brownian motion, to prove that some (but not all) of the results
of Privalov, Marcinkiewicz-Zygmund, Spencer, Calderón and Stein, can be
obtained from the corresponding results for martingales. See [87] for more
on this. The techniques in [58] have been used by other authors in differ-
ent settings, see for example Brossard [23, 24] and Brossard and Chevelier
[25, 26, 27].

5. THE SHARP MARTINGALE INEQUALITIES

In the early eighties Burkholder turned his attention to sharp martingale
inequalities and their extensions to martingales taking values in Banach
spaces. The Banach space setting is discussed in Gilles Pisier’s commen-
tary in this volume. In this section we discuss sharp inequalities and point
out some of their implications in areas which are of current interest to many
researchers. In his seminal paper [41], Burkholder proves the following
theorem.

Theorem 5.1. Let f = {fn;n ≥ 0} be a martingale with difference se-
quence d = {dn, n ≥ 0}. Suppose 1 < p < ∞ and let p∗ denote the
maximum of p and q where 1

p
+ 1

q
= 1. If g is a martingale transform of f

by a real predicable sequence v uniformly bounded in absolute value by 1,
then

(5.1) ‖g‖p ≤ (p∗ − 1)‖f‖p
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and the constant (p∗ − 1) is best possible. Furthermore, equality holds if
and only if p = 2 and

∑∞
k=0 v

2
kd

2
k =

∑∞
k=0 d

2
k, almost surely.

There are many other sharp martingale transform inequalities proved in
[41], including the following weak-type inequality.

Theorem 5.2. Let 1 ≤ p ≤ 2 and let f and g be as in Theorem 5.1. Then

(5.2) sup
λ>0

λp P{g∗ > λ} ≤ 2

Γ(p+ 1)
‖f‖pp.

The constant 2
Γ(p+1)

is best possible. Furthermore, strict inequality holds if
0 < ‖f‖p <∞ and 1 < p < 2, but equality can hold if p = 1 or 2.

The case p = 1 (with sharp constant 2) was proved in [35] and is not
too difficult. On the other hand, the proofs of Theorem 5.1 and Theorem
5.2 (for the case when 1 < p ≤ 2) are deep and difficult. The proof of
Theorem 5.1 (which after some preliminary work reduces to the case when
the predicable sequence {vk} ∈ {−1, 1}) rests on solving the nonlinear
partial differential equation

(5.3) (p− 1)[yFy − xFx]Fyy − [(p− 1)Fy − xFxy]2 + x2FxxFyy = 0

for F nonconstant and satisfying other conditions on a suitable domain of
IR2. Solving this equation leads to a system of five nonlinear differential in-
equalities with boundary conditions. From this system, a function u(x, y, t)
is constructed in the domain

Ω = {(x, y, t) ∈ IR3 :
∣∣x− y

2

∣∣p < t}

with certain convexity properties from which, using the techniques of [38],
Burkholder proves that

(5.4) u(0, 0, 1)‖gn‖pp ≤ ‖fn‖pp
for 1 < p ≤ 2 and shows that u(0, 0, 1) = (p − 1)p. This and duality give
the bound (p∗ − 1) in (5.1). (The research announcement in [39] contains a
nice summary of the methods used in [41].)

Even today, the proofs in [41] seem extremely intricate. That Burkholder
was able show that these PDE’s have a solution with the important proper-
ties needed for the martingale inequalities is impressive. A nice explana-
tion of Burkholder’s PDE and other ideas in [41] in terms of the theory of
Bellman functions was subsequently given by F. Nazarov, S. Treil and A.
Volberg. For this connection and some of the now very extensive literature
on this subject, we refer the reader to [125, 126, 127, 162]. Quoting from
[126]: “It is really amazing that Burkholder was able to solve these PDEs:
they are really complicated.”
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The Bellman function techniques have become a powerful tool to study
sharp inequalities for many operators of great importance in harmonic anal-
ysis and its applications to PDE’s and quasiconformal mappings. In addi-
tion to the above already cited papers, see [118, 119, 128, 145, 146, 144,
139, 160].

In a series of papers following [41], which included many applications
to various other sharp inequalities for discreet martingales and stochastic
integrals, Burkholder simplified the proofs in [41] considerably by giving
explicit expressions for his “magical” functions. In the Bellman function
language of Nazarov and Volberg, Burkholder gives an explicit expression
for the “true” Bellman function of the above PDE. Quoting from [125], “the
most amazing thing is that the true Bellman function is known! This fan-
tastic achievement belongs to Burkholder.” Explicit solutions to Bellman
problems that arise in many of the applications to harmonic analysis are
often extremely challenging problems. For more on this, see [118], [119],
[160], and especially the recent paper [161] which contains a nice treat-
ment, based on Monge-Ampère equation, on how to solve many Bellman
equations, including Burkholder’s.

We now recall the following generalization of Theorem 5.1, which is
proved by Burkholder in [46] using the explicit form of his function U .

Theorem 5.3. Let H be a (real or complex) Hilbert space. For x ∈ H, let
|x| denote its norm. Let f = {fn}∞n=0 and g = {gn}∞n=0 be two H-valued
martingales on the same filtration with martingale difference sequences d
and e, respectively, and satisfying |ek| ≤ |dk| pointwise for all k ≥ 0. Then,
with p and p∗ as in Theorem 5.1, ‖g‖p ≤ (p∗−1)‖f‖p. The constant (p∗−1)
is best possible and equality holds (in the case 0 < ‖f‖p <∞) if and only
if p = 2 and |ek| = |dk| almost surely, for all k ≥ 0.

To prove this inequality, Burkholder considers the function V : H×H→
IR defined by

(5.5) V (z, w) = |w|p − (p∗ − 1)p|z|p.

The goal is then to show that EV (fn, gn) ≤ 0. Burkholder then introduces
the function

(5.6) U(z, w) = αp (|w| − (p∗ − 1)|z|) (|z|+ |w|)p−1

where

αp = p

(
1− 1

p∗

)p−1
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and proves that this function satisfies the following properties:

V (z, w) ≤ U(z, w) for all w, z ∈ H,(5.7)
EU(fn, gn) ≤ EU(fn−1, gn−1), n ≥ 1,(5.8)
EU(f0, g0) ≤ 0.(5.9)

There have been many applications of these ideas to martingales, har-
monic functions (including differential subordination of harmonic func-
tions) and singular integrals. Many of these results are due to Burkholder
himself; see for example his work in [42, 43, 44, 45, 47, 48, 49, 50, 51, 52,
54]. Some other applications (including many recent ones) are contained in
[66, 67, 68, 69, 102, 103, 112, 133, 134, 135, 136, 137, 131, 132, 154, 163,
164, 165, 166].

5.1. The (p∗−1) constant in analysis. No sooner had Burkholder’s paper
[41] appeared identifying the Lp norm of martingale transforms as (p∗ −
1), than the connection (at least superficially at first) to a conjecture of T.
Iwaniec [106] concerning the Lp norm of the Beurling–Ahlfors operator
was noticed by several researchers. The Beurling–Ahlfors operator is a
singular integral operator (Fourier multiplier) on the complex plane C (or
IR2) defined on Lp(C) ∩ L2(C), 1 < p <∞, by
(5.10)

Bf(z) = − 1

π
p.v.

∫
C

f(w)

(z − w)2
dm(w), B̂f(ξ) =

ξ
2

|ξ|2
f̂(ξ), ξ 6= 0 ∈ C.

This operator (which incidentally can be written in terms of second order
Riesz transforms in the plane as B = R2

2 − R2
1 + 2iR1R2) is of funda-

mental importance in several areas of mathematics including PDE and the
geometry of quasiconformal mappings [3, 4, 80, 106, 107, 108, 110, 139].
As a Calderón–Zygmund singular integral, it is bounded on Lp(C), for
1 < p <∞. The computation of its operator norm, ‖B‖p, has been an open
problem for almost thirty years. In [115], Lehto showed that ‖B‖p ≥ p∗−1.
Inspired in part by the celebrated Gehring–Reich conjecture [97] on the area
distortion of qasiconformal mappings in the plane (proved by K. Astala [3]),
T. Iwaniec conjectured in [106] that ‖B‖p = p∗ − 1. For some of the con-
nections to quasiconformal mappings, see K. Astala, T. Iwanienc and G.
Martin [4].

Although theLp–boundedness of very general singular integrals and Fourier
multiplier operators can be proved using martingale transforms (see for ex-
ample Burkholder [40] and McConnell [117]), obtaining precise informa-
tion on their norms requires more exact representations of the operators
in terms of martingales. In the groundbreaking paper [101], Gundy and
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Varopoulos gave a representation for Riesz transforms in terms of stochas-
tic integrals arising from composing the harmonic extension of the function
f with Brownian motion in the upper half-space (as in §3 above). The
Burkholder results in [41] and the Gundy–Varopoulos representation pro-
vided hope that the Iwaniec conjecture could be derived from Burkholder’s
theorem [41]. Unfortunately, to implement this approach certain stochastic
integral versions of Burkholder’s inequalities were needed and these did not
follow, in any direct way, from the results in [41]. Hence, those interested
in this approach had to wait. The wait was over when Burkholder gave the
explicit expression for his function U , which together with the Itô formula
leads to the desired sharp stochastic integral inequalities that arise when
applying the Gundy–Varopoulos formula to the Beurling-Ahlfors operator;
see [14], [15], [16], [166]. This approach was employed in [14] to show that
‖Bf‖p ≤ 4(p∗ − 1)‖f‖p. While not the desired bound, this paper provided
the first explicit bound for ‖B‖p. In [129], Nazarov and Volberg improved
this bound to 2(p∗−1) by proving a Littlewood-Paley inequality using Bell-
man functions. However, the construction of their Bellman function (for
which no explicit expression is known as of now) depends on Burkholder’s
sharp inequality for Haar martingales. In [11], the proof in [14] is redone
using the heat kernel in place of the Poisson kernel to obtain the 2(p∗ − 1)
bound. Both the stochastic integral techniques in [11] and [14], and the
Nazarov-Volberg Bellman approach [129], have had many other applica-
tions, including applications to bounds for the Beurling-Ahlfors operator in
several dimensions (first studied in [80] and [109]) and Riesz transforms for
the Ornstein-Uhlenbeck process. Some of these applications are contained
in [1, 2, 8, 9, 10, 11, 81, 82, 84, 85, 83, 96, 105]. The best bound for ‖B‖p
as of now, proved in [9], is 1.575(p∗ − 1). This bound is obtained by an
improvement of Burkholder’s (p∗ − 1) inequality for complex valued mar-
tingales which have some additional orthogonality structure between its real
and imaginary parts. The explicit expression of the Burkholder function U
is crucial for this proof.

In [14] and [15] the techniques of Burkholder are adapted to show that for
martingales under differential subordination and orthogonality, the Burkholder
constant (p∗ − 1) can be replaced by the Pichorides [141] Hilbert trans-
form constant cot( π

2p∗
). From this and the Gundy–Varopoulos stochastic

representation, it follows that for the Riesz transforms ‖Rj‖p ≤ cot( π
2p∗

),
j = 1, 2, . . . n. This result, and other good estimates of the Lp-norms of
singular integral operators with odd kernels, can also be obtained by the
classical method of rotations; see [86], [110], [140], and especially [110]
where it is shown that in fact ‖Rj‖p = cot( π

2p∗
). It is also interesting to note

20



here that the Beurling-Ahlfors operator plays the role of the Hilbert trans-
form in the so-called complex method of rotation and this can also be use
to obtain estimates of the Lp-norms of certain singular integral operators
with even kernels in terms of ‖B‖p. We refer the reader to [110] where this
technique was introduced; see also, [111].

In the recent paper [96], Geiss, Mongomery-Smith and Saksman com-
bined the estimates in [11, 129] and the arguments used by Bourgain in [22]
which showed that Burkholder’s UMD property is equivalent to the bound-
edness of the Hilbert transform, to prove that the Lp(IRn) operator norm of
2RjRk, j 6= k, is (p∗ − 1). That is, ‖2RjRk‖p = (p∗ − 1), j 6= k. This
beautiful and surprising result gives the first example of a singular integral
whose Lp norm is exactly that of martingale transforms. In particular, in
the plane the two “components” of the Beurling–Ahlfors operator B satisfy
‖R2

2−R2
1‖p = (p∗−1) and ‖2R1R2‖p = (p∗−1). The proof in [96] adapts

to other combinations of Rj and Rk; see for example [161].

5.2. Rank-one convexity and quasiconvexity. It is well known ([4]) that
proving ‖Bf‖p ≤ (p∗−1)‖f‖p for all f ∈ Lp(C), 1 < p <∞, is equivalent
to proving

(5.11) ‖∂f‖p ≤ (p∗ − 1)‖∂f‖p, 1 < p <∞,
for all smooth functions f of compact support (f ∈ C∞0 (C)) where (with
z = x+ iy)

(5.12) ∂ =

(
∂f

∂x
− i∂f

∂y

)
and ∂ =

(
∂f

∂x
+ i

∂f

∂y

)
are the Cauchy-Riemann operators in the complex plane. Viewed in terms
of the function V in (5.5), (5.11) is the same as proving that

(5.13)
∫
C
V (∂f, ∂f)dm(z) ≤ 0, f ∈ C∞0 (C).

Since by Burkholder (5.7), V (z, w) ≤ U(z, w) for all w, z ∈ C, it is natural
to conjecture that

(5.14)
∫
C
U(∂f, ∂f)dm(z) ≤ 0, f ∈ C∞0 (C).

This conjecture, which arose from the work in [14], is written down as
a question (Question 1) in [10]. The conjectured inequality (5.14) and
the convexity properties (listed below) satisfied by the function U lead to
another unexpected connection and application of Burkholder’s powerful
ideas.

Denote by Mn×m the set of all n × m matrices with real entries. The
function Ψ :Mn×m → IR is said to be rank-one convex if for each A,B ∈
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Mn×m with rank B = 1, the function

(5.15) h(t) = Ψ(A+ tB), t ∈ IR

is convex. The function is said to be quasiconvex if it is locally integrable
and for each A ∈ Mn×m, bounded domain Ω ⊂ IRn and each compactly
supported Lipschitz function f : Ω→ IRm we have

(5.16) Ψ(A) ≤ 1

|Ω|

∫
Ω

Ψ (A+Df(x)) dx.

where Df is the Jacobian matrix of f .
These properties arise in many problems in the calculus of variations, es-

pecially in efforts to extend the so called “direct method” techniques from
convex energy functionals to nonconvex. They were introduced by C.B.
Morrey (see [122]) and further developed by J. Ball [6]. For more (much
more) on the relationship between these properties and their consequences
in the direct method of the calculus of variations, we refer to [72]. If n = 1
or m = 1, then Ψ is quasiconvex or rank one convex if and only if it is
convex. If m ≥ 2 and and n ≥ 2, then convexity ⇒ quasiconvexity ⇒
rank-one convexity. (See [72] where the notion of polyconvexity which lies
“between” convexity and quasiconvexity is also discussed.) In 1952, Mor-
rey [121] conjectured that rank-one convexity does not imply quasiconvex-
ity when both m and n are at least 2. In 1992, Šverák [156] proved that
Morrey’s conjecture is correct if m ≥ 3 and n ≥ 2. The cases m = 2 and
n ≥ 2 remains open. One of the difficulties with these notions of convex-
ity is that it is in general very difficult to construct nontrivial, interesting,
examples of such functions.

Enter Burkholder’s functionU . It is proved in [46] that for all z, w, h, k ∈
C with |k| ≤ |h|, the function t → U(z + th, w + tk) is concave in IR , or
equivalently that t → −U(z + th, w + tk) is convex in IR . The concavity
property of t→ U(z+th, w+tk) is crucial in the proof of the properties in
(5.7)–(5.8). Properly interpreted, this convexity property of U is equivalent
to rank-one convexity. Define the function Γ: M2×2 → C× C by

Γ

(
a b
c d

)
= (z, w),

where z = (a+d)+i(c−b) andw = (a−d)+i(c+b) and set ΨU = −U ◦Γ.
It follows easily from the convexity property of t → −U(z + th, w + tk),
for z, w, h, k ∈ C with |k| ≤ |h|, that the function ΨU is rank-one convex.
(See [10] for full details.) Now, if f = u+ iv ∈ C∞0 (C), then

(5.17) Df =

(
ux uy
vx vy

)
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and

(5.18) ΨU (Df) = −U
(
∂f, ∂f

)
.

Thus quasiconvexity of ΨU (at 0 ∈ IR2×2) is equivalent to

(5.19) 0 ≤ −
∫

supp f
U(∂f, ∂f)dm(z),

which is equivalent to (5.14). Thus the question: Is Burkholder’s function
U also quasiconvex in the sense that ΨU is quasiconvex? If the answer is
“yes”, then the Iwaniec 1982 conjecture follows. If the answer is “no” then
the Morrey 1952 conjecture follows for the important case n = m = 2.

The article by A. Baernstein and Montgomery-Smith [17] presents var-
ious connections between the function U and another function L used by
Burkholder to prove sharp weak–type inequalities for martingales and har-
monic functions under the assumption of differential subordination, [47,
p. 20]. This function L was subsequently independently rediscovered by
Šverák in [157]. For more on these connections, we refer the reader to [4,
pp. 518-523], [108], [155, 156, 157] and [161].

Finally, we give a brief account of recent developments in which quasi-
conformal mappings (also nonlinear hyperelasticy) and Burkholder’s theory
on sharp martingale inequalities share common problems of compelling in-
terest. (We refer the reader to [108] and [4] for details.) By definition,
a weakly differentiable mapping f : Ω → IRn in a domain Ω ⊂ IRn

(also referred to as hyperelastic deformation) is said to be K-quasiregular,
1 ≤ K <∞, if its Jacobian matrix Df(x) ∈Mn×n (deformation gradient)
satisfies the distortion inequality

(5.20) |Df(x)|n 6 K detDf(x), where |Df(x)| = max
|v|=1

|Df(x)v|.

The Lp-integrability of the derivatives ofK-quasiregular mappings relies
on a general inequality which is opposite to the distortion inequality in an
average sense. More precisely,

(5.21)
∫
Rn
{ |DF (x)|n − K detDF (x) } · |DF (x)|p−n dx > 0,

for all mappings F ∈ W1,p(IRn, IRn) with the Sobolev exponents p in a
certain interval α(n,K) < p < β(n,K), where α(n,K) < n < β(n,K).
Iwaniec ([108]) conjectured that the largest such interval is:

(5.22) α(n,K) =
nK

K + 1
< p <

nK

K − 1
= β(n,K).

Iwaniec (see again [4, pp. 518-523] and [108]) then observed that in di-
mension n = 2 the integrand in (5.21) is none other than the Burkholder’s
function U (modulo constant factor), thus rank-one convex for all exponents
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p in (5.22). Inspired by Burkholder’s results he proved, in every dimension
n > 2, that (5.22) defines precisely the range of the exponents p for which
the integrand in (5.21) is rank-one convex; see [108]. Now, it may very
well be that Iwaniec’s n-dimensional analogue of Burkholder’s integral is
also quasiconvex and, conjecturally, that (5.21) holds for all p in the range
(5.22). This would give a completion of the Lp-theory of quasiregular map-
pings in space.

While it is not clear at this point that martingale techniques will pro-
duce the sharp bound (p∗ − 1) for ‖B‖p, it seems likely that the solution
to the Iwaniec conjecture will somehow involve the Burkholder function
U . Also, in higher dimensions it is plausible that Burkholder’s vision and
his sharp martingale inequalities will contribute the creation of a viable Lp-
theory of quasiregular mappings with far reaching applications to geometric
function theory in IRn and, in particular, mathematical models of nonlinear
hyperelasticity. What is certainly clear is that as of now all approaches
(stochastic integrals and Bellman functions) which have produced concrete
bounds close to the conjectured bound for ‖B‖p rest on the fundamental
ideas of Burkholder originally conceived to prove sharp martingale inequal-
ities. These ideas have led to deep and surprising connections in areas of
analysis and PDE’s where this and other singular integrals operators and
maximal functions play an important role and which on the surface seem
far removed from martingales. More than twenty five years after the publi-
cation of [41], the techniques and ideas in this paper are still being explored
by many mathematicians in different fields. This is indeed a landmark pa-
per, one of many in Burkholder’s list of publications.
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XXI, 218–220, Lecture Notes in Math. 1247, Springer, Berlin, 1987.

[77] B. Davis, On stopping times for n dimensional Brownian motion, Ann. Prob. 6 (1978),
651-659.

[78] B. Dahlberg, Weighted norm inequalities for the Lusin area integral and the nontan-
gential maximal functions for functions harmonic in a Lipschitz domain, Studia Math.
47 (1980), 297–314.

[79] B. Dahlberg, D. Jerison and K. Kenig, Area integral estimates for elliptic operators
with nonsmooth coefficients, Arkiv Mat. 22 (1984), 97–108.

[80] S. Donaldson and D. Sullivan, Quasiconformal 4–manifolds, Acta Math. 163 (1989),
181–252.
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