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Without a doubt, one of the most fundamental operators in the development
of mathematical physics is the Laplace operator (Laplacian)

∆ =
∂2

∂x2
+

∂2

∂y2

and its higher dimensional analogues. This operator, often called the Lapla-
cian after the mathematical astronomer, the Marquis Pierre–Simon De Laplace
(1749–1827), lies at the heart of the mathematical descriptions of heat, light,
sound, electricity, magnetism, gravitation, and fluid motion. It has been exten-
sively studied by mathematicians and physicists for more than 200 years. These
studies have often focused on the geometric properties of its solutions.

One may surmise that anything worth knowing about this operator would
already be known. However, it has often occurred in the development of mathe-
matics that simply stated problems require the introduction of new and sophis-
ticated tools to deal with them. Such seems to be the case for the “hot spots
conjecture made in 1974 by Jeffrey Rauch of the University of Michigan. In
terms of the theory of heat conduction of Joseph Fourier (1768–1830), the con-
jecture asserts that if one begins with an initial heat distribution on a plate
which is insulated around its boundary and waits for the initial transients to
settle down, then the hottest and coldest spots will be found on the boundary
of the plate. More technically, for “most” initial temperatures u(x, y) if H(t) is
a point at which the temperature T (t, x, y) at time t attains its maximum, then
the distance from H(t) to the boundary of the region tends to zero as the time t
tends to infinity. That is, the “hot spots” move toward the boundary of the region
as time evolves. The temperature T (t, x, y) is a solution to the heat equation
∂T
∂t

= ∆T with initial condition u(x, y) (T (0, x, y) = u(x, y)) and zero normal de-
rivative on the boundary of the region. (The normal derivative of a function at
a point on the boundary of the region is the derivative of the function in the di-
rection “perpendicular” to the boundary evaluated at the point.) Thus, T (t, x, y)
is a solution to the “Neumann problem” in a region (the plate) of the plane.

The “hot spots” conjecture, as it turns out, is a conjecture about the geometry
of the first nonconstant eigenfunction of the Laplacian with Neumann boundary
conditions. An eigenfunction is a function ϕ for which ∆ϕ is a constant multiple
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of the function ϕ in the region. The constant is called the eigenvalue. The func-
tion ϕ satisfies the Neumann boundary condition if its normal derivative is zero
at every point of the boundary of the region. The patterns formed by a thin layer
of salt or sand on a vibrating plate give a picture of such eigenfunctions with the
salt or sand piling up along the “nodal lines” of the eigenfunction. The “nodal
lines” are the points in the region where the eigenfunctions are zero. The first
nonconstant eigenfunction is the lowest mode of vibration and the frequency of
vibration is the first nonzero eigenvalue.

Much is known about the geometric and analytic properties of eigenfunctions
and eigenvalues of the Laplacian. For example, for regions (plates) of finite area
there are infinitely many eigenfunctions, and the eigenvalues form a discrete
set of real numbers which become arbitrarily large. That is, the sequence of
eigenvalues diverges to infinity. The eigenfunctions of the Laplacian provide the
building blocks for the solutions of the heat equation. Any solution of the heat
equation with initial temperature u can be written as an infinite series involving
the eigenvalues, the eigenfunctions, and integrals of the eigenfunctions against
the initial temperature u. From this one is able to conclude that the “hot spots”
conjecture is “equivalent” to the statement that the first nonconstant eigenfunc-
tion for the Neumann problem in any bounded planar region, regardless of its
shape, attains its maximum and its minimum on the boundary and only on the
boundary of the region.

Despite the efforts of many, the “hot spots” conjecture remained completely
open for more than 25 years. In the article, “On the Hot Spots Conjecture of Jeff
Rauch,” published in the Journal of Functional Analysis in early 1999, Krysztof
Burdzy (University of Washington) and I reformulated the conjecture in terms
of Brownian motion with reflection on the boundary of the region. Brownian
motion is a random process (a stochastic process) of enormous theoretical and
practical significance. It originated in the work of the English botanist Robert
Brown (1773–1858) who in 1828 wrote an article entitled “A brief account of
microscopical observations made in the months of June, July and August, 1827,
on the particles contained in the pollen of plants; and on the general existence
of active molecules in organic and inorganic bodies.” What Brown observed is
that “pollen grains suspended in water undergo a continual swarming motion.”
A mathematical formulation for Brownian motion was given by Albert Einstein
in 1905. Norbert Wiener put this formulation in a rigorous foundation in 1923
by proving the existence of “Wiener measure” on the space of continuous paths.

The connections of Brownian motion to boundary value problems were estab-
lished in the forties and fifties by Mark Kac, Joseph Doob, Shizuo Kakutani, and
others. In particular, it has been known for many years that given an initial
temperature u the temperature T (t, x, y) can be obtained by averaging, with re-
spect to Wiener measure, the function u over all the Brownian particles at time t
which begin their journeys at the point (x, y) and undergo a reflection perpendic-
ular to the boundary of the region whenever they reach the boundary. Using this
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formulation and some new techniques on “coupling” of Brownian particles, Bur-
dzy and I proved the “hot spots” conjecture for certain convex and nonconvex
regions provided these have some symmetry relative to one of the coordinate
axes. The method of proof also works for many regions (plates) which do not
have symmetry such as obtuse triangles. In fact, for any obtuse triangle “the
first” nonconstant Neumann eigenfunction is monotone on every line segment
in the triangle which is parallel to the longest side of the triangle. Hence, its
maximum cannot be attained inside the triangle. Prior to this work the conjec-
ture had only been verified for rectangular and circular plates where formulas
for the eigenfunctions and eigenvalues are explicitly known.

The results and the Brownian motion techniques used in our article have re-
ceived considerable attention. In a subsequent paper, “A counterexample to the
hot spots conjecture,” published in the journal Annals of Mathematics in late
1999, Burdzy and Wendelin Werner (Universit Paris-Sud, France) used these
techniques to give an example of a region with two holes where the “hot spots”
conjecture fails. More recently, David Jerison (MIT) and Nikolai Nadirashvili
(University of Chicago) have given non-Brownian motion proofs but only for con-
vex regions with two axes of symmetry. I believe the “hot spots” conjecture to
be true for any bounded planar region with no holes. This modified “hot spots”
conjecture remains open even for the case of arbitrary convex regions. An article
entitled “Holes and Hot Spots in Nature” describing the “hot spots” conjecture
and the progress made up to date was published in the October 1999 issue of the
journal Nature. Quoting from this article, “the geometry of the Laplace operator
does not reveal its secrets lightly but it undoubtedly remains a hot topic.”
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