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1. Introduction and Statement of Results. For x ∈ Rn\{0}, we let ϕ(x)

be the angle between x and the point (1, 0, . . . , 0).A right circular cone of angle

0 < θ < π is the open connected set Γ given by {x ∈ Rn : ϕ(x) < θ}.We let

{Bt : t ≥ 0} be n–dimensional Brownian motion and denote by Ex and Px the

expectation and probability associated with this motion starting at x.Finally τΓ =

inf{t > 0 : Bt /∈ Γ} is the first exit time from Γ.The following result was proved by

D. Burkholder [4].

Theorem A. There is a number p(θ, n), defined in terms of the smallest zero of a

certain hypergeometric function, such that

(1.1) Ex(τp
Γ) <∞, x ∈ Γ,

if and only if p < p(θ, n).

In [10], D. DeBlassie used Burkholder’s result and techniques from partial dif-

ferential equations to find an exact formula for Px{τΓ > t} as an infinite series

involving confluent hypergeometric functions. From this DeBlassie was able to find

the exact asymptotics in t for Px{τΓ > t}. Furthermore, his result is also for more

general cones in Rn. Recently, B. Davis and B. Zhang [8] proved an analogue of

Burkholder’s result for conditioned Brownian motion in Γ. More precisely, let Eξ
x

denote the expectation of Brownian motion started at x ∈ Γ and conditioned to

exit the cone at ξ ∈ ∂Γ. That is, Eξ
x is the expectation associated with the Doob

h–process for h(z) = K(z, ξ), where K(z, ξ) is the Poisson kernel with pole at ξ.

The Davis–Zhang [8] result, is

(1.2) Eξ
x(τp

Γ) <∞, x ∈ Γ, ξ ∈ ∂Γ,

if and only if p < 2p(θ, n) + n−2
2 , where p(θ, n) is the same number as in Theorem

A.

The purpose of this paper is to provide a uniform proof for all of the above results

based on an explicit formula for the Dirichlet heat kernel for general cones in Rn.

Furthermore, our results also give much more information on the distribution of τΓ

and hold for a wider class of cones.
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We will denote by Sn−1 the unit sphere in Rn and its points by θ or η. If D

is a proper open connected subset of Sn−1, the generalized cone C generated by

D is the set of all rays emanating from the origin 0 and passing through D. We

shall assume throughout that D is regular for the Dirichlet problem with respect to

LSn−1 , the Laplace–Beltrami operator on Sn−1. With this assumption (see Chavel

[6]) we have a complete set of orthonormal eigenfunctions mj with corresponding

eigenvalues 0 < λ1 < λ2 ≤ λ3 < . . . satisfying

(1.3)
{

LSn−1mj = −λjmj on D

mj = 0 on ∂D.

For the rest of the paper,

αj =

√
λj +

(n

2
− 1

)2

.

The confluent hypergeometric function is, with b > 0,

1F1(a, b, z) = 1 +
a

b

z

1!
+

a(a + 1)
b(b + 1)

z2

2!
+ . . . .

Theorem 1. Let C be a generalized cone in Rn. Then

(1.4) Px{τC > t} =
∞∑

j=1

Bj

( |x|2
2t

)aj/2

1F1

(
aj

2
, aj +

n

2
,
−|x|2

2t

)
mj

(
x

|x|

)
,

uniformly for (x, t) ∈ K × (T,∞), where K ⊂ C is compact and T > 0. Here

aj = αj − (n
2 − 1) and

Bj =
Γ(aj+n

2 )
Γ(aj + n

2 )

∫
D

mj(θ)dσ(θ).

Using the notation a(t) ∼ b(t) to mean that a(t)/b(t) −→ 1 as t −→∞, we have

Corollary 1. Let C be a generalized cone in Rn. Then for each x ∈ C,

(1.5) Px{τC > t} ∼ B1m1

(
x

|x|

) ( |x|2
2

)a1/2

t−a1/2

and

(1.6) Ex(τp
C) <∞ if and only if p < a1/2.



4

In addition, for each ray ` emanating from the origin and passing through D and

fixed t > 0,

(1.7) Px{τC > t} ∼ B1(2t)−a1/2m1

(
x

|x|

)
|x|a1

as |x| −→ 0, x ∈ `.

Theorem 1 and Corollary 1 were first proved by DeBlassie [10] under somewhat

stronger assumptions on the cones, (see his hypothesis 1.1). We only require that

the generating set D be regular for LSn−1 . Later in [11], DeBlassie obtained the

asymptotics in (1.5) under the same general assumption on D that we make above.

(1.6) also follows from Lemma 3.1 in R. Bass and K. Burdzy [2]. The argument

in [11] (or the results in [2]), however, do not give (1.4). In the case of circular

cones Γ, a1/2 = p(θ, n) (see [10]) and so (1.6) is just Burkholder’s result in that

case. We should mention here also that in R2, formulas for Px{τΓ > t} have

existed for many years. Indeed, F. Spitzer [17] in his study of the winding of two

dimensional Brownian motion derives an expression for Px{τΓ > t} from which the

two dimensional case of (1.1) and (1.5) follow, (see his Theorem 2, p192).

Next, we will discuss a version of Theorem 1 for Brownian motion conditioned

to exit the cone at its vertex 0. For x = ρθ ∈ C, ρ > 0, θ ∈ Sn−1, we set

K(x, 0) =
1
|x|β m1

(
x

|x|

)
=

1
ρβ

m1(θ),

where

(1.8) β = a1 + n− 2.

We will prove below that K(x, 0) is (up to normalizing constants) the Poisson kernel

for the cone with pole at 0. The corresponding Doob h–process for h(x) = K(x, 0)

is Brownian motion in C conditioned to exit at 0. We denote the corresponding

probability measure by P 0
x .

Theorem 2. Let C be a generalized cone in Rn. Then for any x ∈ C,

P 0
x{τC > t} =

1
Γ(α1 + 1)

( |x|2
2t

)α1

1F1

(
α1, α1 + 1,

−|x|2
2t

)

=
1

Γ(α1)

∫ |x|2
2t

0

uα1−1e−udu,(1.9)
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(1.10) lim
t−→∞

tα1P 0
x{τC > t} =

1
Γ(α1 + 1)

( |x|2
2

)α1

,

and

(1.11) E0
x(τp

C) =

{
|x|2pΓ(α1−p)

2pΓ(α1)
, if p < α1

∞, if p ≥ α1.

If C is a circular cone then a1 = 2p(θ, n), as mentioned above. Therefore α1 =

2p(θ, n)+(n
2 −1), which is the exponent given by Davis and Zhang [8] in that case.

Also notice that the distribution of τC under P 0
x only depends on x through its

radial part ρ and it is fully determined by α1. For the special case of the upper

half space in R2 (the cone of angle π) the independence of the angle is also shown

in K. Burdzy [3]. We thank K. Burdzy for pointing this out to us and for bringing

[2] to our attention.

The paper is organized as follows. In §1, we present the formula for the heat

kernel of a cone. In §3, we prove Theorems 1, 2, Corollary 1 and the more general

statement that for Lipschitz cones, Eξ
x(τp

C) < ∞ for any x ∈ C, ξ ∈ ∂C if and

only if p < α1. We end §2 by proving that for a generalized cone, Ey
x(τp

C) < ∞
for any x, y ∈ C, if and only if p < α1. In §4, we give another application of our

formula for the heat kernel by computing the distribution of the last time before

1 that Brownian motion was in a cone having started at its vertex. This formula

can be viewed as a generalization of Lévy’s First Arcsine Law. In §5, we examine

the distribution of τC for finite cones C under P 0
x and prove, in R2, that it only

depends on x through its radial part. Throughout the paper c is a constant which

may change from line to line.

2. The Heat Kernel for Cones in Rn.

We will denote by PC
t (x, y) the heat kernel for 1

2∆ in C with Dirichlet boundary

conditions. That is, PC
t (x, y) are the transition densities for Brownian motion in

C killed on the boundary. We will use Iν(z) to denote the modified Bessel function

of order ν satisfying the differential equation

(2.1) I ′′ν (z) +
1
z
I ′ν(z) = (1 +

ν2

z2
)Iν(z).
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Recall that mj and λj are the Dirichlet eigenfunctions and eigenvalues for the

spherical Laplacian on the generating set D ⊂ Sn−1 and αj =
√

λj + (n
2 − 1)2.

Lemma 1. Let C be a generalized cone in Rn. Write x = ρθ, y = rη, ρ, r >

0, θ, η ∈ Sn−1. Then the heat kernel for C, PC
t (x, y), is given by the sum

(2.2)
e−

(ρ2+r2)
2t

t(ρr)
n
2−1

∞∑
j=1

Iαj

(ρr

t

)
mj(θ)mj(η).

The convergence in (1.2) is uniform for (t, x, y) ∈ (T,∞)× {x ∈ C : |x| < R} × C,

for any positive constants T and R.

In the case of a cone in two dimensions this formula can be found in H. Carslaw

and J. Jaeger [7, p. 379]. The two dimensional formula immediately suggests the

one for several dimensions and indeed this is the way we discovered (2.2). Later

we learned from M. van den Berg that the formula is a special case of a result of

J. Cheeger [5] for more general cone–type manifolds. Once the formula has been

written down, it is not too difficult to verify that it does indeed give the Dirichlet

heat kernel for C. One only needs to show that it satisfies the heat equation and

that it has the correct boundary and initial conditions. Cheeger [5] refers to a paper

of Cheeger, Gromov and Lawson for the verification of these properties. It seems

that this formula is often quoted in the literature; see for example J.S. Dowker [9,

p. 770] where it is stated that by separation of variables “the eigenfunction form

of the heat Kernel is then easily manipulated into” the form given in (1.2). We

were not able to locate the Cheeger-Gromov-Lawson paper in the literature nor to

obtain a copy from the authors. For the sake of completeness, we will outline a

proof of Lemma 1, leaving some of the details to the interested reader. First, we

will prove the uniform convergence of the sum and then show in Lemmas 2 and 3

that it satisfies the heat equation and that it has the correct initial conditions. It

clearly has the correct boundary conditions. A probabilisitic representation of the

sum in (2.2) is given in (1.20) below.

Since the mj ’s are normalized by ‖mj‖2 = 1, we have by Theorem 8, p. 102 in

Chavel [6], that

(2.3) ‖mj‖2∞ ≤ c(n)λ
n−1

2
j .
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Moreover, the integral representation of Iν(z) ([15, p. 119]) together with Stirling’s

Formula gives

(2.4)
Iν(z) =

(z/2)ν

√
π Γ(ν + 1

2 )

∫ 1

−1

(1− t2)ν−1/2 cosh(zt)dt

≤ c(z/2)ν

(ν + 1
2 )ν

eν−1/2ez =
c( z

2 )νeνez

(ν + 1
2 )ν

.

With ν = αj and z = ρr
t we get from (2.2) and (2.3) and the definition of αj

(2.5)

PC
t (ρθ, rη) ≤ e−

(ρ2+r2)
2t

t(ρr)n/2−1

∞∑
j=1

|Iαj

(ρr

t

)
mj(θ)mj(η)|

≤ e−
(ρ2+r2)

2t

t(ρr)n/2−1

∞∑
j=1

(
ρr
t

)αj
eαj αn−1

j

(αj + 1/2)αj
e

ρr
2t

Next, we will show that the quantity on the right hand side of (2.5) is dominated

by

(2.6)
cP

(
ρr
t

)
t(ρr)

n−1
2

e{−
(ρ2+r2)

2t + 4ρr
2t },

where P is a polynomial of degree depending on n. The bound (2.6) not only proves

the announced uniform convergence but it also allows us to integrate the sum term

by term. To prove (1.6), set M =
ρre

t
. From the Weyl’s asymptotic formula

(Chavel [6, p. 172]), it follows that there are constants c1 and c2, depending only

on n, such that

c1j
1

n−1 ≤ αj ≤ c2j
1

n−1 .

From this it follows that the sum on the right hand side of (2.5) is dominated by

(2.7)

∞∑
j=1

M cj
1

n−1
(
j

1
n−1

)n−1

(
j

1
n−1 + 1

2

)j
1

n−1
=
∞∑

j=1

M cj
1

n−1
j(

j
1

n−1 + 1
2

)j
1

n−1

≤ 2
∫ ∞

1

M cx
1

n−1 · x
(x1/n−1 + 1/2)x1/n−1 dx +

∑
j≤M(n−1)c

M cj
1

n−1
j(

j
1

n−1 + 1
2

)j
1

n−1
.
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Substituting u = cx1/n−1 shows that the integral above becomes

(2.8)

c

∫ ∞
c

Mu

(u + 1
2 )u

u2n−3du ≤ c

∫ ∞
0

Muu2n−3

(u + 1
2 )u

du

≤ c{1 + M + M2n−3

∫ ∞
1

(
M

u

)u−2n+3

du}

= c

{
1 + M + M2n−3

(∫ M

1

(
M

u

)u−2n+3

du +
∫ ∞

M

(
M

u

)u−2n+3

du

)}

≤ c

{
1 + M + M2n−2ecM/e + M2n−3

∫ ∞
M

(
M

u

)u−2n+3

du

}
,

where we use the fact that the maximum of
(

M

u

)u−2n+3

occurs at u = cM/e.

Now, the integral on the last line of (2.8) has a decreasing integrand and thus the

quantity in the last bracket is dominated by

(2.9)

c

1 + M + M2n−2ecM/e + M2n−3
∞∑

j=[ln2 M ]

∫ 2j+1

2j

(
M

u

)u−2n+3

du


≤ c

1 + M + M2n−2ecM/e + M2n−3
∞∑

j=0

2j

(
M

2j

)2j−2n+3


= c

1 + M + M2n−2ecM/e + M2n−3
∞∑

j=0

M2j−2n+3

(2j)2j−2n+2

 .

However, by comparing terms it follows that the sum in the last expansion is

dominated by P (M)eM/e, where P (M) is a polynomial in M . Putting together

(2.7), (2.8) and (2.9) gives (2.6) and completes the uniform convergence of the

sum.

Before we prove that it satisfies the heat equation, we observe that if x and t are

fixed and y −→ 0, that is, if r −→ 0, then since αj =
√

λj + (n
2 − 1)2 > n

2 −1, we can

factor the term (ρr/2t)α1 in (1.5) and obtained that PC
t (x, y) −→ 0, as it should.

Lemma 2. Fix y ∈ C and define u(t, x) to be the sum in (2.2). Then u satisfies

the heat equation
∂u

∂t
=

1
2
∆u.

Proof. Arguing as in Lemma 1 we can show that the differential operator
∂

∂t
− 1

2
∆

can be taken inside the sum. We thus only need to prove that each term in the
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sum satisfies the heat equation. If we set, for y = rη fixed,

(2.10) vj(t, x) =
1
t

1
(ρr)

n
2−1

e−
(ρ2+r2)

2t Iαj

(ρr

t

)
mj(θ)mj(η),

we obtain

(2.11)

∂vj

∂t
(t, x) = − 1

t2(ρr)
n
2−1

e−
(ρ2+r2)

2t Iαj

(ρr

t

)
mj(θ)mj(η)

+
(ρ2 + r2)

2t3(ρr)
n
2−1

e−
(ρ2+r2)

2t Iαj

(ρr

t

)
mj(θ)mj(η)

− ρr

t3(ρr)
n
2−1

e−
(ρ2+r2)

2t I ′αj

(ρr

t

)
mj(θ)mj(η).

Next we recall that in polar coordinates

(2.12)
1
2
∆ =

1
2

(
1
ρ2

LSn−1 +
1

ρn−1

∂

∂ρ

(
ρn−1 ∂

∂ρ

))
.

Applying this operator to vj we obtain

1
2
∆vj =

1
2

1
ρ2

1
t(ρr)

n
2−1

e−
(ρ2+r2)

2t Iαj

(ρr

t

)
mj(η)LSn−1mj(θ)

(2.13)

+
1

2ρn−1

{
mj(θ)mj(η)

t

e−
r2
2t

(ρr)
n
2−1

}{−ρ

t
e−

ρ2

2t ρ
n
2−1g(ρ)+

(n

2
− 1

)
e−ρ2/2tρ

n
2−2g(ρ) + e

−ρ
2t ρ

n
2−1g′(ρ)

}
,

where

(2.14) g(ρ) =
(
1− n

2

)
Iαj

(ρr

t

)
− ρ2

t
Iαj

(ρr

t

)
+

ρr

t
I ′αj

(ρr

t

)
.

If we now recall that LSn−1mj = −λjmj , and the relation (2.1) satisfied by Iαj ,

we get from (2.13) and (2.14) that

1
2
∆vj = −λj

2
1
ρ2

1
t(ρr)

n
2−1

e−
(ρ2+r2)

2t Iαj

(ρr

t

)
mj(η)mj(θ)

+
1
2

{
mj(η)mj(θ)

t

e−
r2
2t

r
n
2−1

} {
e−

ρ2

2t

ρ
n
2−1

}{
e−

(ρ2+r2)
2t

t2
Iαj

(rρ

t

)
− 2ρr

t2
I ′αj

(rρ

t

)
− 2

t
Iαj

(rρ

t

)
+

λj

ρ2
Iαj

}

=
1
2

{
mj(η)mj(θ)

t

e
−(ρ2+r2)

2t

(ρr)
n
2−1

}{
ρ2 + r2

t2
Iαj

(ρr

t

)
− 2ρr

t
I ′αj

(ρr

t

)
− 2

t
Iαj

(ρr

t

)}
,
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which is the same as the expression for
∂vj

∂t
in (2.11), completing the proof of

Lemma 2.

Next we will show that the function given by the sum in (2.2) satisfies the

correct initial conditions thus finishing the proof that it is the heat kernel for the

cone. Before doing this, we recall that the transition density for the δ-dimensional

Bessel process ([16] pg. 415) is given by

(2.15) P δ
t (ρ, r) = t−1

(
r

ρ

)v

re−
(ρ2+r2)

2t Iv

(ρr

t

)
where v =

δ

2
− 1. Thus for every continuous function f(r) of compact support we

have

(2.16) lim
t→0

∫ ∞
0

P δ
t (ρ, r)f(r)dr = f(ρ).

Using (1.15) we can write the sum in (2.2) as

(2.17)
ρ

(ρr)
n
2

∞∑
j=1

P
2αj+2
t (ρ, r)(

ρ

r
)
αj

mj(θ)mj(η).

From this representation one can already see several properties of heat kernel, such

as the semigroup property. This formula also gives that the sum in (2.2) satisfies

the initial condition.

Lemma 3. Let f be a continuous function of compact support in C and let

PC
t (x, y) be the sum in (2.17) (or (2.2)). Then,

lim
t→0

∫
C

PC
t (x, y)f(y)dy = f(x).

Proof. We first note that by density we can assume f is of the form f∗(r)g(η),

where both f∗ and g have compact support. By the density of the eigenfunctions,

we may assume f has the form, f = f∗(r)
k∑

s=1
csms(η) where f∗ is a compactly

supported radial function. Then using the orthogonality of the eigenfunctions we

obtain

lim
t→0

∫
C

PC
t (x, y)f(y)dy = lim

t→0

∫ ∞
0

∫
D

PC
t (ρθ, rη)f∗(r)

k∑
s=1

csms(η)rn−1dσ(η)dr

=
k∑

s=1

csms(θ) {lim
t→0

∫ ∞
0

P
2αj+2
t (ρ, r)

ρ

(ρr)
n
2

(
ρ

r
)αj rn−1f∗(r)dr}.
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Since f∗ is of compact support, we get from (2.16) that the quantity in { } equals

f∗(ρ), from which the lemma follows.

We have thus proved that the quantity PC
t (x, y) given by the sum in (2.2) is

indeed the Dirichlet heat kernel for the cone C.

We shall now give a probabilistic formula for the expression given in (1.2). Let

Rs be the Bessel process of dimension n (parameter ν = n
2 − 1) with generator

1
2

d2

dr2
+

n− 1
2r

d

dr
and set T (t) =

∫ t

0
ds
R2

s
. With the notation of (2.15), we denote by

Pn
t (ρ, r) the transition probabilities for this process and by Eρ the corresponding

expectation. By Theorem 4.7 in M. Yor [18, p. 80],

(2.18) Eρ

(
exp(−γ2

2
T (t))|Rt = r

)
=

I(( n
2−1)2+γ2)1/2(ρr

t )

In
2−1(ρr

t )
,

where γ is any real number.

Next, we denote by PD
t (θ, η) be the heat kernel for the operator 1

2LSn−1 with

Dirichlet boundary conditions on D. (Recall, D ∈ Sn−1 is regular for the Dirichlet

problem.) We have the eigenfunction expansion

(2.19) PD
t (θ, η) =

∞∑
j=1

e−λj
t
2 mj(θ)mj(η),

where λj are as in (1.3). Multiplying and dividing the expression in (2.2) by Pn
t (ρ, r)

and recalling that αj =
√

(n
2 − 1)2 + λj and that aj = αj − (n

2 − 1), it follows from

(2.15), (2.18) that this quantity can be written as

1
rn−1

Pn
t (ρ, r)

∞∑
j=1

P
2aj+n
t (ρ, r)
Pn

t (ρ, r)

(ρ

r

)aj

mj(θ)mj(η)

=
1

rn−1
Pn

t (ρ, r)
∞∑

j=1

Eρ

(
e−λj

T (t)
2 |Rt = r

)
mj(θ)mj(η)

From this and (2.19) we arrive at the following probabilisitic representation for the

heat kernel for the cone:

(2.20) PC
t (x, y) =

1
rn−1

Pn
t (ρ, r)Eρ

(
PD

T (t)(θ, η)|Rt = r
)

,

with x = ρθ, y = rη.
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The formula (2.20) reflects the skew product representation of the Brownian

motion as the pair (Rt,ΘT (t)) where Θt is the Brownian motion on Sn−1 generated

by 1
2LSn−1 . Notice that the positivity of the the sum in (2.2) is now trivial from

this formula. The fact that the sum satisfies the initial condition (Lemma 3) can

also be easily obtained from (2.20).

3. Proofs of Theorems 1 and 2.

We first recall some properties of special functions which will be used in the

proofs of Theorems 1 and 2 below. With 1F1 as defined in the introduction, we

define the Whittaker function ([12, p. 386]) by

(3.1) Mk,µ(z) = z1/2+µ e−
1
2 z

1F1(µ− k +
1
2
, 2µ + 1, z).

Also if

f(s) = sµ− 1
2 I2ν(2

√
as)

we have

(3.2)
∫ ∞

0

e−psf(s)ds =
Γ(µ + ν + 1

2 )e
a
2p

√
a Γ(2ν + 1)pµ

M−µ,ν

(
a

p

)
,

by [11, p. 197]. Finally, we will also use the relation, ([14, p. 267]),

(3.3) 1F1(a, b, z) = ez
1F1(b− a, b, −z).

Proof of Theorem 1. Because of the estimates (2.5) and (2.6), we may integrate

PC
t (x, y) by bringing the integral inside the sum in (2.2). With x = ρθ and y = rη,

we obtain by integrating in polar coordinates,

(3.4)

Px{τC > t} =
∞∑

j=1

∫ ∞
0

∫
D

rn−1

t(ρr)
n
2−1

e−
(ρ2+r2)

2t Iαj

(ρr

t

)
mj(θ)mj(η)dσ(η)dr

=
∞∑

j=1

e−
ρ2

2t

tρ
n
2−1

{∫ ∞
0

r
n
2 e−

r2
2t Iαj

(ρr

t

)
dr

}
mj(θ)

∫
D

mj(η)dσ(η)

=
∞∑

j=1

(
2t

ρ2

)n
4

e−
ρ2

4t

{√
ρ2/2t2

tn/4
e−

ρ2

4t

∫ ∞
0

e−u/tu
n
4− 1

2Iαj

(
2

√
ρ2

2t2
u1/2

)
du

}
mj(θ)

∫
D

mj(η)dσ(η),
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where the last equality follows by changing variables with u = r2/2. Now, since

αj = aj − 1 + n
2 , we can apply (3.1) and (3.2) with µ =

n

4
, ν =

aj − 1
2

+
n

4
, p =

1
t

and a =
ρ2

2t2
to obtain that the right hand side of (3.4) is

=
∞∑

j=1

Γ(aj

2 + n
2 )

Γ(aj + n
2 )

(
2t

ρ2
)

n
4 e−

ρ2

4t M−n
4 ,

aj−1
2 + n

4

(
ρ2

2t

)
mj(θ)

∫
D

mj(η)dσ

=
∞∑

j=1

Γ(aj

2 + n
2 )

Γ(aj + n
2 ) 1F1

(
aj + n

2
, aj +

n

2
,
ρ2

2t

)
e−

ρ2

2t

(
ρ2

2t

) aj
2

mj(θ)
∫

D

mj(η)dσ

=
∞∑

j=1

Bj

(
ρ2

2t

) aj
2

1F1

(
aj

2
, aj +

n

2
,
−ρ2

2t

)
mj(θ),

where we have used (3.3). This completes the proof of Theorem 1.

Corollary 1 follows immediately from Theorem 1 and the obvious properties of

1F1(a, b, z). We shall now proceed to the proof of Theorem 2. We first need

Lemma 4. Let β = a1 + n− 2 = α1 + n
2 − 1 and set

K(x, 0) =
1
|x|β m1

(
x

|x|

)
=

1
ρβ

m1(θ).

Then K is the Poisson kernel for C with pole at the vertex 0.

Proof. We must show that K vanishes on the boundary of C, at infinity, that it

blows up as x approaches 0 and finally, that it is harmonic in C. The boundary

behavior of K is clear from m1 and the fact that β > 0. Using (2.12) we obtain

that

∆K(x, 0) = −ρ−β−2λ1m1(θ) + m1(θ)
1

ρn−1

∂

∂ρ

(
ρn−1 ∂

∂ρ
ρ−β

)
= −ρ−β−2λ1m1(θ) + m1(θ)(−β)(−β + n− 2)ρ−β−2

= ρ−β−2m1(θ){−λ1 + β(β + 2− n)} = 0,

by our definition of α1 and β.

Proof of Theorem 2. As before, we can interchange the integral with the sum
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in our expression for the heat kernel because of (2.6). We thus obtain,

P 0
x{τC > t} =

1
K(x, 0)

∫
C

PC
t (x, y)K(y, 0)dy

=
ρβ

m1(θ)

∞∑
j=1

∫ ∞
0

(∫
D

mj(θ)mj(η)m1(η)dσ(η)
)

Iαj

(ρr

t

) e−
(ρ2+r2)

2t

t(ρr)
n
2−1

rn−1−βdr

= ρβ

∫ ∞
0

Iα1

(ρr

t

) e−
(ρ2+r2)

2t

t(ρr)
n
2−1

rn−1−βdr,

where we have used the fact that {mj} are orthonormal. Making the substitution

we obtain as before that the last quantity is

=
ρβ−n

2 +1e−
ρ2

2t

t

∫ ∞
0

Iα1

(√
2

ρ

t

√
u
)

e−
u
t (2u)

n
4−

β
2− 1

2 du

=
2

n
4−

β
2− 1

2

t
ρβ−n

2 +1e−
ρ2

4t

{
Γ(n

4 −
β
2 + α1

2 + 1
2 )

2−1/2 ρ
t Γ(α1 + 1)t−

n
4 + β

2

M−n
4 + β

2 ,
α1
2

(
ρ2

2t

)}
,

where again we have used (3.2) with µ =
n

4
− β

2
, ν =

α1

2
, p =

1
t
, a =

ρ2

2t2
. Again

recalling the definition of β in terms of α1 and the relation (3.1), the above expres-

sion

=
(

ρ2

2t

) β
2−n

4 e−
ρ2

4t

Γ(α1 + 1)

(
ρ2

2t

)α1
2 + 1

2

e
−ρ2

4t 1F1

(
n

4
− β

2
+

α1

2
+

1
2
, α1 + 1,

ρ2

2t

)

=

(
ρ2

2t

)α1

e−
ρ2

2t

Γ(α1 + 1) 1F1

(
1, α1 + 1,

ρ2

2t

)
=

1
Γ(α1 + 1)

(
ρ2

2t

)α1

1F1

(
α1, α1 + 1,

−ρ2

2t

)
,

where we have used (3.3) for the last equality.

Finally, by the definition of 1F1, the last expression above is

=
1

α1Γ(α1)

(
ρ2

2t

)α1
{

1 +
α1

α1 + 1

(−ρ2

2t

)
+

α1(α1 + 1)
(α1 + 1)(α1 + 2)

1
2!

(−ρ2

2t

)2

+ . . .

}

=
1

α1Γ(α1)

(
ρ2

2t

)α1
{

α1

(
1
α1

+
1

α1 + 1

(−ρ2

2t

)
+

1
2!(α1 + 2)

(−ρ2

2t

)2

+ . . .

)}

=
1

Γ(α1)

(
ρ2

2t

)α1 ∞∑
j=0

1
(α1 + j)j!

(−ρ2

2t

)j

=
1

Γ(α1)

∞∑
j=0

(−1)j

(α1 + j)j!

(
ρ2

2t

)j+α1

.
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Setting

H(z) =
∞∑

j=0

(−1)j

(α1 + j)j!
zj+α1

we obtain that

H ′(z) =
∞∑

j=0

(−1)j

j!
zj+α1−1 = zα1−1e−z

and

H(z) = H(z)−H(0) =
∫ z

0

H ′(u)du =
∫ z

0

uα1−1e−udu.

Hence,

P 0
x{τC > t} =

1
Γ(α1)

∫ ρ2

2t

0

uα1−1e−udu,

which proves (1.9).

Since

P 0
x{τC > t} =

1
Γ(α1 + 1)

(
ρ2

2t

)α1

1F1

(
α1, α1 + 1,

−ρ2

2t

)
,

(1.10) follows from 1F1(α1, 1 + α1, 0) = 1.

By Fubini’s Theorem,

E0
x(τp

C) = p

∫ ∞
0

tp−1P 0
x{τC > t}dt

= p

∫ ∞
0

∫ ρ2

2t

0

1
Γ(α1)

tp−1uα1−1e−ududt

=
p

Γ(α1)

∫ ∞
0

∫ ρ2

2u

0

tp−1dt

 uα1−1e−udu

=
1

Γ(α1)

(
ρ2

2

)p ∫ ∞
0

uα1−p−1e−udu

=


Γ(α1 − p)

Γ(α1)

(
ρ2

2

)p

, if p < α1

∞, if p ≥ α1,

which proves (1.11) and completes the proof of Theorem 2.

Next, we wish to extend the above results to Brownian motion conditioned to exit

the cone at any ξ ∈ ∂C. For this, we make the additional assumption that the cone

is simply connected with a Lipschitz boundary. Such cones will be called Lipschitz

cones. We start with a lemma which allows us to estimate all the eigenfunctions of

D in terms of the first one.
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Lemma 5. If C is a Lipschitz cone, then for D = Sn−1 ∩ C, with Dirichlet eigen-

functions mj(η), there exists a constant c, independent of j and η, such that

m2
j (η) ≤ cm2

1(η)
Iαj (1)

.

Proof. Consider a large ball B = B(0, R) and its intersection, S2 = B∩C, with the

cone C. If we fix |x| = 1 and t = 1, we can apply the parabolic boundary Harnack

inequality (see Fabes, Garofalo and Salsa [13]) to compare uniformly PC
t (x, y) and

PS2
t (x, y), at |x| = 1, t = 1. That is there exists a constant c1 so that

(3.5) PC
1 (x, x) = e−1

∞∑
j=1

Iαj (1)m2
j (η) ≤ c1P

S2
1 (x, x).

Since S2 is intrinsically ultracontractive, (Bañuelos [1]), it follows that PS2
1 (x, x) ≤

Cϕ2
1(x), where ϕ2

1(x) is the first Dirichlet eigenfunction on S2. Using the fact that

ϕ1(x) = f(r)m1(η), with x = rη, we obtain from (3.5),

∞∑
j=1

Iαj (1)m2
j (η) ≤ c1P

S2
1 (x, x) ≤ Cϕ2

1(x) = cm2
1(η),

and the lemma follows.

Next, recall that by a(t) ∼ b(t) we mean a(t)/b(t) −→ 1 as t −→∞.

Theorem 3. Suppose C is a Lipschitz cone. Fix x ∈ C and ξ ∈ ∂C. Then

P ξ
x{τC > t} ∼ f(x, ξ)t−α1 .

where f(x, ξ) is a function of x and ξ alone.

Proof. By scaling we may assume |x|, |ξ| < 1/2. (See [8] for more details on this

type of scaling argument.) With x = rθ and z = sη we have

P ξ
x{τC > t} =

1
K(x, ξ)

{∫
|z|<1

PC
t (x, z)K(z, ξ)dz +

∫
|z|>1

PC
t (x, z)K(z, ξ)dz

}

=
1

K(x, ξ)

∫ 1

0

∫
D

∞∑
j=1

1
t(rs)

n
2−1

Iαj

(rs

t

)
mj(θ)mj(η)K(sη, ξ)sn−1dηds(3.6)

+
1

K(x, ξ)

∫
|z|>1

PC
t (x, z)K(z, ξ)dz
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The boundary Harnack principle for Lipschitz domains (see Jerison–Kenig [14])

gives that for |z| > 1, z ∈ C, K(z, ξ) ≈ K(z, 0), where by a(z) ≈ b(z) we mean

that their ratio is bounded above and below by absolute constants. Then using

Theorem 2 we see that the second integral in (3.6) decays like t−α1 . What remains

then is to examine the decay of

(3.7)
1

K(x, ξ)

∫ 1

0

∫
D

∞∑
j=1

1
t(rs)

n
2−1

Iαj

(rs

t

)
mj(θ)mj(η)K(sη, ξ)sn−1dηds.

Since x, ξ are fixed |x| = r < 1 and s < 1 this integral is majorized by (Iαj are

increasing)

(3.8)
1

K(x, ξ)

∫ 1

0

∫
D

∞∑
j=1

Iαj

(
1
t

)
· 1

t
|mj(θ)||mj(η)|K(sη, ξ)sn/2dηds.

At this point we can apply Lemma 5 and dominate (3.8) by

(3.9)
1

K(x, ξ)
c

t

∫ 1

0

∫
D

∞∑
j=1

Iαj (1/t)|mj(θ)|
|m1(η)|√

Iαj (1)
|K(sη, ξ)|sn/2dηds.

By (2.3), |mj(θ)| ≤ cλd
j , with d =

n− 2
2

. The last quantity is thus bounded by

(3.10)
∞∑

j=1

c

tK(x, ξ)
λd

j Iαj (1/t)√
Iαj (1)

∫ 1

0

∫
D

|m1(η)|K(sη, ξ)sn/2dηds.

Using lemma 3 this equal

(3.11)
∞∑

j=1

c

tK(x, ξ)
λd

j Iαj (1/t)√
Iαj (1)

∫ 1

0

∫
D

K(sη, 0)K(sη, ξ)s
n
2 +βdηds.

As 1/t −→ 0, Iαj (1/t) ∼ t−αj

2αj Γ(1 + αj)
so that the last sum is like

1
K(x, ξ)

∞∑
j=1

t−αj−1
λd

j

2αj Γ(1 + αj)
√

Iαj (1)

∫ 1

0

∫
D

K(sη, 0)K(sη, ξ)sn/2+βdηds.

The last expression is ≈ t−α1−1, provided we can show that

(3.12)
∫ 1

0

∫
D

K(sη, 0)K(sη, ξ)s
n
2 +βdηds <∞.
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Since |z| < 1 we invoke the boundary Harnack principle one last time to have

K(z, 0) ≈ KS2(z, 0) and K(z, ξ) ≈ KS2(z, ξ) uniformly in B(0, 1) ∩ C, where S2 =

B(0, R)∩C for a large R and KS2(z, ξ) is the Poisson kernel for S2 with pole at ξ.

Thus the integral in (3.12) is bounded by∫ 1

0

∫
D

KS2(sη, 0)KS2(sη, ξ)s
n
2 +βdηds ≤ CRα1

∫
S2

KS2(z, 0)KS2(z, ξ)dz,

since β =
n

2
− 1 + α1. The last integral is finite since it is, up to a constant, the

expected lifetime of conditioned Brownian motion from 0 to ξ in S2;S2 being a

bounded Lipschitz domain, (see Bañuelos [1]).

Corollary 2. Suppose C is a Lipschitz cone. Then

Eξ
x(τp

C) <∞, x ∈ C, ξ ∈ ∂C,

if and only if p < α1.

In the case of right circular cones Γ, Corollary 2 is due to Davis and Zhang [8].

Next, let us denote the Green’s function for C by GC(x, y), x, y ∈ C. Fixing

x and y in C, we can use the Green’s function to construct the Brownian motion

starting at x and conditioned to hit y before τC . If we denote by P y
x the probability

measure associated with this motion it follows that

(3.13) P y
x {τC > t} =

1
GC(x, y)

∫
C

PC
t (x, z)GC(z, y)dz.

Differentiating (3.13) with respect to t and using the basic properties of PC
t (x, z)

and GC(z, y), it follows that the density of τC under P y
x is given by

(3.14) Dy
x(t) =

PC
t (x, y)

GC(x, y)
.

The proof of Lemma 1 shows that for x, y ∈ C fixed,

(3.15) PC
t (x, y) ∼ h(x, y)t−α1−1,

where h(x, y) is a function of x and y alone. Therefore (3.14) and (3.15) give
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Corollary 3. Let C be a generalized cone in Rn. Then

Ey
x(τp

C) <∞, x, y ∈ C,

if and only if p < α1.

4. A Generalized Arcsine Law.

The classical first arcsine law states that if wt is one dimensional Brownian

motion and if

g1 = sup{t ≤ 1 : wt = 0}

then ([16], p. 107),

(4.1) P0{g1 ≤ s} =
2
π

arcsin(
√

s).

If C is a generalized cone in Rn we define

(4.2) L = sup{t ≤ 1 : Bt ∈ C},

where Bt is Brownian motion in Rn. We are interested in the distribution of L under

P0. Let D̃ = Sn−1∩(Rn\C) = Sn−1\C and as before set aj = aD̃
j =

√
λj +

(n

2
− 1

)2

−
(n

2
− 1

)
where the λj satisfy (0.3) with D̃ replacing D. With this notation we

have

Theorem 4.

P0{L ≤ s} =
1

2πn/2

∞∑
j=1

Γ
(
aj +

n

2

)
B2

j saj/2
2F1

(aj

2
,
aj

2
; aj +

n

2
; s

)

where 2F1(a, b, c; z) is the hypergeometric function given by

2F1(a, b; c; z) = 1 +
ab

c
z +

a(a + 1)b(b + 1)
c(c + 1)

z2

2!
+ . . .

and the Bj ’s are as in Theorem 1 but corresponding to D̃.
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Proof. Consider the generalized cone C̃ = Rn\C. Applying the strong Markov

property and Theorem 1 to C̃ we obtain

(4.2)

P0{L ≤ s} =
∫

Rn

1
(2πs)n/2

e−
|y|2
2s Py{τC̃ > 1− s}dy

=
1

(2πs)n/2

∫
C̃

e−
|y|2
2s

∞∑
j=1

Bj

( |y|2
2− 2s

)aj/2

1F1

(
aj

2
, aj +

n

2
,
−|y|2
2− 2s

)
mj

(
y

|y|

)
dy

=
1

(2πs)n/2

∫ ∞
0

∫
D̃

e
−r2
2s

∞∑
j=1

Bj

(
r2

2− 2s

)aj/2

1F1

(
aj

2
, aj +

n

2
,
−r2

2− 2s

)
mj(θ)rn−1dθdr

=
1

(2πs)n/2

∞∑
j=1

Γ(aj + n/2)

Γ
(

aj+n
2

) B2
j Ij(s),

where we have used our definition of Bj and

Ij(s) =
∫ ∞

0

(
r2

2− 2s

)aj/2

1F1

(
aj

2
, aj + n/2,

−r2

2− 2s

)
e
−r2
2s rn−1dr.

By (3.3),

1F1

(
aj

2
, aj + n/2,

−r2

2− 2s

)
= e

−r2
2−2s 1F1

(
aj + n

2
, aj +

n

2
,

r2

2− 2s

)
and we obtain

(4.3) Ij(s) =
∫ ∞

0

(
r2

2− 2s

)aj/2

1F1

(
aj + n

2
, aj + n/2,

r2

2− 2s

)
e
−r2

s(2−2s) rn−1dr.

Making the substitution t =
r2

2− 2s
the right hand side of (4.3) becomes,

(1− s)n/22
n−2

2

∫ ∞
0

e−t/st
aj+n

2 −1
1F1

(
aj + n

2
, aj +

n

2
, t

)
dt.

Applying (2.1) with

(4.4) µ =
aj

2
+

n

4
− 1

2
and k =

−n

4

we obtain that

Ij(s) = (1− s)
n
2 2

n−2
2

∫ ∞
0

e(
1
2− 1

s )tt
n
4−1M−n

4 ,
aj
2 + n

4− 1
2
(t)dt.
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The last integral can be evaluated using formula (11) of [11, p. 215] with ν =
n

4
, k

and µ as in (4.4), a = 1 p =
1
5
− 1

2
to obtain,

(4.5) Ij(s) = (1− s)
n
2 2

n−2
2 s

aj+n

2 Γ
(aj

2
+

n

2

)
2F1

(
aj + n

2
,
aj + n

2
; aj +

n

2
; s

)
.

Finally,

(4.6) 2F1

(
aj + n

2
,
aj + n

2
, aj +

n

2
; s

)
= (1− s)−

n
2 2F1

(aj

2
,
aj

2
; aj +

n

2
; s

)
.

From (4.5), (4.6) and the right hand side of (4.2), Theorem 4 follows.

Corollary 4. P0{L ≤ s} ∼ 1
2πn/2

Γ
(
a1 +

n

2

)
B2

1sa1/2 as s −→ 0.

Remark. If n = 2 and C is the upper half space, the cone of angle π in R2, then

our formula reduces to

P0{L ≤ s} =
1
2π

∞∑
j+

Γ(j + 1)B2
j sj/2

2F1

(
j

2
,
j

2
; j + 1; s

)
.

By checking coefficients in the Taylor expansion of arcsin(
√

s) one sees that

P0{L ≤ s} =
1
π

arcsin(
√

s)

in this case. Notice that this is 1
2P0{g1 ≤ s}, as it should be by the reflection

principle.

5. Finite Cones.

Let D ⊂ Sn−1 be a proper, connected open subset and consider the truncated

cone C = {rθ, 0 < r < d, θ ∈ D} ⊂ Rn. Then

Proposition 1. The Poisson kernel K(rθ, 0) for C is given by K(rθ, 0) = f(r)m1(θ)

where f(r) = r−β − d−β−α1rα1 , β =
n

2
− 1 + α1 , α1 =

√
(
n

2
− 1)2 + λ1 and as be-

fore, m1(θ) is the first Dirichlet eigenfunction for Lsn−1 in D.

Proof. One can see that f(d) = d−β − d−β−α1dα1 = 0 and f(r) −→ ∞ as r −→
0. Moreover, m1(θ) −→ 0 as θ −→ ∂D so K(rθ, 0) satisfies the proper boundary
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conditions. It only remains to check that it is harmonic. Again, using the Laplacian

is spherical coordinates yields,

∆K(rθ, 0) =
f(r)
r2

LSn+1m1(θ) + m1(θ)(f ′′(r) +
n− 1

r
f ′(r))

= m1(θ)
{

f ′′(r) +
n− 1

r
f ′(r)− λ1

f(1)
r2

}
.

Now an easy calculation and the definition of β and α1 show that f ′′(r)+ n−1
r f ′(r)−

λ1
f(r)
r2 = 0, finishing the proof.

Corollary 5. Let C = {0 < r < d, 0 < θ < θ0} be a truncated cone in R2. If

|x| = |y|, then P 0
x{τC > t} = P 0

y {τC > t}.

Proof. Since C is a bounded convex domain we can expand its heat kernel PC
t (x, y)

in terms of eigenfunctions [1] to get

PC
t (x, y) =

∞∑
n=1

e−λntϕn(x)ϕn(y).

Thus

P 0
x{τC > t} =

1
K(x, 0)

∫
C

PC
t (x, y)K(y, 0)dy.

Since K(x, 0) = K(rθ, 0) = f(r)m1(θ), we have, with y = sη,

P 0
x{τC > t} =

1
f(r)m1(θ)

∫ d

0

∫ θ0

0

∞∑
n=1

e−λntϕn(x)ϕn(y)f(s)m1(η)dηsds.

We will be done if the integral collapses to a sum only involving m1(θ) and some

function of r. We first remark that in R2, the mj(η) are just sin
(

jπη

θ0

)
. Now,

the eigenfunctions of the truncated cone are all of the form

sin
(

jπη

θ0

)
J jπ

θ0
(
√

λj,mr),

where J jπ
θ0

are the Bessel functions of order jπ
θ0

and
√

λj,k are the zeros of J jπ
θ0

up

to a factor of d. By orthogonality of the Bessel functions we then obtain

P 0
x{τc > t} =

1
f(r)m1(θ)

∫ d

0

∞∑
k=1

e−λ1,ktm1(θ)J π
θ0

(
√

λ1,k r)J π
θ0

(
√

λ1,k s)sds

=
1

f(r)

∫ d

0

∞∑
k=1

e−λ1,ktJ π
θ0

(
√

λ1,k r)J π
θ0

(
√

λ1,k s)sds,
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which is a function of r alone.
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