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I
SIGMA ALGEBRAS AND MEASURES

61 o—Algebras: Definitions and Notation.

We use €) to denote an abstract space. That is, a collection of objects called
points. These points are denoted by w. We use the standard notation: For A, B C
Q, we denote A U B their union, A N B their intersection, A¢ the complement of
A, AAB=A—-B={z¢€ Aix ¢ B} = An B° and AAB = (A\B) U (B\A).
If Ay C Ay,... and A = U2 A, we will write A, T A. If 41 D Ay D ...
and A = N2, A,, we will write A, | A. Recall that (U,A,)" = N,AS and
(NRAL)S = U,AS. With this notation we see that A, T A = AS | A® and
An | A= AS T A IF Ay, ..., A, € Q, we can write

Ul A = A1 U(ATNA2)U(ATNASNA3)U...(ATN...NAS 1 NA,), (1.1)
which is a disjoint union of sets. In fact, this can be done for infinitely many sets:
Us? 1A, =Us (AT N AL N A,). (1.2)

If A, T, then
Ui_1Aj = Ap U (A2\ A1) U (A3\A2) ... U (A \An—1). (1.3)

Two sets which play an important role in studying convergence questions are:

limA,,) = limsup 4,, = ﬂ U Ay, (1.4)
" n=1k=n
and
limA,, = liminf A, = ] (1) 4. (1.5)

n=1k=n
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Also, z € limA,, if and only if z € 8 Ay, for all n. Equivalently, for all n there is
at least one £ > n such that z € f’lc;n That is, z € A,, for infinitely many n. For
this reason when = € limA,, we say that x belongs to infinitely many of the A’ s
and write this as ¢ € A,, i.0. If x € limA,, this means that x € ﬁ Ay, for some
n or equivalently, x € Ay for all £ > n. For this reason when z kez?i_mAn we say
that = € A,,, eventually. We will see connections to limxzy, limzy, where {z}} is a

sequence of points later.

Definition 1.1. Let F be a collection of subsets of 2. F is called a field (algebra)

if 2 € F and F is closed under complementation and finite union. That is,
(i) Qe F
(i) Ae F= A€ F

(11) Al,AQ,...ARGfi U Aj e F.
j=1

If in addition, (iii) can be replaced by countable unions, that is if

(iv) A1,...Ap,...€e F= J 4 € F,
j=1
then F is called a o—algebra or often also a o—field.

Here are three simple examples of o—algebras.

(i) 7= {09},



(ii) F = {all subsets of Q},
(iii) T ACQ, F={0,9Q,4, A°}.

An example of an algebra which is not a o—algebra is given by the following.
Let 2 = R, the real numbers and take F to be the collection of all finite disjoint
unions of intervals of the form (a,b] = {z:a < < b}, —o0 < a < b < . By
convention we also count (a,0o0) as right—semiclosed. F is an algebra but not a
o—algebra. Set
1

A, = (0,1— =].
(0,1 -]

Then,
A4, =(0.1)¢ 7
n=1

The convention is important here because (a, b]® = (b, 00) U (—00, a.

Remark 1.1. We will refer to the pair (2, F) as a measurable space. The reason

for this will become clear in the next section when we introduce measures.

Definition 1.2. Given any collection A of subsets of €, let o(.A) be the smallest
o—algebra containing A. That is if F is another o-algebra and A C F, then
o(A) C F.

Is there such a o—algebra? The answer is, of course, yes. In fact,

a(A)=(F

where the intersection is take over all the o—algebras containing the collection A.
This collection is not empty since A C all subsets of  which is a o—algebra.
We call o(A) the o—-algebra generated by A. If Fy is an algebra, we often write
o(Fo) = Fo.

Example 1.1. A= {A}, ACQ. Then

o(A) = {0, A, A°,Q}.
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Problem 1.1. Let A be a collection of subsets of Q0 and A C Q. Set AN A =
{BNA:B e A}. Assume o(A) = F. Show that o(ANA) = F N A, relative to A.

Definition 1.2. Let (2 = R and By the field of right-semiclosed intervals. Then
o(By) = B is called the Borel o—algebra of R.

Problem 1.2. Prove that every open set in R is the countable union of right

—semiclosed intervals.
Problem 1.3. Prove that every open set is in B.
Problem 1.4. Prove that B = o({all open intervals}).

Remark 1.2. The above construction works equally in R® where we take By to be

the family of all intervals of the form

(a1,b1] X ... (aq,ba], —00 < a; < b; < 0.

§2. Measures.

Definition 2.1. Let (2, F) be a measurable space. By a measure on this space we

mean a function p : F — [0, 00] with the properties
(1) n(@) =0
and

(i1) if A; € F are disjoint then

[e.¢]

17 UAj = n(4y).

J=1
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Remark 2.1. We will refer to the triple (2, F, 1) as a measure space. If u(Q2) =1
we refer to it as a probability space and often write this as (2, F, P).

Example 2.1. Let €2 be a countable set and let F = collection of all subsets of §2.
Denote by #A denote the number of point in A. Define pu(A) = #A. This is called
the counting measure. If € is a finite set with n points and we define P(A4) = 1#A

then we get a probability measure. Concrete examples of these are:
(i) Coin flips. Let 2 = {0,1} = {Heads, Tails} = {T', H} and set P{0} =
1/2 and P{1} =1/2

(2) Rolling a die. Q@ ={1,2,3,4,5,6}, P{w} =1/6.

Of course, these are nothing but two very simple examples of probability
spaces and our goal now is to enlarge this collection. First, we list several elemen-

tary properties of general measures.

Proposition 2.1. Let (2, F,u) be a measure space. Assume all sets mentioned
below are in F.

(i) If A C B, then pu(A) < p(B), (monotonicity).

(i) If AC |J Aj, then p(A) < > u(A;), (subadditivity).
i=1 =1
T

j= j=

(117) If A; T A, then u(A;) T u(A), (continuity for below).

() If Aj | A and (A1) < oo, then p(A;) | p(A), (continuity from above).
Remark 2.2. The finiteness assumption in (iv) is needed. To see this, set Q) =
{1,2,3,...} and let p be the counting measure. Let A; = {j, j+1,...}. Then
A; |0 but p(Aj) = oo for all j.

Proof. Write B = AU (B\A). Then

w(B) = p(A) + n(B\A) = u(A),



7

which proves (i). As a side remark here, note that if if u(A) < oo, we have
u(B\A) = pu(B) — u(A). Next, recall that |J 4, = U AfN...NAS_1NA,)

where the sets in the last union are disjoint. Therefore,

" (U An> =Y AN AT LN AL ) < A,
n=1 n=1 n=1

proving (ii).

For (iii) observe that if A,, T, then

. ( [_'j An) o (G (An\An_u)

n=1

= Z N(An\An—l)

= W%Enoo Z 1(An\An—1)

n=1

= lim pu (U An\An_l) .
n=1

For (iv) we observe that if A, | A then A;\A, T A1\A. By (iii), u(A1\A,) T

#(A1\A) and since u(A1\A,) = p(Ar) — p(Ay,) we see that p(Ay) — p(Ay) 1

(A1) — u(A), from which the result follows assuming the finiteness of p(A;).

Definition 2.2. A Lebesgue—Stieltjes measure on R is a measure on B = o(By)
such that pu(I) < oo for each bounded interval I. By an extended distribution
function on R we shall mean a map F:R — R that is increasing, F'(a) < F(b) if

a < b, and right continuous, lim+ F(x) = F(xp). If in addition the function F' is

$—>.'E0

nonnegative satisfying lim Fx(z) =1and lim Fx(x) =0, we shall simply call

it a distribution function.

We will show that the formula p(a, b] = F(b) — F(a) sets a 1-1 correspondence
between the Lebesgue—Stieltjes measures and distributions where two distributions
that differ by a constant are identified. of course, probability measures correspond

to distributions.
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Proposition 2.2. Let pu be a Lebesque—Stieltjes measure on R. Define F: R — R,
up to additive constants, by F(b) — F(a) = u(a,b]. For example, fix F(0) arbitrary
and set F(x) — F(0) = u(0,z], >0, F(0) — F(x) = p(x,0], x < 0. Then F is

an extended distribution.

Proof. Let a < b. Then F(b) — F(a) = p(a,b] > 0. Also, if {x,,} is such that z; >

oo
xg > ... — x, then u(x,x,] — 0, by Proposition 2.1, (iv), since [ (z1,2,] = 0
n=1

and (x,x,] | 0. Thus F(z,) — F(z) — 0 implying that F is right continuous.

We should notice also that

u{b} = nli_)néou(b - %, b]
= nli—>Holo F()—F{b—-1/n)=F()— F(b-).

Hence in fact F' is continued at {b} if and only if u{b} = 0.

Problem 2.1. Set F(x—) = lim F(x). Then

Tr—x

u(a,b) = F(b™) - F(a) (1)
ula,b) = F(b) — F(a™) (2)
ula,b) = F(b™) — F(a™) (3)
H(R) = F(oc) — F(~o0) (4)

Theorem 2.1. Suppose F is a distribution function on R. There is a unique

measure p on B(R) such that p(a,b] = F(b) — F(a).

Definition 2.3. Suppose A is an algebra. p is a measure on A if p: A — [0, 00|,
p@) = 0 and if Ay, As,... are disjoint with A = J° A; € A, then p(A) =
Zjoo 11(Aj) . The measure is o—finite if the space Q@ = U2, where the ; € A
are disjoint and (1(€2;) < oo.
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Theorem 2.2 (Carathéodory’s Extension Theorem). Suppose p is o—finite

on an algebra A. Then p has a unique extension to o(A).
We return to the proof of this theorem later.

Definition 2.4. A collection S C ) is a semialgebra if the following two condi-
tions hold.

(i) A, BeS=ANBEeS,

(ii)) A € S then A° is the finite union of disjoint sets in S.

Example 2.2. § = {(a,b]: —00 < a < b < oo}. This is a semialgebra but not an

algebra.

Lemma 2.1. If S is a semi-algebra, then S = {finite disjoint unions of sets in

S} is an algebra. This is called the algebra generated by S.

Proof. Let By = UJ_1A; and Ey = Uj_; B;, where the unions are disjoint and
the sets are all in §. Then By N Ey = U; jA; N Bj € S. Thus S is closed under
finite intersections. Also, if B = U}_; A; € S then A° = N;AS. However, by the
definition of S, and S, we see that A° € S. This proves that S is an algebra.

Theorem 2.3. Let S be a semialgebra and let p be defined on S. Suppose u(0) =0
with the additional properties:

(i) IfE€S, E=J E;, E; €S8 disjoint, then u(F) = > pu(E;)
~ :

7

and

(ii)) If E€S, E= | E;, E; €S disjoint, then u(E) < > u(E;).
~ :

7
Then p has a unique extension [t to S which is a measure. In addition, if T is
o—finite, then & has a unique extension to a measure (which we continuo to call

i) to o(S), by the Carathéodary extension theorem
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Proof. Define Ti on S by

if £ =J;_, Ei, E; €S and the union is disjoint. We first verify that this is well
defined. That is, suppose we also have F = U;nzl Ej, where Ej € S and disjoint.
Then

E; = Ul(E NE;), E;= Ul(E N E;).

<

D wE) =) uwENE)=> ) wEnE)=>Y uk).

1=1 1=1 m n m

So, 1 is well defined. It remains to verify that @ so defined is a measure. We
postpone the proof of this to state the following lemma which will be used in its

proof.

Lemma 2.2. Suppose (i) above holds and let i be defined on S as above.

(a) IfE, E; €S, E; disjoint, with E = |J E;. Then u(E) = Y. u(E;).
e s

=1 A

L= =1

=1

Note that (a) gives more than (i) since E; € S not just S. Also, the sets in

(b) are not necessarily disjoint. We assume the Lemma for the moment.

o0
Next, let £ = U E;, E; € S where the sets are disjoint and assume, as
i=1
required by the definition of the measures on algebras, that E € S. Since E; =
n

U E;;, E;j € S, with these also disjoint, we have
j=1

> n(E;) g D D HEG) =D uEy).
i=1 (2]

i=1 j=1
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So, we may assume E; € S instead of S, otherwise replace it by E;;. Since

— n ~ ~
EeS, E= | Ej, E; € S and again disjoint sets, and we can write
j=1

Thus by assumption (ii),

Therefore,

which proves one of the inequalities.

For the apposite inequality we set (recall E = |J;°, E;) 4, = U, E; and
C,=ENAS sothat E= A, UC, and A,,C, €S and disjoint. Therefore,

fi(A) = i(A,) + A(Cy)

H(Bl) +...F E(Bn) + M(Cn)

n

v

w(B;)

1=1

with n arbitrary. This proves the other inequality. [

Proof of Lemma 2.2. Set E = |J Ej;, then E; =
~ ;

(). .

U Eij, Sij € S. By assumption
=1

p(A) = Z u(Ei;) = Z 1(E;)
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proving (a).
For (b), assume n = 1. If E C Ey, then
Ey,=FEU(EiNE°, ENE°€S.

A(E) < i(B) + i(Ey N E°) = A(Ey).

For n > 1, set

Then

E:EH(UEJ:EHHUWUMH&)
E

N F;). Now, the case n = 1 gives

where the last inequality follows from (a). O

Proof of Theorem 2.1. Let S = {(a,b]: —oo < a < b < co}. Set F(o0) = ilTrglo F(x)
and F(—o0) = wlliinoo F(z). These quantities exist since F' is increasing. Define for
any

p(a,b] = F(b) — F(a),
for any —oo < a < b < oo, where F(o0) > —o0, F(—00) < oo. Suppose (a,b] =

U (a;, b;], where the union is disjoint. By relabeling we may assume that
i=1

ap = a
b, =0b

a; = bi—l-
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Then p(a;, b;] = F(b;) — F(a;) and

which proves that condition (i) holds.

For (ii), let —00 < a < b < o0 and (a,b] C U(ai,bi] where the union is
i=1
disjoint. (We can also order them if we want.) By right continuity of F', given

€ > 0 there is a § > 0 such that
F(a+9)— F(a) <k,

or equivalently,

F(a+6) < F(a) +e.
Similarly, there is a n; > 0 such that
F(bz + ﬁi) < F(bl) + 5271,

for all 7. Now, {(a;, b; + n;)} forms a open cover for [a + ¢,b]. By compactness,
there is a finite subcover. Thus,
N

[a+ 0,b] C U(aia b +n;)

and
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Therefore by (b) of Lemma 2.2,

F(b) — F(a+9)=p(a+4,b

<Y pla, b+l

Therefore,

proving (ii) provided —oco < a < b < 0.

oo

If (a,b] C U(ai, bi], a and b arbitrary, and (A, B] C (a,b] for any —oo < A <

B < 00, we havle llay above
F(B) - F(4) < Z(F(bi) — F(a;))

and the result follows by taking limits. [

If F(x) =z, pis called the Lebesgue measure on R. If

0, <0
Flz)=} z, 0<z<1
1, z>1
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the measure we obtain is called the Lebesgue measure on Q2 = (0, 1]. Notice that

pu(Q2) = 1.

If 1 is a probability measure then F(z) = p(—o0,z| and lim, ., F(x) = 1.
limg) o F(x) = 0.

Problem 2.2. Let F' be the distribution function defined by

0, r<—1

Flz) - 14z, —-1<zx<0
2422, 0<z<?2
9, x> 2

and let p be the Lebesque—Stieltjes measure corresponding to F. Find u(E) for
(1) B ={2},

(ii) E =1[-1/2,3),

(i) E = (—1,0]U(1,2),

(iv) E = {z:|z| + 22% > 1}.

Proof of Theorem 2.3. For any E C Q we define p*(F) = inf > u(A;) where the

infimum is taken over all sequences of {A;} in A such that E C UA;. Let A* be
the collection of all subsets E' C €2 with the property that

pr(F) = p"(FNE)+p"(FNE),
for all sets F' C ). These two quantities satisfy:
(i) A* is a o—algebra and p* is a measure on A*.
(ii) If p*(F) =0, then E € A*.
(iii) AC A* and p*(F) = u(E), if E C A.

We begin the proof of (i)—(iii) with a simple but very useful observation. It
follows easily from the definition that Fy C Es implies p*(E1) < p*(F2) and that
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E C U2, E; implies
< ZM (E;)
j=1

Therefore,

pi(F) < p*(FNE) + " (FNES)
is always true. Hence, to prove that F € A*, we need to verify that
p(F) = p"(FNE) + p" (FNES),
for all F' € Q. Clearly by symmetry if £ € A* we have E€ € A*.
Suppose E; and E5 are in A*. Then for all F' C €,
W' (F) = w*(F 1 By) + i (F 1 ES)
= (W (F N E1NEy) + p*(FNENEY))
+ (W (FNEfNEy) + p"(ENET N EY))
> (FN(ELUEY))+ p (FN(EyUES)),
where we used the fact that

Ei1UE; C (E1NEx)U(ENES)U(E]N Ey)

and the subadditivity of p* observed above. We conclude that Fy U Ey € A*. That

is, A* is an algebra.
Now, suppose F; € A* are disjoint. Let I = U;x;l E;and A,
E, € A* we have (applying the definition with the set F'N A,,)
wW(FNA,)=p (FNA,NE,) +u (FNA,NES)

= (FNEp) +p"(FNAn_1)

= |J Ej. Since

j=1

=W (FNE,)+p(FNEy1)+p (FNA_2)

n

=Y W(FNEy).

i=1
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Now, the measurability of A,, together with this gives

p(F) = p"(F 0 Ap) + p*(F A7)

I
NE

pr(F N E;) 4+ p* (FN A7)
1

<.
Il

> wH(FNE;) +p (FNE°),
1

<.
Il

Let n — oo we find that

pr(F) = ZM*(FﬂEj) +pt(F N E°)
P (U5 (F N Ej)) + pt (F N E°)
p(FOE)+p (FNES) 2 p*(F),

which proves that F € A*. If we take F' = E we obtain
wi(E) =Y u(Ey).
j=1
From this we conclude that A* is closed under countable disjoint unions and that
p1* is countably additive. Since any countable union can be written as the disjoint

countable union, we see that A* is a ¢ algebra and that u* is a measure on it.

This proves (i).

If u*(E) =0 and F C €, then

p (FNE)+ u (FNES) =pu" (FnNE°

< u*(F).

Thus, E € A* and we have proved (ii).

For (iii), let £ € A. Clearly

p(E) < p(E).
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0o o 7j—1
Next, if E C | J E;, E; € A, we have E = |_] E;, where Ej = EN (Ej\ U Ej)

Jj=1 j=1 i—
and these sets are disjoint and their union is E. Since p is a measure on A, we

have

Since this holds for any countable covering of E by sets in A, we have p(FE) <
p*(E). Hence
w(E) = p*(E), for all E € A.

Next, let E € A. Let F C  and assume p*(F) < oo. For any € > 0, choose

E; € Awith F C | J E; and

Jj=1

> H(E) < (F) +.

Jj=1

Using again the fact that p is a measure on A,

=Y wE;NE)+ ) p(E;NE)

1 j=1
> p*(FNE)+ p*(FnE°)

and since ¢ > 0 is arbitrary, we have that £ € A*. This completes the proof of
(iii).

With (i)—(iii) out of the way, it is clear how to define *. Since A C A*,
and A* is a o—algebra, o(A) C A*. Define u(E) = p*(E) for E € o(A). This is
clearly a measure and it remains to prove that it is unique under the hypothesis
of o—finiteness of pu. First, the construction of the measure p* clearly shows that

whenever p is finite or o—finite, so are the measure p* and .
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Suppose there is another measure i on o(A) with u(F) = i(F) for all E € A.
Let E € o(A) have finite p* measure. Since o(A) C A*,

pH(E) =inf ¢ > u(E;):EC | JE;E; €A
j=1

=1

However, since u(E;) = fi(E;), we see that

This shows that

Now let E; € A be such that £ C U2, F; and
S u(E) < ' (B) +<.
j=1

Set E = UX, E; and E, = U?_, E;. Then

p*(E) = lim

k—o0

= lim [L(En)

k—oo
Since

we have
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Hence,

Since ¢ > 0 is arbitrary, u(E) = p*(F) = p*(E) for all E € o(A) of finite p*
measure. Since p* is o—finite, we can write any set £ = U2, (£2; N E) where the
union is disjoint and each of these sets have finite ;* measure. Using the fact that
both i and 7@ are measures, the uniqueness follows from what we have done for

the finite case. O

What is the difference between o(A) and A*? To properly answer this ques-

tion we need the following

Definition 2.5. The measure space (Q, F, i) is said to be complete if whenever

EecF and un(E) =0 then A€ F for all AC E.

By (ii), the measure space (€2, A*, u*) is complete. Now, if (2, F,pu) is a
measure space we define F* = {EUN : E € F, and N € F,u(N) = 0}. We
leave the easy exercise to the reader to check that F* is a o-algebra. We extend
the measure p to a measure on F* by defining p*(E U N) = p(E). The measure
space (€, F*, u*) is clearly complete. This measure space is called the completion

of (Q,F, ). We can now answer the above question.

Theorem 2.4. The space (Q, A*, 1*) is the completion of (2, 0(A),[).
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IT
INTEGRATION THEORY

81 Measurable Functions.

In this section we will assume that the space (Q2.F, u) is o—finite. We will say
that the set A C 2 is measurable if A € . When we say that A C R is measurable
we will always mean with respect to the Borel o—algebra B as defined in the last

chapter.

Definition 1.1. Let (2, F) be a measurable space. Let f be an extended real
valued function defined on 2. That is, the function f is allowed to take values in

{+00,0}. f is measurable relative to F if {w € Q: f(w) > a} € F for all a € R.

Remark 1.1. When (2, F, P) is a probability space and f : Q — R, we refer to

measurable functions as random variables.

Example 1.1. Let A C () be a measurable set. The indicator function of this set

is defined by
1 ifweAd

0 else.

La(w) = {

This function is clearly measurable since

Q 1<
{r:law)<al=<¢ 0 a<0
A 0<a<l1.

This definition is equivalent to several others as seen by the following
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Proposition 1.1. The following conditions are equivalent.
(i) {w: f(w) >a}eF foral aecR,

(ii) {w: f(w) < a} e F foralla € R,

(117) {w: f(w) < a} € F foralla € R,

(ii) {w: f(w) > a} € F for all « € R.

Proof. These follow from the fact that o-algebras are closed under countable
unions, intersections, and complementations together with the following two iden-

tities.

Wi f@) >0} = N{wi @) >a-3}

and

fw f@ >0 = Jlw: f@ za+ } D

Problem 1.1. Let f be a measurable function on (Q,F). Prove that the sets
{w : f(W) = +OO}7 {w : f(CU) = _00}7 {w : f((,U) < OO}, {w : f(CU) > _00}7 and

{w: —o0 < f(w) < o0} are all measurable.
Problem 1.2.

(i) Let (2, F, P) be a probability space. Let f : Q — R. Prove that f is measurable
if and only if f~Y(E) = {w: f(w) € E} € F for every Borel set E C R.

(ii) With f as in (i) define pu on the Borel sets of R by u(A) = P{w € Q: f(w) €
A}. Prove that p is a probability measure on (R, B).

Proposition 1.2. If f and fo are measurable, so are the functions fi + fa, f1fe,

max(f1, f2), min(f1, f2) and cfy, for any constant c.
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Proof. For the sum note that

{w: W) + L) =J{w: filw) <r}n{w: folw) <a-r}),

where the union is taken over all the rational. Again, the fact that countable
unions of measurable sets are measurable implies the measurability of the sum. In

the same way,

{w:max(f1(w), fa(w)) > a} ={w: filw) > a} U{w: fr(w) > a}

gives the measurability of max(fi, f2). The min(f1, f2) follows from this by taking

complements. As for the product, first observe that

{w: filw)>a}={w: filv) > Va}U{w: fi(w) < —Va}

and hence f? is measurable. But then writing

fife=< i+ f)° = f1—f3],

DN |

gives the measurability of the product. [

Proposition 1.3. Let {f,} be a sequence of measurable functions on (0, F), then

f=inf f,,, sup f,, limsup f,, liminf f,, are measurable functions.
n n

Proof. Clearly {inf f,, < a} = U{f, < a} and {sup,, fn > a} = U{f, > a} and

hence both sets are measurable. Also,

limsup f, = inf { sup fm}

n— oo m>n
and
liminf f,, = sup ( inf fm) ;
n— oo n m>n

the result follows from the first part. [
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Problem 1.3. Let f,, be a sequence of measurable functions. Let E = {w € ) :

lim f,,(w) exists}. Prove that E is measurable.

Problem 1.4. Let f,, be a sequence of measurable functions converging pointwise

to the function f. Proof that f is measurable.

Proposition 1.4.

(i) Let Q be a metric space and suppose the collection of all open sets are in the
sigma algebra F. Suppose f : 0 — R is continuous. Then [ is measurable.
In particular, a continuous function f : R™ — R is measurable relative to the

Borel o-algebra in R™.

(ii) Let ¢ : R — R be continuous and f : Q@ — R be measurable. Then ¥ (f) is

measurable.

Proof. These both follows from the fact that for every continuous function f,

{w: f(w) >a} = fHa,oc0) is open for every a. [

Problem 1.5. Suppose f is a measurable function. Prove that
(i) [, p =1,
(i) |fIP, p>0,
(iit) f* =max(f,0),
(iv) f~ = —min(f,0)
are all measurable functions.
Definition 1.2. Let f:{2 — R be measurable. The sigma algebra generated by f

is the sigma algebra in Q; generated by the collection {f~!(A): A € B}. This is
denoted by o(f).
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Definition 1.3. A function ¢ define on (2, F, ) is a simple function if ¢(w) =
n
Z a;14, where the A’s are disjoint measurable sets which form a partition of 2,

i=1
(UA4; = Q) and the a}s are constants.

Theorem 1.1. Let f:Q — [0, 00] be measurable. There exists a sequence of simple
functions {¢n} on Q with the property that 0 < p1(w) < Y2(w) < ... < f(w) and
on(w) — f(w), for every w € Q.

Proof. Fix n > 1 and for ¢ = 1,2,...,n2", define the measurable sets

afi—-1
A, = f 1[ TR 27)

Set
F, = f_1<[n> OO])
and define the simple functions
n2"

on@) =Y ’;1 1a, (W) +nlp, ().

clearly ¢, is a simple function and it satisfies ¢, (w) < ¢p+1(w) and ¢, (w) < f(w)

for all w.

Fix e > 0. Let w € Q. If f(w) < oo, then pick n so large that 27" < & and

f(w) <n. Then f(w) € [5E, 5%) for some ¢ = 1,2,...n2". Thus,

1—1
on

pn(w) =

and so,
f(@)) = en(w) <277

By our definition, if f(w) = oo then ¢, (w) = n for all n and we are done. [

§2 The Integral: Definition and Basic Properties.
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Definition 2.1. Let (2, F, 1) be a measure space.

(i) If p(w) = Z a;l4, is a simple function and E € F is measurable, we define

=1
the integral of the function ¢ over the set E by

/w(w)du = ZaiN(Ai NE). (2.1)

E

(We adapt the convention here, and for the rest of these notes, that 0-co = 0.)

(ii) If f > 0 is measurable we define the integral of f over the set E by

/E fdp = Sup /E edp, (2.2)

where the sup is over all simple functions ¢ with 0 < ¢ < f.

(iii) If f is measurable and at least one of the quantities |  fTdp or / pfduis
finite, we define the integral of f over F to be

/E fu = /E Fdp - /E fdp.
Jiflau= [ fraus [ 1w <o

we say that the function f is integrable over the set F. If E = () we denote

(iv) If

this collection of functions by L' ().

We should remark here that since in our definition of simple functions we did
not required the constants a; to be distinct, we may have different representations
for the simple functions . For example, if A; and A, are two disjoint measurable
sets then 14,04, and 14, + 14, both represents the same simple function. It is
clear from our definition of the integral that such representations lead to the same

quantity and hence the integral is well defined.

Here are some basic and easy properties of the integral.
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Proposition 2.1. Let f and g be two measurable functions on (2, F, ).
(i) If f < g on E, then [ fdu < [ gdp.
E E

(ii) If AC B and f >0, then{fd,u < [ fdp.
B

(iii) If ¢ is a constant, then [cfdp=c [ fdu.
E E

(iv) f =0 on E, then[ fdu =0 even if p(E) = co.
E

(v) If W(E) =0, then /fdu =0 even if f(x) =00 on E.
E

(i) 11§ 20, then [ fdp = [ gz san

E Q
Proposition 2.2. Let (2, F,n) be a measure space. Suppose ¢ and v are simple

functions.

(i) For E € F define
v(E) = | pdu.
/

The v is a measure on F.

(1) /(w+¢)du:/¢du+/wdﬂ-
Q Q

Q

Proof. Let E; € F, E=|JE;. Then

pdp = a;u(A;NE)

=1

v(FE) =

M= s

ai Y (AN E) = > aip(Ai N Ey)

[oe) n
i=1  j=1 j=11i=1

.

=1

By the definition of the integral, () = 0. This proves (i). (ii) follows from

(i) and we leave it to the reader.
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We now come to the “three” important limit theorems of integration: The
Lebesgue Monotone Convergence Theorem, Fatou’s lemma and the Lebesgue Dom-

inated Convergence theorem.
Theorem 2.1 (Lebesgue Monotone Convergence Theorem). Suppose {f,}
18 a sequence of measurable functions satisfying:
(i) 0 < fi(w) < fao(w) < ..., for every w € ),
and

(ii) frn(w) T flw), for every w € €.

Then
!h@T/ﬂw

Proof. Set

ozn:/fndu.
Q

Then «, is nondecreasing and it converges to « € [0, co]. Since

[ i< [ sa
Q Q

for all n we see that if @« = oo, then fQ fdp = oo and we are done. Assume

Jo fdp < oo. Since
a< / fdu.
Q

we need to prove the opposite inequality. Let 0 < ¢ < f be simple and let 0 < ¢ <
1. Set

Ep ={w: fu(w) = ¢ p(w)}.

Clearly, £y C Eo C ... In addition, suppose w € Q. If f(w) = 0 then p(w) =0
and w € Eq. If f(w) > 0 then cs(w) < f(w) and since f,(w) T f(w), we have that
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w € F, some n. Hence | J E,, = €2, or in our notation of Proposition 2.1, Chapter

I, E, T Q. Hence

/ Fodp > / Fodp
Q E,
>c

>c [ ol
E,
=cv(E,).

Let n T oco. By Proposition 2.2 above and Proposition 2.1 of Chapter I,

a> lim [ fpdp>cv(Q) = c/ ed
Q

n—oo Q

and therefore,

/ pdp < a,
QE

for all simple ¢ < f and

Sup/ pdp < a,
e<fJQ

proving the desired inequality. [

Corollary 2.1. Let {f,} be a sequence of nonnegative measurable functions and

set

f = Z fn(w)

/Q fp = i:jl /Q fudp.

Proof. Apply Theorem 2.1 to the sequence of functions

n
gn :ij-
Jj=1

Then
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Corollary 2.2 (First Borel-Contelli Lemma). Let {A,} be a sequence of

measurable sets. Suppose
oo
5 u(a
n=1

Then pu{A,,i.o.} =0.

Proof. Let f(w ZlA (w)- Then

/Q f(w)du

z .

Thus, f(w) < oo for almost every w € Q. That is, the set A where f(w) = oo has
p—measure 0. However, f(w) = oo if and only if w € A,, for infinitely many n. This

proves the corollary. [

Let p be the counting measure on Q2 = {1,2,3,... } and define the measurable

functions f by f(j) = a; where a; is a sequence of nonnegative constants. Then

/f )dp(j Z%

From this and Theorem 2.1 we have

Corollary 2.3. Let a;; > 0 for all i,j. Then

i=1 j=1 j=1i=1

The above theorem together with theorem 1.1 and proposition 2.2 gives
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Corollary 2.4. Let f be a nonnegative measurable function. Define

v(E) = /E fdu.

Amhzlgﬂu

for all nonnegative measurable functions g.

Then v is a measure and

Theorem 2.2 (Fatou’s Lemma). Let {f,} be a sequence of nonnegative mea-

surable functions. Then

/lim inf f,dp <lim inf/ frndp.
Q

Q

Proof. Set
gn(w) = inf fo(w), n=1,2,...

m>n
Then {g,} is a sequence of nonnegative measurable functions satisfying the hy-

pothesis of Theorem 2.1. Since

lim g,(w) = liminf f,(w)

n—oo n—oo

/%@S/hw,

/liminffndu:/limgnd,u
Q n—oo ) n

= lim gndi
Q

and

Theorem 2.1 gives

n—oo

< liminf/ fndp.
Q

n—oo

This proves the theorem. [
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Proposition 2.2. Let f be a measurable function. Then
| [ fdu| < [ 1fla
Q Q

Proof. We assume the right hand side is finite. Set 8 = /fdu. Take a = sign(p)
Q

so that a8 = |3|. Then

‘/Qfdu'zlﬁl
~a [ rin
- [ asin
glgﬂmu

Theorem 2.3 (The Lebesgue Dominated Convergence Theorem ). Let
{fn} be a sequence of measurable functions such that f,(w) — f(w) for every

w € Q. Suppose there is a g € L' () with |fn(w)| < g(w). Then f € L*(u) and

lim [ |fn = fldu=0.
Q

n—oo

In particular,

lim fnd,u:/fd,u.
Q Q

n—oo

Proof. Since |f(w)| = nh—{go |fn(w)] < g(w) we see that f € LY(u). Since |f, — f| <

29, 0 < 2g — |fn — f] and Fatou’s Lemma gives

0§/2gdu§ lim /29du+li_m(—/|fn—f|du)
Q n—oe Ja Q
— [ 29du~Tm [ |fu - flan
Q Q
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It follows from this that

m/{;lfn_fldﬂzo-

Mémw—émqsémﬁﬂm

the first part follows. The second part follows from the first. [

Since

Definition 2.2. Let (2, F, ) be a measure space. Let P be a property which a
point w € ) may or may not have. We say that P holds almost everywhere on
E, and write this as i.e. , if there exists a measurable subset N C F such that P

holds for all E\N and pu(N) = 0.

For example, we say that f,, — f almost everywhere if f,(w) — f(w) for all
w € ) except for a set of measure zero. In the same way, f = 0 almost everywhere

if f(w) = 0 except for a set of measure zero.

Proposition 2.3 (Chebyshev’s Inequality). Fiz 0 < p < oo and let f be a
nonnegative measurable function on (0, F,u). Then for any measurable set e we

have
1
p{w e E:€: f(w) > A} < —/ fPdu: .
N e
Proof.

Niu{w € E: f(w) > A} = APdp
(wEB:f(w)>A)

SLPWSLFW

which proves the proposition. [

Proposition 2.4.
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(i) Let f be a nonnegative measurable function. Suppose

E/f@:o.

Then f =0 a.e. on E.
(ii) Suppose f € L'(u) and /fd,u = 0 for all measurable sets E C . Then
E

f=0a.e on.
Proof. Observe that
e B £(w) > 0} = [J{w € 2 £w) > 1/n).
n=1
By Proposition 2.3,

w{w € E: f(w) > 1/n} < n/Efdu = 0.

Therefore, pu{ f(w) > 0} = 0, which proves (i).

For (ii), set F = {w: f(w) > 0} = {w: f(w) = fT(w)}. Then

wauzéﬂMZQ

which by (i) implies that f* = 0, a.e. But then

Zﬂmz—ZfWuZO
/Ef_du:O

which implies that f~ =0, a.e. U

and this again gives
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Definition 2.3. The function ¢: (a,b) — R (the “interval” (a,b) = R is permit-

ted) is convex if

(1 =Nz + Ay) < (1= A)ih(x) + Mb(y), (2.3)

forall 0 < A < 1.

An important property of convex functions is that they are always continuous.
This “easy” to see geometrically but the proof is not as trivial. What follows easily

from the definition is

Problem 2.1. Prove that (2.3) is equivalent to the following statement: For all

a<s<t<u<hb,
pt) —o(s) _ plu) —ot)
t—s - u—t

and conclude that a differentiable function is convex if and only if its derivative is

a nondecreasing function.

Proposition 2.5 (Jensen’s Inequality). Let (2, F,u) be a probability space.
Let f € LY (u) and a < f(w) < b. Suppose v is convex on (a,b). The (f) is

measurable and

v ( /Q fdu) < /Q W(f)dp.

Proof. The measurability of the function ¢ (f) follows from the continuity of
and the measurability of f using Proposition 1.4. Since a < f(w) < b for all w € Q

and p is a probability measure, we see that if

¢~ [ san

Q
then a < t < b. Let ¢(x) = c1x + c2 be the equation of the supporting line of
the convex function 1 at the point (¢, (t)). That is, ¢ satisfies £(¢) = ¥ (t) and
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P(x) > l(x) for all x € (a,b). The existence of such a line follows from Problem
2.1. The for all w € Q,

P(f(w) = erf(W) + e = £(f(w)).

Integrating this inequality and using the fact that pu(2) = 1, we have

/ B (@))dp > e / Fw)dp + e
Q Q

oy ( /Q f(w)du> — ( /Q f(w)du) |

which is the desired inequality. [J

Examples.

(i) Let ¢(z) = e*. Then

exp/fd,ug /efdu.
Q

Q

(ii) If @ = {1,2,...,n} with the measure p defined by u{i} = 1/n and the

function f given by f(i) = x;, we obtain
1 1. . -
exp{ﬁ(x1+ac2+...+a:n)} < E{e 4. Fe™ )
Setting y; = €¥ we obtain the Geometric mean inequality. That is,

(Yo oyn) " < =gt )

S|

More generally, extend this example in the following way.

Problem 2.2. Let oy, -+ ,a, be a sequence of positive numbers with aq + - -+ +

an =1 and let y1,--- ,yn be positive numbers. Prove that

yit o ypt < iy 4+ ann.
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Definition 2.4. Let (0, F, 1) be a measure space. Let 0 < p < oo and set

1/p
£l = ( / |f|pdu) .

We say that f € LP(u) if || fllp < oo. To define L™ (p) we set
E={mecR": p{w:|f(w)] >m} =0}

If E = 0, define ||flloo = oo. If E # 0, define ||f|loo = inf E. The function
fe L) if || flleo < oo

Suppose || f]loo < co. Since

o0

s = U 57 (17 + 3, ]

n=1

and puf (|| flloe + %, 00] =, we see || f|loc € E. The quantity || f||o is called the

n?

essential supremum of f.

Theorem 2.4.

(i) (Hélder’s inequality) Let 1 < p < oo and let q be its conjugate exponent. That
18, %%—% =1. Ifp=1 we take q = oco. Also note that when p = 2, ¢ = 2.
Let f € LP(u) and g € 19(u). Then fg € L*(u) and

[ 1sldu < 171l
(ii) (Minkowski’s inequality) Let 1 < p < oo. Then
1f +gllp < Ifllp + [lgllp-
Proof. If p=1and ¢ = 00, or ¢ = 1 and p = oo, we have |fg(w)| < ||g]lco|f(w)]-

This immediately gives the result when p =1 or p = co. Assume 1 < p < oo and

(without loss of generality) that both f and g are nonnegative. Let

1/p 1/q
A= (/Q fpd,u> and B = (/qu,u)
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If A =0, then f = 0 almost everywhere and if B = 0, then g = 0 almost everywhere
and in either case the result follows. Assume 0 < A < oo and same for B. Put

F=f/A>0, G=g/B. Then
/deM:/Gpduzl
Q Q

1 1
F(w) -Gw) < -FP 4+ -G1.
(w) - G(w) 5 .

and by Problem 2.2

Integrating both sides of this inequality gives

which implies the (i) after multiplying by A - B.

For (ii), the cases p = 1 and p = oo are again clear. Assume therefore that
1 < p < 0. As before, we may assume that both f and G are nonnegative. We

start by observing that since the function 1 (x) = 2P, x € R* is convex, we have
f+ag\’
2

/(f + g)Pdp < 2—@—1)/ fPdu + 2—@—1)/ gPdy.
Q Q Q

Thus, f + g € LP(du). Next,

1 1
_fP — 4P
" 39"

IN

This gives

(f+9)P =+ +" ' =ff+9"  +9(f+9)P"

together with Holder’s inequality and the fact that g(p — 1) = p, gives

[sarans ([ ra)” ([ orva)”
“([ra) " (frvora)”
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In the same way,

/Qg(f +g)Pdp < (/Q g”du) v (/Q(f —I—g)pdu)l/q.

Adding these inequalities we obtain

/Q(f+g)pdu§ {(/prdu)l/pjL (/Qgpdﬂ>1/p} {/Q(erg)pdu}l/q-

Since f 4 g € LP(du), we may divide by the last expression in brackets to obtain
the desired inequality. [J

For f, g € LP(u) define d(f,g9) = ||f — gllp- For 1 < p < oo, Minkowski’s

inequality shows that this function satisfies the triangle inequality. That is,

d(f,9)=f—gllp=1f=h+h—glp
<|f =2llp+ A —gllp
=d(f,h) +d(h,g),

for all f,g,h € LP(u). It follows that LP(u) is a metric space with respect to d(-, -).
Theorem 2.4. LP(u), 1 <p < oo, is complete with respect to d(- , -).

Lemma 2.1. Let gi be a sequence of functions in LP and (0 < p < 00) satisfying

1 k
9k — gn+1llp < (Z) L k=1,2,....

Then {gi} converges a.e.

Proof. Set
Ap = A{w: |gr(w) = grg1(w)] > 277}

By Chebyshev’s inequality,
p{An} < 2’“p/ |9k — gr11Pdp
Q
kp
()
—\4

1
2kp
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This shows that

Z pu(Ay) < oco.

By Corollary 2.2, u{A,, i.0.} = 0. Thus, for almost all w € {A,, i.0.}¢ there is an
N = N(w) such that

gk (W) — gr1(w)| < 27F,

for all k£ > N. It follows from this that {gi(w)} is Cauchy in R and hence { gx(w)}

converges. [

Lemma 2.2. The sequence of functions {fn} converges to f in L* if and only if
there is a set measurable set A with u(A) =0 such that f, — f uniformly on A°.
Also, the sequence {f,} is Cauchy in L™ if and only if there is a measurable set

A with p(A) =0 such that {f,} is uniformly Cauchy in A°.

Proof. We proof the first statement, leaving the second to the second to the reader.
Suppose || fn — flloo — 0. Then for each k > 1 there is an n > n(k) sufficiently
large so that ||f, — flloc < 4. Thus, there is a set Ag so such that p(A4) = 0
and |f,(w) — f(w)| < 4 for every w € Af. Let A = UAj. Then p(A) = 0 and
frn — f uniformly on A€. For the converse, suppose f,, — f uniformly on A¢ and
1(A) = 0. Then given € > 0 there is an N such that for all n > N and w € A€,
| fr(w)— f(w)| < e. This is the same as saying that || f,, — f]|lcc < eforalln > N. O

Proof of Theorem 2.4. Now, suppose {f,} is Cauchy in LP(u). That is, given any
e > 0, there is a N such that for all n,m > N, d(fn, fm) = || fa — fm]| < € for all

n,m > N. Assume 1 < p < oo. The for each £ =1,2,..., there is a n; such that

= Fnllp < (F

for all n,m > ng. Thus, f,, (w) — f a.e., by Lemma 2.1. We need to show that
f € LP and that it is the LP(u) limit of {f,}. Let € > 0. Take N so large that
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| fr—fmllp < € foralln,m > N. Fix such an m. Then by the pointwise convergence

of the subsequence and by Fatou’s Lemma we have
[ 17 = gulrdn= [l (5, = P
Q Q — 00
< liminf/ \frr — fml?
k—oo Jo
< P,
Therefore f,, — f in LP(u) and
/ ‘f - fm|pdlu <00
Q
for m sufficiently large. But then,
1fllp = [l = fon = fllp < [[fmllp + 1fm = Fllp,

which shows that f € LP(u).

Now, suppose p = oo. Let {f,} be Cauchy in L°°. There is a set A with
p(A) = 0 such that f,, is uniformly Cauchy on A€, by Lemma 2.2. That is, given
€ > 0 there is an N such that for all n,m > N and all w € A€,

‘fn(w) - fm(w)’ <E.

Therefore the sequence {f,} converges uniformly on A° to a function f. Define

f(w) =0 for w € A. Then f,, converges to f in L>(u) and f € L>(u). O

In the course of proving Theorem 2.4 we proved that if a sequence of functions
in LP, 1 < p < oo converges in LP(u), then there is a subsequence which converges

a.e. This result is of sufficient importance that we list it here as a corollary.

Corollary 2.5. Let f, € LP(u) with 1 < p < oo and f, — f in LP(u). Then

there exists a subsequence { fn, } with f,, — f a.e. as k — oo.

The following Proposition will be useful later.
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Proposition 2.6. Let f € L'(u). Given € > 0 there exists a § > 0 such that

/ |fldu < e whenever u(E) < 4.
E

Proof. Suppose the statement is false. Then we can find an € > 0 and a sequence

of measurable sets {E,,} with

/\flduze
E,
and
(Ea) < =
P Loy on

Let A, = U2, Ej and A =72, A, = {E, id.0.}. Then ) u(E,) < oo and by
the Borel-Cantelli Lemma, p(A) = 0. Also, A,,+1 C A, for all n and since

u(E) = [ |fldu

is a finite measure, we have

/ fldp = lim / Fldy
A n—oo [ 4
> lim | fldp
E,

n—oo

> €.

This is a contradiction since u(A) = 0 and therefore the integral of any function

over this set must be zero. [
§3 Types of convergence for measurable functions.

Definition 3.1. Let {f,} be a sequence of measurable functions on (2, F, u).
(i) fn — f in measure if for all ¢ > 0,

lim pfw € Q[ fulw) — ()| >} =0.

(ii) fn, — f almost uniformly if given € > 0 there is a set F € F with u(E) < ¢
such that f, — f uniformly on E°.
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Proposition 3.1. Let {f,} be measurable and 0 < p < oco. Suppose f, — f in

LP. Then, f, — f in measure.

Proof. By Chebyshev’s inequality

1
pllfn = f12 ) < o [ 1fa = 1P
& Ja
and the result follows. [

Example 3.1. Let Q = [0, 1] with the Lebesgue measure. Let
e 0<w< %
fr(w) =

Then f,, — 0 in measure but f, /4 0 in LP(u) for any 0 < p < oo. To see this

0 else

simply observe that

1
1
1 full = / (@) Pz = - e - oo
0 n

and that ||f, || = €™ — 00, as n — oo.

Proposition 3.2. Suppose f, — f almost uniformly. Then f, — f in measure

and almost everywhere.

Proof. Since f,, — f almost uniformly, given € > 0 there is a measurable set F
such that u(E) < € and f, — f uniformly on E°. Let > 0 be given. There is a
N = N(n) such that |f,(w) — f(w)| < n for all n > N and for all w € E€. That is,
{p:|fn(w) — f(w)| >n} C E, for all n > N. Hence, for all n > N,

pflfn(w) = fw)] =2 n} <e.
Since € > 0 was arbitrary we see that for all n > 0,
Jim p{[fn(w) = f(@)| 20} =0,

proving that f,, — f in measure.

Next, for each k take Ay € F with pu(Ag) < % and f, — f uniformly on Aj.
If E = U2 A¢, then f, — f on E and pu(E°) = p (N2, Ax) < p(Ag) < + for all

k. Thus p(E°) = 0 and we have the almost everywhere convergence as well. [
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Proposition 3.3. Suppose f,, — f in measure. Then there is a subsequence { fn, }

which converges almost uniformly to f.
Proof. Since

p{lfn = fl Z e} < pf{lfn = fl 2 €/2} + 1| fn — fl 2 €/2},

we see that p{f, — fm| > ¢} — 0 as n and m — oo. For each k, take ny such that

Nk+1 > Nk and

1 1
pllinw) = ()] 2 5} < 57
for all n, m > ny. Setting g = fn, and Ay = {w € Q:|gr+1(w) — gr(w)| > 2%} we

see that
> Ay < oo
k=1

By the Borel-Cantelli Lemma, Corollary 2.2, u{ A, i.0.} = 0. However, for every
w ¢ {A,, i.0.}, there is an N = N(w) such that

1
|gkt1(w) — gr(w)] < ok

for all £ > N. This implies that the sequence of real numbers {gx(w)} is Cauchy

and hence it converges to g(w). Thus g — g a.e.

To get the almost uniform convergence, set E,, = U2, Ai. Then p(E,) <
> re,, i(Ay) and this can be made smaller than € as soon as n is large enough. If

w ¢ E,, then

1
lgk (W) — grs1(w)] < oF

for all k € {n,n+1,n+2,...}. Thus gy — ¢ uniformly on E¢.
For the uniqueness, suppose f, — f in measure. Then f,,, — f in measure

also. Since we also have f,,, — ¢ almost uniformly clearly, f,,, — ¢ in measure

and hence f = g a.e. This completes the proof. [J
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Theorem 3.1 (Egoroff’s Theorem). Suppose (2, F, i) is a finite measure space
and that f, — f a.e. Then f, — f almost uniformly.

Proof. We use Problem 3.2 below. Let ¢ > 0 be given. For each k there is a n(k)
such that if

o0

n=n(k)

then p(Ay) < e/2%. Thus if

A= G Ay,
k=1

- 1

then p(A) < Z,u(Ak) < e. Now, if § > 0 take k so large that z < ¢ and then for
k=1

any n > n(k) and w € A, |fn(w) — f(w)| < + < 8. Thus f,, — f uniformly on

Ac. O

Let us recall that if {y,} is a sequence a sequence of real numbers then
yn converges to y if and only if every subsequence {y,, has a further subsequence

{Yn . } which converges to y. For measurable functions we have the following result.

Proposition 3.3. The sequence of measurable functions {fn,} on (2, F,u) con-
verges to f in measure if and only if every subsequence {f,,} contains a further

subsequence converging a.e. to f.

Proof. Let ¢ be a sequence converging down to 0. Then p{|f, — f| > ex} — 0, as

n — oo for each k. We therefore have a subsequence f,, satisfying

pllfuy — F1> 26} < o

Hence,

Yo {lfu = fl > e} < oo
k=1
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and therefore by the first Borel-Cantelli Lemma, u{|f,, — f| > € i.0.} = 0. Thus

| frn, — f| < ek eventually a.e. Thus f,, — f a.e.

For the converse, let ¢ > 0 and put y, = p{|fn — f| > ¢} and consider
the subsequence y,, . If every f,, subsequence has a subsequence fnkj such that
fn, — [ a.e. Then {yn, } has a subsequence. Yny., — 0. Therefore {yn} converges

to 0 and hence That is f,, — 0 in measure. [

Problem 3.1. Let Q = [0,00) with the Lebesque measure and define fp(w) =
1a, (w) where A, = {w € Q:n <w <n+ L1}, Prove that f, — 0 a.e., in measure

and in LP(p) but that f, / 0 almost uniformly.

Problem 3.2. Let (2, F,u) be a finite measure space. Prove that f, — f a.e. if
and only if for all e >0
lim p (U Ak(€)> =0
k=n

where

Ap(e) = {w € X [fe(w) = f(w)] = €}.

Problem 3.3.

(i) Give an example of a sequence of nonnegative measurable functions f, for

which we have strict inequality in Fatou’s Lemma.

(ii) Let (2, F, 1) be a measure space and {A,} be a sequence of measurable sets.

Recall that liminf A,, = |J () Ax and prove that

n=1k=n

p{liminf A, } <liminf u{A,}.

(converges) Suppose f, is a sequence of nonnegative measurable functions on (Q,F, )

which is pointwise decreasing to f. That is, f1(w) > fa(w) > -+ > 0 and
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fo(w) = f(w). Is it true that

lim fndu:/fdu?
Q Q

n—oo

Problem 3.4. Let (Q,F, P) be a probability space and suppose f € L*(P). Prove
that

i ], = exp{ | log]s1dP)
p—0 O
where exp{—o0} is defined to be zero.
Problem 3.5. Let (Q,F,u) be a finite measure space. Prove that the function

p{lfl > A}, for X > 0, is right continuous and nonincreasing. Furthermore, if

f, f1, fo are nonnegative measurable and A1, Ay are positive numbers with the prop-

erty that f < A\ f1 + Ao fa, then for all X > 0,

p{f > A+ 2A2)A < pffi > A} +p{fo > A}

Problem 3.6. Let {f,} be a nondecreasing sequence of measurable nonnegative

functions converging a.e. on §2 to f. Prove that

Tim p{fn > A} = p{f > A},

Problem 3.7. Let (2, F,u) be a measure space and suppose {f,} is a sequence

of measurable functions satisfying

Y idlfal > A} < o0
n=1

for some sequence of real numbers \,. Prove that

lim sup ’i\t—n‘ <1,

n—oo n
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Problem 3.8. Let (2, F, ) be a finite measure space. Let {f,} be a sequence of

measurable functions on this space.

(i) Prove that f, converges to f a.e. if and only if for any e > 0

lim pf{|fn — fur| > €, for somen’ >n>m} =0
m—00

(i) Prove that f, — 0 a.e. if and only if for all e > 0

1 fnl > €,i.0} =0

(converges) Suppose the functions are nonnegative. Prove that f, — oo a.e. if and only
iof for all M >0
w{fn < M,i.o.} =0

Problem 3.9. Let Q = [0,1] with its Lebesque measure. Suppose f € L'().
Prove that z™f € L'(Q) for everyn =1,2,... and compute

lim [ z"f(x)dx.

n—oo (9}

Problem 3.10. Let (2, F, ) be a finite measure space and f a nonnegative real

valued measurable function on ). Prove that

lim frdu
n—oo Q

exists, as a finite number, if and only if u{f > 1} = 0.
Problem 3.11. Suppose f € L*(p). Prove that

lim fdu=20

e J{IfI>n}
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Problem 3.12. Let Q = [0,1] and let (2, F, 1) be a finite measure space and f a
measurable function on this space. Let E be the set of all x € Q such that f(x) is

an integer. Prove that the set E is measurable and that

lim [ (cos(mf(z))*"dp = p(E)

n—oo Q

Problem 3.13. Let (2, F, P) be a probability space. Suppose f and g are positive

measurable function such that fg > 1 a.e. on ). Prove that

/fgdPZl
Q

Problem 3.14. Let (Q, F, P) be a probability space and suppose f € L*(P). Prove
that

iy |, = exp{ | 1og|71dP)
p—0 Q
where exp{—oo} is defined to be zero.

Problem 3.15. Let (2, F, P) be a probability space. Suppose f € L*°(P) and
| flloc > 0. Prove that

VAN
i (—fﬂ L ) = 1 fll

Problem 3.16. Let (2, F, P) be a probability space and f, be a sequence of mea-
surable functions converging to zero in measure. Let F be a bounded uniformly
continuous function on R. Prove that

lim | F(f,)dP = F(0)

n—oo Q
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Proclaim 3.17. Let (2, F, P) be a probability space.

(i) Suppose F : R — R is a continuous function and f, — f in measure. Prove

that F(f,) — F(f) in measure.

(i) If fn, >0 and f,, — f in measure. Then

/Q fdp < lim /ﬂ fudp.

(ii) Suppose |fn| < g where g € L*(u) and f, — f in measure. Then

/Q fdu = lim /Q Fadp.

Problem 3.18. Let (2, F,u) be a measure space and let f1, fa,+- , fn be mea-

surable functions. Suppose 1 < p < co. Prove that

1 — » 1 " )
JARSECTERT Y DOTERTE
and

LS @ Pdute) < 2314,

Problem 3.19. Let (Q2,F,u) be a measure space and let f, be a sequence of
measurable functions satisfying ||fnll, < n%, for 2 < p < oo. Prove that the

sequence {% fn} converges to zero almost everywhere.

Problem 3.20. Suppose (0, F, P) is a probability space and that f € L'(P) in

nonnegative. Prove that

NCRNTTE S/Q\/HdeP <1+l
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Problem 3.21. Compute, justifying all your steps,
n

lim (1 — f) e/ 2dx.
0

n— o0 n

Problem 3.22. Let probtrip be a probability space. Let f be a measurable function
with the property that ||f|2 =1 and || f||1 = . Prove that

i(l_nng{weQ:\f(M)lZ

N3

.
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IT1
PRODUCT MEASURES

Our goal in this chapter is to present the essentials of integration in product
space. We begin by defining the product measure. Many of the definitions and
properties of product measures are, in some sense, obvious. However, we need to
be properly state them and carefully prove them so that they may be freely used
in the subsequent Chapters.

§1 Definitions and Preliminaries.

Definition 1.1. If X and Y are any two sets, their Cartesian product X x Y is
the set of all order pairs {(z,y):x € X, y € Y}.

IfACX, BCY, AxB C XxY is called arectangle. Suppose (X, A), (X, B)
are measurable spaces. A measurable rectangle is a set of the form A x B, A €

A, B € B. A set of the form

Q=RiU...UR,,

where the R; are disjoint measurable rectangles, is called an elementary sets. We

denote this collection by &.

Exercise 1.1. Prove that the elementary sets form an algebra. That is, £ is closed

under complementation and finite unions.

We shall denote by Ax B the o—algebra generated by the measurable rectangle

which is the same as the o—algebra generated by the elementary sets.
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Theorem 1.1. Let E C X XY and define the projections
E,={yeY:(x,y) € E}, and EY={xe€ X:(z,y) € E}.
IfE€ Ax B, then E, e Band EY € A forallz € X andy €Y.

Proof. We shall only prove that if E € A x B then E, € B, the case of EY being
completely the same. For this, let € be the collection of all sets £ € A x B for
which E, € B for every x € X. We show (1 is a o—algebra containing all measurable

rectangles. To see this, note that if
E=AxB

then
_{B fzeA

0 ifxédA.
Thus, E C §2. The collection €2 also has the following properties:

(i) X xY € Q.
(ii) If E € Q then E° € Q.
This follows from the fact that (E€), = (F,)¢, and that A is a o—algebras.

(ili) If E; € Q then E = |J E; € Q.
=1

For (iii), observe that E, = |J;-,(E;), where (E;), € B. Once again, the fact that
A is a o algebras shows that E € Q. (i)—(iii) show that  is a o—algebra and the

theorem follows. [

We next show that the projections of measurable functions are measurable.
Let f: X xY — R. For fix x € X, define f.:Y — R by f.(y) = f(x,y) with a

similar definition for f¥.

In the case when we have several o—algebras it will be important to clearly

distinguish measurability relative to each one of these sigma algebras. We shall
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use the notation f € o(F) to mean that the function f is measurable relative to
the o-algebra F.
Theorem 1.2. Suppose f € o(A x B). Then
(i) For each x € X, f, € o(B)

(i1) For eachy € X, fY € o(A)
Proof. Let V be an open set in R. We need to show that f. (V) € B. Put

Q=f"'V)={(z,y): flz,y) € V}.

Since f € (A x B), Q € F x G. However,

Qe =1 ' (V) ={y: fa(y) € V},

and it follows by Theorem 1.1 that @), € B and hence f, € o(B). The same

argument proves (ii). O
Definition 1.2. A monotone class M is a collection of sets which is closed under
increasing unions and decreasing intersections. That is:

(1) If Ay Cc Ay C ... and A; € M, then UA; € M

(ii) If B DBy D... and B; € M, then NB; € M.

Lemma 1.1 (Monotone Class Theorem). Let Fy be an algebra of subsets of X and
let M be a monotone class containing Fy. If F denotes the o—algebra generated

by Fo then F C M.

Proof. Let Mg be the smallest monotone class containing Fy. That is, M is the
intersection of all the monotone classes which contain Fj. It is enough to show that

F C M. By Exercise 1.1, we only need to prove that M is an algebra. First we
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prove that M is closed under complementation. For this let Q = {E : E€ € My}.
It follows from the fact that M, is a monotone class that €2 is also a monotone
class and since Fy is an algebra, if £ € Fy then E € ). Thus, My C 2 and this

proves it.

Next, let Q1 = {F : EUF € M for all F' € Fy}. Again the fact that My is a
monotone class implies that 2 is also a monotone class and since clearly Fy C {21,
we have Mg C Q5. Define Qo = {F : FUE € M, for all E € My}. Again Q5 is a
monotone class. Let F' € Fy. Since Mg € Q4, if E € Mg, then EUF € M. Thus
Fo C Q9 and hence My C Q. Thus, if £, F' € My then EUF € M. This shows
that My is an algebra and completes the proof. [

Exercise 1.2. Prove that an algebra F is a o—algebra if and only if it is a mono-

tone class.

Exercise 1.3. Let Fy be an algebra and suppose the two measures p1 and ps agree
on Fo. Prove that they agree on the o—algebra F generated by Fy.
62 Fubini’s Theorem.

We begin this section with a lemma that will allow us to define the product

of two measures.

Lemma 2.1. Let (X, A, ) and (Y, B,v) be two o—finite measure spaces. Suppose
Qe AxB.If

p(r) =v(Qz) and P(y) = pu(Q"),

then

and

/X p(@)du@) = [ $)dv(y). (2.1)
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Remark 2.1. With the notation of §1 we can write

V(Q.) = /Y Yo y)dv(y) (2.2)

and
W(QY) = /X xo (@, y)du(z). (2.3)

Thus (2.1) is equivalent to

//XQ:rde )dp(x //Xwadu z)dv(y).

Remark 2.2. Lemma 2.1 allows us to define a new measure pu x v on A x B by

(1 x 1)(Q) = /X V(Qu)dpu(z) = /Y (QY)du(y). (2.4)

To see that this is indeed a measure let {Q;} be a disjoint sequence of sets in
A x B. Recalling that (UQ;), = U(Q;), and using the fact that v is a measure we

have

(nxv) UQ] =/X1/ LJlQ] du(z)
j=

= [v Qij du(z)
-/ iu@jw)dm
:i | H@i)duta)

Il
e T

(1 x v)(Q;),

.
Il
—

where the second to the last equality follows from the Monotone Convergence

Theorem.
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Proof of Lemma 2.1. We assume pu(X) < oo and v(Y) < oo. Let M be the
collection of all @ € A x B for which the conclusion of the Lemma is true. We will
prove that M is a monotone class which contains the elementary sets; £ C M. By
Exercise 1.1 and the Monotone class Theorem, this will show that M = F x §G.
This will be done in several stages. First we prove that rectangles are in M. That
is,

(i) Let Q=Ax B, A€ A, Be€ B. Then QQ € M.

To prove (i) observe that

Thus

and clearly ¢ € o(A). Similarly,

Y(y) = 1s(y)u(A) € B.

Integrating we obtain that

proving (i).

(i) Let Q1 C Qo C ..., Q; € M. Then Q = |J Q; € M.
j=1

To prove this, let
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and
Un(y) = (@) =n| [ Qs
j=1
Then
9071('1;) T Qp(x) - V(Q:c)
and

Since ¢, € o(A) and ¥, € o(B), we have ¢ € o(A) and ¢ € o(B). Also by
assumption

/X on(@)du(z) = /Y Unly)du(y).

for all n. By Monotone Convergence Theorem,

| etrinta) = [ etwavty)

Y
and we have proved (ii).

(i) Let Q1> Q2> ..., Q; € M. Then Q = () Q; € M.
j=1

The proof of this is the same as (ii) except this time we use the Dominated Conver-
gence Theorem. That is, this time the sequences p,,(z) = v((Qn)z), Yn(y) = n(QY)
are both decreasing to p(x) = v(Q,) and P (y) = pu(QY), respectively, and since
since both measures are finite, both sequences of functions are uniformly bounded.

(iv) Let {Q;} € M with Q; N Q; = (. Then G Qi € M.
i=1

J

For the proof of this, let Q,, = J @Q;. Then Q.. € M, since the sets are disjoint.
i=1
However, the Q)] s are increasing and it follows from (ii) that their union is in M,

proving (iv).

It follows from (i)—(iv) that M is a monotone class containing the elementary
sets £. By the Monotone Class Theorem and Exercise 1.1, AxB = ¢(£) = M. This

proves the Lemma for finite measure and the following exercise does the rest. [J
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Exercise 2.1. FExtend the proof of Lemma 2.1 to the case of o—finite measures.

Theorem 2.1 (Fubini’s Theorem). Let (X, A, u) and (Y, B,v) be o—finite measure
spaces. Let f € o(A x B).

(a) (Tonelli) If f is nonnegative and if

wmzéﬁ@w@,wwaﬁﬂmww, (2.5)

then
¢ € a(A), € a(B)

and
x)du(x) = xz,y)d V)= dv(y).
[ e@iuta) = [t = [ swit)
(b) If f is complex valued such that

o) = [ f@advy) = [ fplaly) <o (20)
Y b'e
and
[ ¢ @duta) < oc
b's
then
feL'Ypxv).
and (2.6) holds. A similarly statement holds for y in place ofz.
(c) If f € LY (u x v), then f, € L*(v) for a.e. x € X, fY € LY(u) for

a.e. y € Y, the functions defined in (2.5) are measurable and (2.6)
holds.

Proof of (a). If f = xq, @ € AxB, the result follows from Lemma 2.1. By linearity
we also have the result for simple functions. Let 0 < s; < ... be nonnegative simple

functions such that s, (z,y) T f(x,y) for every (z,y) € X x Y. Let

wn<x>:=‘/;<sn>w<y>dv<y>
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and
bnly) = /X ¥ (o) dp(z).
Then
/ on () dp(z) = / (2, 9)d (1 % A)
X XxXY
= / Vo (y)dp(y).
Y

Since sp(z,y) 1 f(z,y) for every (z,y) € X x Y, on(2) T ¢(x) and Yn(y) T ¢(y).

The Monotone Convergence Theorem implies the result. Parts (b) and (c) follow

directly from (a) and we leave these as exercises. [J
The assumption of o—finiteness is needed as the following example shows.

Example 2.1. X =Y = [0,1] with g = the Lebesgue measure and v = the
counting measure. Let f(z,y) = 1if z =y, f(z,y) = 0 if x # y. That is, the

function f is the characteristic function of the diagonal of the square. Then

/Xf(w,y)d/uc(x)z(), and /Yf(x,y)dV(y)zl-

Remark 2.1. Before we can integrate the function f in this example, however, we

need to verify that it (and hence its projections) is (are) measurable. This can be

j—1 7
Ij:[T’ ﬁ]

seen as follows: Set

and

Qn:(llXIl)U(IQXIQ)U...U(IRXIn).

Then @,, is measurable and so is Q = NQ,,, and hence also f .

Example 2.2. Consider the function

f(x,y):ﬁ on (0,1) x (0,1).
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with the p = v = Lebesgue measure. Then

/Ol/olf(w,y)dyd:vzﬂﬂ
/ / f(x,y)dzxdy = —7/2.

The problem here is that f ¢ L'{(0,1) x (0,1)} since

but

1
/O (e y)ldy > 1/22.

Let myj, = Lebesgue measure in R* and recall that m; is complete. That is,
if my(E) = 0 then E is Lebesgue measurable. However, m; X m; is not complete
since {z} x B, for any set B C R, has m; x mj— measure zero. Thus mgy # mq xm;.
What is needed here is the notion of the completion of a measure. We leave the

proof of the first two Theorems as exercises.
Theorem 2.2. If (X, F, ) is a measure space we let
Fr={ECcX:3Aand BeF, ACEC B and u(B\A) = 0}.

Then F* 1is a o—algebra and the function pu* defined on F* by

is a measure. The measure space (X, m*, u*) is complete. This new space is called

the completion of (X, F, ).

Theorem 2.3. Let m,, be the Lebesque measure on R", n =r + s. Then m,, =

(m, x m;)*, the completion of the product Lebesgue measures.

The next Theorem says that as far as Fubini’s theorem is concerned, we need

not worry about incomplete measure spaces.
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Theorem 2.4. Let (X, A, pn), (Y,B,v) be two complete o—finite measure spaces.
Theorems 2.1 remains valid if X v is replaced by (X v)* except that the functions
@ and ¢ are defined only almost everywhere relative to the measures p and v,

respectively.

Proof. The proof of this theorem follows from the following two facts.

(i) Let (X,F,un) be a measure space. Suppose f € o(F*). Then there is a
g € o(F) such that f = g a.e. with respect to p.

(ii) Let (X, A, u) and (Y, B, v) be two complete and o—finite measure spaces.
Suppose f € o((A x B)*) is such that f = 0 almost everywhere with
respect to p X v. Then for almost every x € X with respect to u, f, =0
a.e. with respect to v. In particular, f, € o(B) for almost every = € X.

A similar statement holds with y replacing x.

Let us assume (i) and (ii) for the moment. Then if f € o((A x B)*) is
nonnegative there is a g € (A x B) such that f = g a.e. with respect to u X v.

Now, apply Theorem 2.1 to g and the rest follows from (ii).

It remains to prove (i) and (ii). For (i), suppose that f = xg where E € A*.
By definition A C E C B with u(A\B) =0 and A and B € A. If we set g = x4
we have f = ¢ a.e. with respect to p and we have proved (i) for characteristic
function. We now extend this to simple functions and to nonnegative functions in
the usual way; details left to the reader. For (ii) let Q = {(x,y) : f(z,y) # 0}.
Then Q € (A x B)* and (i x v)(Q) = 0. By definition there is an Q € A x B such
that Q C Q and p x V(Q) = 0. By Theorem 2.1,

| H@dnta) =0

and so V(Qm) = 0 for almost every x with respect to u. Since 2, C Q. and the

space (Y, B, v) is complete, we see that 2, € B for almost every € X with respect
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to the measure p. Thus for almost every x € X the projection function f, € B
and f,(y) = 0 almost everywhere with respect to u. This completes the proof of
(ii) and hence the theorem. [J

Exercise 2.3. Let f be a nonnegative measurable function on (X,F,u). Prove

that for any 0 < p < oo,

/X f(@)Pdp(z) = p /0 TN e € X - f(2) > A\,

Exercise 2.4. Let (X, F,u) be a measure space. Suppose f and g are two nonneg-
ative functions satisfying the following inequality: There exists a constant C' such

that for all e > 0 and A > 0,
pl{r € X @ f(z) > 2\, g9(x) <ed} < Ce*pf{z € X : f(x) > A}

Prove that
/ f(@)Pdp < Cy / g(z)Pdp
X X
for any 0 < p < oo for which both integrals are finite where C, is a constant

depending on C and p.

Exercise 2.5. For any o € R define

1, a>0
sign(a) = 0, a=
— 1, a<0
Prove that
v .
0< sign(a)/ sm(—omc)dx < / wdm (2.7)
0 € 0 €
for all y > 0 and that
/ de = zsign(a) (2.8)
0 x 2

and
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Exercise 2.6. Prove that

2 oo
e = —/ 22X s (2.10)
m™Jo l+s

for all o > 0. Use (2.10), the fact that

oo _—t
e —a2/4td
—e t. (2.11)
/0 NG

Exercise 2.7. Let S"~! = {x € R" : |z| = 1} and for any Borel set E € S"1
set E={rf:0<r <1,0 € A}. Define the measure o on S"~' by o(A) = n|E|.
Notice that with this definition the surface area w,_1 of the sphere in R™ satisfies
Wno1 = Ny = QW%/F(%) where v, is the volume of the unit ball in R™. Prove

(integration in polar coordinates) that for all nonnegative Borel functions f on R™,

- f(z)dz = /OOO pnl (/S_ f(rﬁ)da(@)) dr.

In particular, if f is a radial function, that is, f(x) = f(|x|), then

e f(z)dx = % /OO "L f(r)dr = ny, /OO "L f(r)dr.

0 0

Exercise 2.8. Prove that for any r € R™ and any 0 < p < 00

/ € 2Pdo(€) = |27 / & Pdo ()
Snfl Snfl

where £ - x = &1 + - - - + £y 1S the inner product in R™.
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Exercise 2.9. Lete; = (1,0,...,0) and for any £ € S"~1 define,0 < 0 < 7 such
that eq - & = cos . Prove, by first integrating over Lo = {£ € S"~1 :e;-& = cos 0},
that for any 1 < p < 00,

/ €1Pdo(€) = wp_y / " cos 017 (sin 0)"2do. (2.12)
Sn—1 0

Use (2.12) and the fact that for any r > 0 and s > 0,

jus

? 21 py2s—1 9 _ L($)I(r)
2/0 (cosB) (sin ) do =

T(r+s)

([Rul, p. 194]) to prove that for any 1 < p < oo

) _2rte I(EH)
[ tabaste = o (213)

2
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IV
RANDOM VARABLES

§1 Some Basics.

From this point on, (2, F, 1) will denote a probability space. X : 2 — R is a

random variable if X is measurable relative to F. We will use the notation

E(X) = /Q XdP.

E(X) is called the expected value of X, or expectation of X. We recall from Prob-
lem — that if X is a random variable, then u(A4) = ux(A) = P{X € A}, A € B(R),
is a probability measure on (R, B(R)). This measure is called the distribution mea-
sure of the random variable X . Two random variables X, Y are equally distributed

if ux = px. This is often written as X <Y or X ~ Y.

If we take the set A = (—o0, z], for any x € R, the n
px(—00,2] = P{X < 2} = Fx(a)

defines a distribution function, as we saw in Chapter I. We list some additional
properties of this distribution function given the fact that px (R) =1 and since it

arises from the random variable X.
(i) Fx(b) = Fx(a) = p(a,b)].

(ii) lim Fx(x)=1, lim Fx(z)=0.

r—00 r—r— 00

(iii) With Fx(z—) = li%nFX(y), we see that Fx(z—) = P(X < x).
ylx

(iv) P{X =z} = px{z} = Fx(x) — Fx(xz—).
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It follows from (iv) that F' is continuous at x € R if and only if z is not an
atom of the measure p. That is, if and only if px{z} = 0. As we saw in Chapter
I, distribution functions are in a one-to-one correspondence with the probability
measures in (R, B). Also, as we have just seen, every random variable gives rise to

a distribution function. The following theorem completes this circle.

Theorem 1.1. Suppose F' is a distribution function. Then there is a probability

space (Q, F, P) and a random variable X defined on this space such that F' = Fx.

Proof. We take (2, F,u) with Q = (0,1), F = Borel sets and P the Lebesgue

measure. For each w € (), define

X(w) =sup{y: F(y) <w}.

We claim this is the desired random variable. Suppose we can show that for each
T € R,
{we: X(w)<z}={weQ:w<F(x)}. (1.1)

Clearly then X is measurable and also P{X(w) < z} = F(x), proving that F' =
Fx. To prove (1.1) let wp € {w € Q : w < F(x)}. That is, wg < F(x). Then
x ¢ {y: F(y) < wo} and therefore X (wp) < z. Thus {w € Q:w < F(r)} C {w €
Q: X(w) <z}

On the other hand, suppose wy > F'(z). Since F' is right continuous, there
exists € > 0 such that F(z + ¢€) < wp. Hence X (w) > x + € > x. This shows that
wo ¢ {w € Q: X{w} <z} and concludes the proof. O

Theorem 1.2. Suppose X is a random variable and let G : R — R be Borel
measurable. Suppose in addition that G is nonnegative or that E|G(X)| < oo.
Then

/G(X(w))d(w) = E(G(X)) Z/G(y)dﬂx(y)- (1.2)
Q R
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Proof. Let B C B(R). Then
E(1p(X(w)) = P{X € B}

ZMX(B):/Bd,uX

= / 1p(y)dux ().
R

Thus the result holds for indicator functions. By linearity, it holds for simple
functions. Now , suppose G is nonnegative. Let ¢,, be a sequence of nonnegative
simple functions converging pointwise up to G. By the Monotone Convergence

Theorem,
BG(X() = [ Gladux ()
If E|G(X)| < oo write

G(X(w) =GT(X(w)) = G7(X(w)).

Apply the result for nonnegative G' to G and G~ and subtract the two using the
fact that F(G(X)) < oco. O

More generally let X7, Xs5,...,X,, be n-random variables and define their
join distribution by
pt(A) = P{(X1,Xo,...,X,) € A}, A€ BR").
p' is then a Borel probability measure on (R”,B). As before, if G : R" — R is

Borel measurable nonnegative or E(G(X1, Xs,...,X,)) < 0o, then

E(G(X;(w), Xao(w),...,Xn(w))) = - G(x1,x2,...,xp)du™(x1,. .., Ty).

The quantity EXP?, for 1 < p < oo is called the p—th moment of the random
variable X. The case and the variance is defined by var(X) = E|X — m/|? Note
that by expanding this quantity we can write

var(X) = EX? —2(EX)? + (EX)?

=EX® - (EX)?
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If we take the function G(z) = 2P then we can write the p—th moments in terms

of the distribution as

EXp:/:cpduX
R

and with G(x) = (z = m)? we can write the variance as
var(X) = /(:1: —m)?du
R
= / 22dux —m?.
R

Now, recall that if f is a nonnegative measurable function on ({2, F, P) then

u(a) = [ rar

defines a new measure on (2, F) and

/diu:/ﬂgfdP. (1.3)

In particular, suppose f is a nonnegative borel measurable function in R with

/R F@)dz =1

where here and for the rest of these notes we will simply write dx in place of dm

when m is the Lebesgue measure. Then
Flz) = / F(t)dt

is a distribution function. Hence if u(A) = / fdt, A € B(R) then p is a probability
A

measure and since

b
plad) = [ f(0yit = F o) - Fla),
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for all interval (a,b] we see that p ~ F (by the construction in Chapter I). Let X
be a random variable with this distribution function. Then by (1.3) and Theorem

1.2,

P6(X)) = [ a@in(e) = [ gla)f(@)de (1.4

R
Distributions arising from such f’s are called absolutely continuous distributions.
We shall now give several classical examples of such distributions. The function f

is called the density of the random variable associated with the distribution.

Example 1.1. The Uniform distribution on (0,1).

Then

0 <0
Flz)=¢ 0<z<1
1 x>1

If we take a random variable with this distribution we find that the variance

var(X) = {5 and that the mean m = 3.

N|—

Example 1.2. The exponential distribution of parameter \. Let A > 0 and set

f(z) { )\e_>““, x>0
) =
0 else

If X is a random variable with associated to this density, we write X ~

exp(A).
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Example 1.3. The Cauchy distribution of parameter a. Set

1 a
T a? + x?

flz) =

We leave it to the reader to verify that if the random variable X has this
distribution then E|X| = oo.

Example 1.3. The normal distribution. Set

The corresponding random variable is the normal distribution. We write X ~

N(0,1) By symmetry,

1 o2
E(X)= E/Rxe_2da: = 0.

To compute the variance let us recall first that for any a > 0,

[ee]
F(a):/ to e~ tdt.
0
We note that
x2 o0 962 g 1
/x26_2da::2/ x26_2da::2\/§/ u2e “dx
R 0 0

= 2\/§F(;) = 2f1r(% +1) = %r(%) =V2r

and hence var(X) = 1. If we take o > 0 and p € R, and set

1 —(z—p)?
f@) = e T
(2wo?)

we get the normal distribution with mean p and variance o and write X ~ N(u, o).

For this we have Ex = p and var(X) = o2.
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Example 1.4. The gamma distribution arises from

L)\axa—le—)\m x>0

f(z) = { -

0, x<O.

We write X ~ I'(a, \) when the random variable X has this density.

Random variables which take only discrete values are appropriately called

“discrete random variables.” Here are some examples.

Example 1.5. X is a Bernoulli random variable with parameter p, 0 < p <1, if

X takes only two values one with probability p and the other with probability 1 — p.
PX=1)=pand P(X=0)=1—-p

For this random variable we have
EX=p-14+(1-p)-0=p,
EX? =12 -p=p

and

var(X) =p—p* = p(1 —p),

Example 1.6. We say X has Poisson distribution of parameter A if

)\k
P{X:k}:e’Ag k=0,1,2,....
For this random variable,
> e—A)\k > )\k—l
EX=) k = e =
S

and
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Example 1.7. The geometric distribution of parameter p. For 0 < p < 1 define

P{X =k} =p(1 —p)* !, for k=1,2,...

The random variable represents the number of independent trial needed to

observe an event with probability p. By the geometric series,

oo

Rl
> (1—p) =

k=1

and we leave it to the reader to verify that

1
EN = —
p
and
(V) =127
var = .
p2

62 Independence.

Definition 2.1.

(i) The collection F1,Fa,...,Fn of c—algebras is said to be independent if when-
ever Ay € Fj, Ay € Fo,..., Ay, € F,, then

P(n_,4;) = [[ P4)).
j=1
(i) A collection {X; : 1 < j < n} of random variables is said to be (totally)
independent if for any {B; : 1 < j < n} of Borel sets in R,

P{X, € B;,X| € By,... X, € By} = P{ ﬁl (X; € B))} = [[ PLX; € B;}.
J:

j=1

(iii) The collection of measurable subsets Ay, As, ..., A, in a o—algebra F is in-

dependent if for any subset I C {1,2,...,n} we have

Pe()A) ¢ =[]P{45}

jel jerI
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Whenever we have a sequence { X1, ..., X, } of independent random variables
with the same distribution, we say that the random variables are identically dis-
tributed and write this as i.i.d. We note that (iii) is equivalent to asking that the
random variables 14,,14,,...,14, are independent. Indeed, for one direction we
take B; = {1} for j € I and B; = R for j ¢ I. For the other direction the reader
is asked to do

Problem 2.1. Let A;, As,..., A, be independent. Proof that A, AS,...AS and

1a,,14,,...,14, are independent.

Problem 2.2. Let X and Y be two random variable and set F1 = o(X) and
Fo = o(Y). (Recall that the sigma algebra generated by the random X, denoted
o(X), is the sigma algebra generated by the sets X 1{B} where B ranges over
all Borel sets in R.) Prove that X,Y are independent if and only if F1,Fo are
mndependent.
Suppose {X7, Xo,..., X, } are independent and set
p"(B) = P{Xy,...,X,) € B} B € B(R"),

as in §1. Then with B = By x --- X B, we see that

p"(By X --- X By) = H 15 (By)

=1
and hence
P = X X g
where the right hand side is the product measure constructed from g1, ..., u, as

in Chapter III. As we did earlier. Thus for this probability measure on (R"™,B),

the corresponding n-dimensional distribution is
F(z) =[] Fx, (=),
j=1

where © = (21, z2,...,Zn))-
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Definition 2.2. Suppose A C F. Ais a w-system if it is closed under intersections:
A,Be A= AN B € A. The subcollection £ C F is a A-system if (i) Q € L, (i)
A BeLand ACB=B\Ae€ Land (ili) A,€Land A, 1A= A€ L.

Theorem 2.1. Suppose A is a w-system and L is a \-system and A C L. Then
o(A) C L.

Theorem 2.2. Let o and v be two probability measures on (2, F). Suppose they
agree on the w-system A and that there is a sequence of sets A, € A with A, T (2.
Then v = on o(A)

Theorem 2.3. Suppose Ai,As,..., A, are independent and mw-systems. Then
0(Az),0(Az),...,0(A,) are independent.

Corollary 2.1. The random variables X1, Xo, ..., X,, are independent if and only

if for all x = {x1,...,z,}, z; € (—00, 0].
Fle) = [[ Fx, (@), (2.1)
j=1

where F' 1is the distribution function of the measure p™.

Proof. We have already seen that if the random variables are independent then
the distribution function F' satisfies 2.1. For the other direction let x € R™ and set
A; be the sets of the form {X; < x;}. Then

{Xi <2 N {X; <y} ={Xs <z ANy} € Ain
Therefore the collection A; is a m-system. o(A;) = o(X). O

Corollary 2.2, pu" = 1 X -+ X fip.
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Corollary 2.3. Let X1,...,X, with X; > 0 or E|X;| < oo be independent. Then

E ﬁxi :ﬁE(XZ»).
j=1 i=1

Proof. Applying Fubini’s Theorem with f(x1,...x,) = x1 -z, we have

| @t <o m) = [ odima)e [ sdpae).

It follows as in the proof of Corollary 1.3 that if Xy,..., X,, are independent
and g > 0 or if E|[]}_; g(Xi)| < oo, then

E (Hg(&)) = [1B(s(x:)).

We warn the reader not to make any inferences in the opposite direction. It may
happen that E(XY) = (F(X)E(Y) and yet X and Y may not be independent.

Take the two random variables X and Y with joint distributions given by

xX\Y |1 —1
1 0
0 b
-1 |0

0
a
c
a

o o O

with 2a +2b+ ¢ = 1, a,b,c > 0. Then XY = 0 and E(X)E(Y) = 0. Also by
symmetry, FX = FY = 0. However, the random variables are not independent.
Why? Well, observe that P(X = 1,Y = 1) = 0 and that P(X =1) = P(X =
1,Y=1)=ab#0.

Definition 2.2. If F' and G are two distribution functions we define their convo-

lution by
FxG(z) = /RF(Z —y)du(y)
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where p is the probability measure associated with G. The right hand side is often

also written as
| ¥ - pacu)
R

In this notes we will use both notations.

Theorem 2.4. If X andY are independent with X ~ Fx,Y ~ Gy, then X4+Y ~
Fx@G.

Proof. Let Let us fix z € R. Define

h(z,y) = Lary<z) (2, 9)
Then
Fxyy(z)=P{X+Y <2}
= E(h(X,Y))

= /}R2 h(z,y)d(pux X py)(z,y)

:/R</Rh(x,y)d,ux($)) dpy (y)
:/R</R 1oo,zy)(:z;)dux(a?)) dpy (y)

_ / px(=o0,z = )y (4) = [ F(z = 9)dGw)

R

OJ

Corollary 2.4. Suppose X has a density f and Y ~ G, and X and Y are inde-
pendent. Then X +Y has density

h(x) = / f(z — 4)dG(y).

If both X and Y have densities with g denoting the density of Y. Then

h(x) = / f(& - y)g(y)dy.
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Proof.
Fxiy(z) = /RF(Z —y)dG(y)

-/ :yfmdma(y)

= /R/Oo f(u—y)dudG(y)
=/iméfw—yMGwMu

N /_; {/R fu— y)g(y)dy} du,

which completes the proof. [J
Problem 2.1. Let X ~T'(a,\) andY ~ T'(8,\). Prove that X +Y ~ T'(a+0, ).

§3 Construction of independent random variables.

In the previous section we have given various properties of independent ran-
dom variables. However, we have not yet discussed their existence. If we are given
a finite sequence F1, ... F,, of distribution functions, it is easy to construct inde-
pendent random variables with this distributions. To do this, let = R™ and

F = B(R"™). Let P be the measure on this space such that
P((ay,b1] x -+ % (an,bn]) = [ (F(b;) — Fy(ay)).
j=1

Define the random variables X, : @ — R by X,(w) = w;, where w = (w1, ..., wy,).

Then for any z; € R,
P(XjSIJ’):P(RX"'X(—OO,.T]']XRX"'XR):FJ'(ZE]').

Thus X; ~ F}. Clearly, these random variables are independent by Corollary 2.1.
It is, however, extremely important to know that we can do this for infinitely many

distributions.
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Theorem 3.1. Let {F;} be a finite or infinite sequence of distribution functions.
Then there exists a probability space (Q, F, P) and a sequence of independent ran-

dom wvariables X; on this space with X; ~ Fj.

Let N = {1,2,...} and let RY be the space of infinite sequences of real
numbers. That is, RY = {w = (w1,wq,...) : w; € R}. Let B(RY) be the o-
algebra on RY generated by the finite dimensional sets. That is, sets of the form

{weRY:w; € B;,1 <i<n}, B; € BR).

Theorem 3.2 (Kolmogovov’s Extension Theorem). Suppose we are given

probability measures p, on (R™, B(R™)) which are consistent. That is,
pnt1(ar, br] X -+ X (ap, bp] X R) = pp(ag,b] X -+ X (ap, byl
Then there exists a probability measure P on (RN, B(RY)) such that

P{w:w; € (a;,b;],1 <i<n}=p,((ar,b1] x -+ X (an,by)).

The Means above p,, are consistent. Now, define
X;:RY R
by
X (w) = wj.
Then {X,} are independent under the extension measure and X; ~ F}.

A different way of constructing independent random variables is the following,
at least Bernoulli random variables, is as follows. Consider 2 = (0, 1] and recall

that for z € (0,1) we can write

E

n

\V)

gy
T=)
n=1
where €, is either 0 or 1. (This representation in actually unique except for x the

dyadic nationals.
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Problem 3.1. Define X,,(x) = €,. Prove that the sequence {X,} of random

variables is independent.

Problem 3.2. Let {A,} be a sequence of independent sets. Prove that
P{( A} =] P{A;}
j=1 j=1

and
(e o]

P{U Ay =1-TJ - P{4;})

j=1

Problem 3.3. Let {Xy,...,X,} be independent random variables with X; ~ Fj.

Fin the distribution of the random variables maxi<j<, X; and mini<;j<, Xj.

Problem 3.4. Let {X,} be independent random variables and { f,} be Borel mea-

surable. Prove that the sequence of random variables {fn(Xy)} is independent.

Problem 3.5. Suppose X andY are independent random variables and that X +
Y € LP(P) for some 0 < p < co. Prove that both X andY must also be in LP(P).

Problem 3.6. The covariance of two random variables X and Y is defined by

Cov(X,Y) = E[(X — EX)(Y — EY)]

= E(XY) - E(X)E(Y).

Prove that

var(X1 + Xo+ -+ X)) = Zvar(Xj) + Z Cov(X;, X;)
j=1 ij=Li%]

and conclude that if the random variables are independent then

var(X,1 + Xo+ -+ X)) = Zvar(Xj)
j=1
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\"
THE CLASSICAL LIMIT THEOREMS

81 Bernoulli Trials.
Consider the sequence of independent random variables which arise from
tossing a fair coin.

X, — { 1 with probability p
1 0 with probability 1 —p

If we use 1 to denote success (=heads) and 0 to denote failure (=tails) and S,,, for

the number of successes in n -trials, we can write
n
Sn = E X;.
Jj=1

We can compute and find that the probability of exactly j successes in n

trials is

P{S, =7} )P{any specific sequence of n trials with exactly j heads}

Xt
(o
(ro-o

P’ (1= p)" 7.

J'(n J)
This is called Bernoulli’s formula. Let us take p = 1/2 which represents a fair
coin. Then % denotes the relative frequency of heads in n trials, or, the average
number of successes in n trials. We should expect, in the long run, for this to be

1/2. The precise statement of this is
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Theorem 1.1 (Bernoulli’s “Law of averages,” or ‘Weak low of large num-
bers”). As n—increases, the probability that the average number of successes de-

viates Jjrom 5 0y more an any preassignea numoer tenas to zero. at 1s,
ates from % b th jgned number tends ¢ That i

S, 1
P{|7—§|>5}—>0, as n — oo.

Let = € [0, 1] and consider its dyadic representation. That is, write

with €,, = 0 or 1. The number z is a normal number if each digit occurs the “right”

proportion of times, namely %

Theorem 1.2 (Borel 1909). FExcept for a set of Lebesque measure zero, all
numbers in [0,1] are normal numbers. That is, X, (z) = €, and S, is the partial
Sp(x) 1

sum of these random variables, we have =%~ — 5 a.s. as n — 0.

The rest of this chapter is devoted to proving various generalizations of these

results.

§2 L? and Weak Laws.

First, to conform to the language of probability we shall say that a sequence of
random variables X,, converges almost surely, and write this as a.s., if it converges
a.e. as defined in the Chapter II. If the convergence is in measure we shall say that

X,, — X in probability. That is, X,, — X if for all € > 0,
P{|X, — X|>¢e} — 0asn— oc.

We recall that X,, — X in L? then X,, — X in probability and that there is a
subsequence X,,, — X a.s. In addition, recall that by Problem 3.8 in Chapter II,
X, — Y a.s. iff for any € > 0,

lim P{|Y, —Y|<eforalln>m}=1 (2.1)
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or

lim P{|X, — X|>¢foralln>m}=0. (2.2)

The proofs of these results are based on a convenient characterization of a.s. con-

vergence. Set
A = (V) {IXn — X[ < ¢}
={|X, — X| <eforalln>m}

so that

As = {|X,, — X| > ¢ for some n > m}.

Therefore,

{IXn = X|>e io}= ) [J{Xn—X|>¢}

m=1n=m
oo
_ c
- 4
m=1

However, since X,, — X a.s. if and only if | X,, — X| < ¢, eventually almost surely,

we see that X,, — X a.s. if and only if

P{|X, — X|>¢ i.0.}= lim P{A;}=0. (2.3)
Now, (2.1) and (2.2) follow easily from this. Suppose there is a measurable
set N with P(N) = 0 such that for all w € Qyp = Q\N, X, (wo) — X(wo).
Set

Am(e) = [ {IXn — X[ <&} (2.3.)

A (e) C Apms(e). Now, for each wy € g there exists an M (wp,€) such that for
all n> M(wo,e), | Xy, — X| <e. Therefore, w € Apr(wy,e). Thus

Qo C fj Am(E)

m=1
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and therefore

1=P(Q) = lim P{A,(e)},

which proves that (2.1) holds. Conversely, suppose (2.1) holds for all ¢ > 0 and
the A,, () are as in (2.3) and A(e) =J - _, Am(€). Then

m=1

P{AE)} = P{|J An(e)} = 1.

m=1

Let wp € A(e). Then for wg € A(e) there exists m = m(wp, €) such that | X,,—X| <
e Let e = {1/n}. Set

A= A(%).
Then
P(A) = lim P(A(2)) =1

n— oo n
and therefore if wy € A we have wy € A(1/n) for all n. Therefore | X, (wy) —
X (wo)| < 1/n which is the same as X, (wg) — X (wp)

Theorem 2.1 (L*~weak law). Let {X;} be a sequence of uncorrelated random

variables. That is, suppose EX;X; = EX;EX;. Assume that EX; = p and that

var (X;) < C for all i, where C is a constant. Let S,, = ZXZ" Then % — It as
i=1
n — oo in L?(P) and in probability.

Sn,
Corollary 2.1. Suppose X; are i.i.d with EX; = u, var (X;) < co. Then — — p
n
in L? and in probability.

Proof. We begin by recalling from Problem that if X; are uncorrelated and E(X?) <
oo then var(X; + ...+ X,) =var(Xy) + ... +var(X,) and that

var(cX) = c?var(X) for any constant c. We need to verify that

2

— 0.

E‘&—u
n
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Observe that E (&> = p and therefore,
n

2
E & — | =var (&)
n n
1
= g var (Sn)

[
3w| —_
<
&
=
s

and this last term goes to zero as n goes to infinity. This proves the L?. Since
convergence in LP implies convergence in probability for any 0 < p < oo, the

result follows. O

The assumption in Theorem Here is a standard application of the above

weak—law.

Theorem 2.2 (The Weierstrass approximation Theorem). Let f be a con-
tinuous function on [0,1]. Then there exists a sequence p,, of polynomials such that

pn — [ uniformly on [0, 1].

Proof. Without loss of generality we may assume that f(0) = f(1) = 0 for if this
is not the case apply the result to g(z) = f(z) — f(0) — z(f(1) — £(0)). Put

) =3 (7)o = a5

i=o \J

The functions p, (z) are clearly polynomials. These are called the Bernstein poly-

recalling that

nomials of degree n associated with f.
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Let X1, X5,... ii.d according to the distribution: P(X; = 1) =z, 0 < = < 1.
P(X; =0) =1—z so that E(X;) = z and var(X;) = z(1 — x). The if S,, denotes
their partial sums we have from the above calculation that
P{S, =j} = (") z! (1 —x)" 7.
J
Thus
n . i .
B /) = 3 (1) (2 ) = )

<
I
o

as n — oo. Also, S, /n — x in probability. By Chebyshev’s’s inequality,

Sh 1 Sh
uno_ < =
P{n x’>5} 52var<n>
=5 var(Sy,)
a(l—z)
no?
< 1
— 4nd?

for all z € [0,1] since z(1 — z) < 1. Set M = || f|| and let & > 0. There exists a
d > 0 such that |f(z) — f(y)| < e when |z —y| < §. Thus

i) ~ £ = |1 (32 - fia)
- [e((5) - 10)
Ve

_ (%) - slar
{IS” —z|<d} n
+ (5_)_ P
{|Sn —z|>6 n
<€+2MP{ - >5}
n

Now, the right hand side can be made smaller than 2¢ by taking n large enough
and independent of x. This proves the result. [
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The assumption that the variances of the random variables are uniformly

bounded can be considerably weaken.

Theorem 2.3. Let X; be i.i.d. and assume
AP{|X;| > A} —0 (1.3)

as A\ — oo. Let S,, = Z;L:1 X; and pn, = E(X11(1x,|<n))- Then

Sn
__Iu/n_)o
n

i probability.

Remark 2.1. The condition (1.83) is necessary to have a sequence of numbers a,,
such that % — a, — 0 in probability. For this, we refer the reader to Feller, Vol

IT (1971).
Before proving the theorem we have a

Corollary 2.2. Let X; be i.i.d. with E|X1| < cc0. Let p = EX;. Then 2= — i in
probability.

Proof of Corollary. First, by the Monotone Convergence Theorem and Cheby-
shev’s’s inequality, AP{|X;| > A} = AP{|X1| > A\} — 0as A — oo and p,, —
E(X) = u. Hence,

> 6}

AU =)= 747
> 5/2} + P{pn — p| > ¢/2}

— = fi — P
n

n

<Pf|2

__Iuln
n

and these two terms go to zero as n — co. [J
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Lemma 2.1 ( triangular arrays). Let X, ;,1 < k < n,

n=12,... be a

triangular array of random variables and assume that for eachn, X, 1,1 <k <n,

are independent. Let b,, > 0, b, — o0 as n — oo and define the truncated random

variables by Yn’k = Xn k11X, o|<bn)- Suppose that

(i) ZP{]Xnk| > by,) — 0, as n — 0.

n=1

R —
(1) ) E EXiyk — 0 as n — 0.
" k=1

Put a,, = Z Eymk and set Sy, = Xp1+Xpno+ ...+ X,

k=1

Sn_an

bn

— 0
in probability.
Proof. Let S, = le +...+ Yn’n. Then

|Sn_an| . Sn_an
P{ b >epr=P b

< P{S, ¢§n}+P{|S”b;“"| >

However,

P{Sn 75 Sn} S P{ U {Xn,k‘ 7& Xn,k}}
k=1
S Zp{yn,k 7é Xn,k}
k=1

=Y P{|Xnk| > ba}
k=1

and this last term goes to zero by (i).

g, Sn = gn,Sn

n- Then

ﬂn}

Er.
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Since a, = ES,,, we have

S, — an 1 _
P{|;‘L| > 5} < E|S, — an|?

by, — b2

1 —
~ 2p2 ZUQT(X””“)
n k=1

1 = 2
SWZEXn,k
™ k=1

and this goes to zero by (ii).

Proof of Theorem 2.3. We apply the Lemma with X, , = X} and b,, = n. We first

need to check that this sequence satisfies (i) and (ii). For (i) we have

> P{Xnxl > n} =nP{|X1| > n},
k=1

which goes to zero as n — oo by our assumption. For (ii) we see that that since
the random variables are i.i.d we have
1 2 1 _—2
— Y EX,, = ~EX,1.
k=1
Let us now recall that by Problem 2.3 in Chapter III, for any nonnegative

random variable Y and any 0 < p < o0,
EY? = p/ MNLPLY > AldA
0

Thus,
EX, | = 2/ AP{X 1| > A}d\ = 2/ P{|Xna| > A}dA.
0 0

We claim that as n — oo,

1 n

0
For this, let

g(\) = AP{|X1| > A}.
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Then 0 < g(A) < A and g(A\) — 0. Set M = sup |g(\)| < oo and let € > 0. Fix ko
A>0
so large that g(\) < e for all A > ky. Then

/ AP{|X1| > A}z = M +/ AP{|1| > A}dA
0 ko

< M+€(n—k0)

Therefore

n

1" M —k
_/ )\P{\x1|>)\}<—+€<n 0).
n Jo n

The last quantity goes to € as n — oo and this proves the claim. [J

63 Borel-Cantelli Lemmas.

Before we stay our Borel-Cantelli lemmas for independent events, we recall

a few already proven facts. If A,, C €, then

{A,, i.0.} =mA, = ﬁ O A,

m=1n=m
and

{A,,, eventually} = limA,, = U ﬂ A,

m=1n=m

Notice that
and
limla, (w) = 1{lima,}

It follows from Fatou’s Lemma

and that
limP{A,} < P{limA,}.

Also recall Corollary 2.2 of Chapter II.
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First Borel-Cantelli Lemma. If )  p(A4,) < oo then P{A,, i.0.} =0.
n=1

Question: Is it possible to have a converse ? That is, is it true that P{A,,, i.0.} =0

implies that Y- | P{A,} = co? The answer is no, at least not in general.

Example 3.1. Let Q = (0,1) with the Lebesgue measure on its Borel sets. Let
an = 1/n and set A,, = (0,1/n). Clearly then >  P(A,) = co. But, P{4,, i.0.} =
P{0} = 0.

Theorem 3.1 (The second Borel-Cantelli Lemma). Let {A,} be a sequence
of independent sets with the property that >  P(A,) = oo Then P{A, i.0.} = 1.

Proof. We use the elementary inequality (1 — z) < e~ * valid for 0 < x < 1. Let

Fix N. By independence,
N
P{ N A;} =

P{AY}

{1 - P{An}}

IA

I
= 1= 13-

3
Il
3

N
(% P{an))

=exp r=
and this quantity converges to 0 as N — oo Therefore,

p{n@mAn}zl

which implies that P{A,, i.0.} = 1 and completes the proof. [

84 Applications of the Borel-Cantelli Lemmas.

In Chapter II, §3, we had several applications of the First Borel-Cantelli

Lemma. In the next section we will have several more applications of this and of
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the Second Borel-Cantelli. Before that, we give a simple application to a fairly

weak version of the strong law of large numbers.

Sn
Theorem 4.1. Let {X;} be i.i.d. with EX; = p and EX{ = Coo. Then — — p
n

a.s.

Proof. By considering X! = X; — i we may assume that p = 0. Then

B(S}) = B(Y X.)*

=E Y XiX;XX,

1§17]7k7l§n

= ) E(XX;XpX))

1<i,5,k,l<n
Since the random variables have zero expectation and they are independent, the
only terms in this sum which are not zero are those where all the indices are equal
and those where to pair of indices are equal. That is, terms of the form EX;" and
EX?X? = (EX7)?. There are n of the first type and 3n(n — 1) of the second type.
Thus,

E(S8%) =nE(X1) +3n(n — 1)(EX}?)?
< Cn?.

By Chebyshev’s inequality with p =4,

2
P{|S,| > ne} < A

ntet  n2et

and therefore,
0o Sn
Z P{|—|>¢e} <>
n=1 n

and the First Borel-Cantelli gives

P{‘&' >¢ei.0}=0
n
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which proves the result. [
The following is an applications of the Second Borel-Cantelli Lemma.

Theorem 4.2. If X1,Xo,..., X, are i.i.d. with E|X;| = co. Then P{|X,| >

ni.0.} =1 and P{lim 5= ezists € (—o0,00)} = 0.

Thus E|X;| < oo is necessary for the strong law of large numbers. It is also

sufficient.
Proof. We first note that

SO P{Xi| = n} < E[Xi| <1+ > P{Xi|>n}

which follows from the fact that

E]X1|:/ P{X1| > X )}da
0

and
(e%e] n+1 (e%e]
Z/ P{|X1| > z}dx < / P{|Xi| > X}dx
n=0"v" 0
<1+ P{Xi|>n}
n=1
Thus,

> P{X,|>n}=c
n=1

and therefore by the Second Borel-Cantelli Lemma,

P{|X,| >nio.}=1.

Next, set

A= { lim % exits € (—oo,oo)}
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Clearly for w € A,

lim |n(&) _ St (w)‘ —0
n— 00 n n+1
and
S,
im —n(w) = 0.
n—oo n(n + 1)
Hence there is an N such that for all n > N,
Sh 1
@) |1
Thus for w € AN {w:|X,| > ni.o.},
S (w) _ Xnt1(w) > 1
n(n+1) n+1 2’
infinitely often. However, since
Sn Sn—l—l Sn Xn+1

n n+l nm+1) n+1l

and the left hand side goes to zero as observe above, we see that A N {w:|X,,| >

n i.0.} = 0 and since P{|X,| > 1i0.} = 1 we conclude that P{A} = 0, which

completes the proof. [

The following results is stronger than the Second-Borel Cantelli but it follows

from it.

Theorem 4.3. Suppose the sequence of events A; are pairwise independent and

> P(A;) = oc. Then
j=1

In particular,
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which means that

P{A, i.o.} =1.

n

Proof. Let X; = 14, and consider their partial sums, S, = ZX]-. Since these
j=1

random variables are pairwise independent we have as before, var(S,,) = var(X;)+

...+ var(X,). Also, var(X;) = E(X;—EX,|* < E(X,)? = E(X;) = P{A;}. Thus
var(S,) < ES,,. Let £ > 0.

Al =l

< -

~ e2(ES,)?
1

e2FES,,

Sp — ESy| > 5ESn}

var(Sy,)

n N
— 1 in

and this last goes to oo as n — oo. From this we conclude that
n

probability. However, we have claimed a.s.

Let
ng, = inf{n > 1: ES,, > k2}.

and set T, = 5, . Since EX,, <1 for all n we see that
< ETy < E(Tp—1)+1<k +1

for all k. Replacing n with ny in the above argument for S,, we get

1
€2ETk
1
- g2k2

P{|Tk — ETk| > EETk} <

Thus
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and the first Borel-Cantelli gives

T
P{—k—1‘>5i.o}:o

ETy
That is,
15 1
— — 1, as.
ET 7
Let Qo with P(€) = 1 be such that
Tew) g
ET,

for every w € . Let n be any integer with ny <n < ngyq. Then

Tp(w) _ Snw) _ Tt (@)
ETyq — E(Sn) -  ET; '

We will be done if we can show that

lim Ti(w) — 1 and lim Tit1(w)

———= =1.

Now, clearly we also have

ETk ) Tk(u)) < Sn(w) < Tk+1(w) ) ETk_H
ETy., FET, — ES, = FETyp4 ET;

and since

E* < ETy < ETpy1 < (E+1)?+1

ETkia ETy, .. BT
we see that 1 < =522 and that 57— — 1 and similarly 1 > s and that
Ebij{i - = 1, proving the result. [

§5. Convergence of Random Series, Strong Law of Large Numbers.

Definition 5.1. Let {X,} be a sequence of random variables. Define the o—

algebras F,, = o(X,, Xp+1,...) and Z = () F). F) is often called the “future”
n>1
o-algebra and 7 the remote (or tail) o—algebra.
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Example 5.1.

(i) If B, € B(R), then {X,, € B,, i.0.} € Z. and if we take X,, = 14, we see that
Then {4, i.0.} € Z.

(ii) If S, = X1 +...+ X, then clearly, {lim,, o, S, exists} € T and {limS,, /¢, >
A} € Z, if ¢, — oo. However, {limS,, >0} ¢ T

Theorem 5.1 (Kolmogorov 0 — 1 Law). If X1, Xs5... are independent and
AeZ, then P(A) =0 or 1.

Proof. We shall show that A is “independent of itself” and hence P(A) = P(AN
A) = P(A)P(A) which implies that P(A) = 0 or 1. First, since X1, ... are indepen-
dent if A € 0(X4,...,X,) and B € 0(X,41,...) then A and B are independent.
Thus if, A € 0(X4,...,X,) and B € Z, then A and B are independent. Thus
Ua(Xl, ..., Xp) is independent of Z. Since they are both m—systems (clearly

if A,B € UO’(Xl,... ,Xp) then A € 0(X;...,X,,) and B € o(Xy,...,X,,) for

some n and m and so ANB € o(X1,... , Xpmaxn,m))), Jo(X1,... , X,) is indepen-
dent of Z, by Theorem 2.3, Chapter IV. Since A € 7 implies A € (X1, Xo,...),

we are done. [

Corollary. Let A,, be independent. Then P{A,, i.0.} =0 or 1. In the same way,
if X —n are independent then P{lim S,, exists} =0 orl.

Or next task is to investigate when the above probabilities are indeed one.
Recall that Chebyshev’s inequality gives, for mean zero random variables which

are independent, that

1
P{|S,| > A} < 2 var(Sy,).

The following results is stronger and more useful as we shall see soon.
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Theorem 5.2 ( Kolmogorov’s inequality). Suppose {X,} be independent,

EX, =0 and var(X,) < 0o for all n. Then for any X\ > 0,
1
>\ < — 2
P{mas 1S4 2 A) < 35BS
1

= var(Sy).

Proof. Set
A ={w C A |Sp(w)| > A, |9 (w)] < A forall j <k}

Note that these sets are disjoint and
n
ES;>) / S2dp =
k=17 Ak

= Z/ Sz + 25,5, — 2S5, + (Sn — Sk)zdP
k=1" Ak

22/ S,zdp+2z/ Sila, (Sn — Sk)dP
k=1 Ak k=179

Now,

SklAk S U(Xla"' 7Xk)

and

Sn—Sk EG(Xk+1...Sn)

(5.1)

and hence they are independent. Since E(S,, — Si) = 0, we have E(Sgla, (S, —

Sk)) = 0 and therefore the second term in (5.1) is zero and we see that

B2 =Y [ |stidp
k=1 Ar

> \? iP(Ak)

k=1

= MP( max |Sk| > A}
1<k<n

which proves the theorem. [
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Theorem 5.3. If X; are independent, EX; = 0 and Z var(X,) < oo, then
- n=1
ZX” converges a.S.

n=1

Proof. By Theorem 5.2, for N > M we have

1
P{ max |S, — S| > 6} <= var(Sy — Syr)

M<n<N €

| X
=3 E var(X,,).
n=M-+1
. . IS .
Letting N — oo gives P{nrilzaﬁ\Sn —Su|>e} < 2 _EMHa(Xn) and this last

quantity goes to zero as M — oo since the sum converges. Thus if
Ay = sup [Sn — Syl
n,m>M
then
P{Ap > 2¢} < P{max |S;, — Sm| >} —0
m<M

as M — oo and hence Ay — 0 a.s. as M — oo. Thus for almost every w, {S,,(w)}

is a Cauchy sequence and hence it converges. [J
Example 5.2. Let X7, X5,... beiid. N(0,1). Then for every ¢,

By(w) = i X, sin(;mt)

n=1

converges a.s. (This is a series representation of Brownian motion.)

Theorem 5.4 (Kolmogorov’s Three Series Theorem). Let {X;} be inde-
pendent random variables. Let A > 0 and set Y; = X;1(x,|<a)- Then ZX”

n=1
converges a.s. if and only if the following three conditions hold:

(i) 3 P(X.| > A) < o0,
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(1) ZEYn converges,

n=1

(iii) Z var(Y,) < oo.

Proof. Assume (i)—(iii). Let p, = EY,,. By (iii) and Theorem 5.3, > (Y, — i, ) con-

verges a.e. This and (ii) show that Z Y,, converges a.s. However, (i) is equivalent

n=1

to Z P(X,, #Y,) < oo and by the Borel-Cantelli Lemma,

n=1

P(X, # Yy, i.0.} =0.

Therefore, P(X,, = Y, eventually} = 1. Thus if Y Y, converges, so does
2 et X

We will prove the necessity later as an application of the central limit theo-

rem. [
For the proof of the strong law of large numbers, we need

Lemma 5.1 (Kronecker’s Lemma). Suppose that a,, is a sequence of positive

oo
. T
real numbers converging up to oo and suppose E — converges. Then
a

n=1 "

iixmeO.

m=1

Proof. Let b, = Z x—j Then b,, — bs, by assumption. Set ag = 0, by = 0. Then
a .
j=1"



7j=1 j=1
1 n—1
a bnan boao J:ZO bj (CLJ_|_1
1 n—1
=bn — — ij(aj-i-l a;)
-
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The last equality is by summation by parts. To see this, precede by induction

observing first that

n—1

Z“J‘(ba’ —bj_1) =) aj(bj —bj_1)+an(by, —bn_1)
j=1

7j=1

n—2

= bn_lan_l — boao — Z bj(aj+1 — aj) + anbn — anbn_l

Jj=0

n—2

= anbn — boao — Z bj(aj+1 — aj) — bn_l(an — an_1>

Jj=0
n—1

= anbn — boao — Z bj(aj+1 — (lj)

J=0

n—1

1
Now, recall a b,, — bs,. We claim that — g bj(aj+1 — a;) — bso. Since b, — b,
ay, 4
=0

given € > 0 3 N such that for all j > N, |b; — bso| < €. Since

1 n—1
— > (4451 —a5) =1
g
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Jensen’s inequality gives

1 n—1 1 n—1
| ij(aj+1_a'j)_boo| <
7=0

- Z(boo —b;)(aj+1 — aj)
1 jv_
D (boo = bs)(aj41 — a;)|

a
noi

Ay <

<

1 n—1
+— Y |boo — bjllaj1 — aj
" j=N+1
1 & 1 &
— > lbv = billagi —al +e— Y laj —a;
Qp £ apn .
=1 j=N+1

M
— +e.
(079

IN

IN

Letting first n — oo and then ¢ — 0 completes the proof. [J

Theorem 5.5 (The strong law of large numbers). Suppose {X;} arei.i.d., E|X;| <
Sn

oo and set EX1 = pu. Then — — i a.s.
n

Proof. Let Yy = Xk1(|Xk|§k) Then

S P A Vi) = 3 P(Xil > )

< / P(X1| > Ad»
0
= F|X| < 0.

Therefore by the First Borel-Cantelli Lemma, P{X} # Yj i.0.} = 0 or put in
other words, P{X} # Y eventually} = 1. Thus if weset T, = Y1 + ...+ Y,. It
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Ty
suffices to prove — — p a.s. Now set Zy = Yy — EY). Then E(Z;) = 0 and
n

(Y)
k2

WK
5

Z var(Zy,) <
k2~
k=1 k

1

1 o0
o / IAP{|Y:| > A}dA
0

k
00

1

1 k
a3 / IAP{|X1| > AJdA
0

I
™

oo 0 )\
- 2/0 > 2Lz W P{Xa] > Al
k=1

:2/0 A (Z %) P{|X1| > \}dA\.

k>
< CE’X1|7

where we used the fact that

> Q

1
> 5 <

k>

7
for some constant C' which follows from the integral test. By Theorem 5.3, Z ?k

k=1
converges a.s. and the Kronecker’s Lemma gives that

which is the same as

1
— (Yk—EYk)—>0as
Lt

or
T, 1<
———E EY, — 0 a.s.
n

n
k=1

We would be done if we can show that

1 n
- > EY, — . (5.2)
k=1
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We know EYy, — p as k — oo. That is, there exists an N such that for all k£ > N,
|EY), — u| < e. With this N fixed we have for all n > N,

1 — l «
‘EZEYIC_/’L': EZ(EY]C_M)‘
k=1 k=1

I/\

—ZE|Yk—M|+ Z ElYy — pl

k=1
1N

< = E\Y. — .

_nl; |k: ,u|+€

Let n — oo to complete the proof. [

§6. Variants of the Strong Law of Large Numbers.

Let us assume E(X;) = 0 then under the assumptions of the strong law of

n . .
large numbers we have — — 0 a.s. The question we address now is: Can we have
n

a better rate of convergence? The answer is yes under the right assumptions and

we begin with

Theorem 6.1. Let X1, Xo,... beii.d., EX; =0 and EX? < 0% < co. Then for

any e >0
Sn

nhj{)lo n172(log n)1/2+< =0,

We will show later that in fact,

Tm Sn 1

\/202nloglogn

a.s. This last is the celebrated law of the iterated logarithm of Kinchine.

Proof. Set a,, = \/ﬁ(logn)%“, n>2a >0

o0

Y var(Xp/ay) = ( +Z n(logn) 1+2€> < 00

n=1



105

oo Xn 1 n
Th — 8. and h — X 0as. [
(S1} T;L a converges a.s. al ence a ; r — U a.s

What if E|X;|? = oo But E|X;|P < oo for some 1 < p < 27 For this we have

Theorem 6.2 (Marcinkiewidz and Zygmund). X; i.i.d., EX; = 0 and
E|X1|P < oo for some 1 < p < 2. Then

lim Sn =0,

n— oo nl/P o

Proof. Let

Yie = Xel(x, 1<)
and set

T, = z”: Yi.
k=1

It is enough to prove, as above, that nl/T—

5 a.s. To see this, observe that

> PV # Xi} =) P{IXi” > k}
k=1
< E(|X1|p) < 0
and therefore by the first Borel-Cantelli Lemma, P{Y} # X} i.0.} = 0 which is
the same as P{Y; = X}, eventually} =1
Next, estimating by the integral we have
1 > dx
> <€ A 2
1

(1—-2/p)
= \P2

oo
72-2/p

AP
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and hence
1 k
var(Yy, /k'/P) < k:2/p
k=1 k=
— Z k;2/p/ AP{|Yi| > A}dA
o] Kl/p
— Z k2/p/ AP{|X1| > A}dA

- Z kz/p/ Lo k1/) (MAP{|X1| > A}dA

:2/0 )\P{|X1|>)\}<Z kzl/p>d)\

k>A\P

< 2/ )\pilP{|X1| > /\}d/\ = CpE|X1|p < 0.
0

Thus, and Kronecker implies, with p, = E(Y}), that

n

1
m Z(Yk — ,LLk) — 0, a.s.
k=1
If we are bale to show that — / Z e — 0, we will be done. Observe that 0 =
n

E(X1) = E(X1(|x|>k1/r)) + Hk SO that lk] < |E(X1(x|>k1/r)| and therefore

1 1 x
mzﬂk = WZ/W P{|X1] > A}dA
k=1 k=1

n

1 1 00
p—1

n

1 1 y
B pnl/p Z k1—1/pE{‘X1|p;|X1| >k P}

Since X € LP, given ¢ > 0 there is an N such that E(|X;?|X;| > k'/P) < ¢ if
k > N. Also,

n

1 f 1/p—1 1
k=1 1

The Theorem follows from these. [
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Theorem 6.3. Let X1, Xo,... be i.i.d. with EX;' = 00 and EX; <oo. Then

. Sp
lim — =o00, a.s.
n—oo N

Proof. Let M > 0 and XJM = X; A M, the maximum of X; and M. Then XM

are i.i.d. and E|XM| < co. (Here we have used the fact that EX; <o00.) Setting
M

S
SM — XM = XM 1.+ XM we see that =~ — EX{’ a.s. Now, since X; > XM
n

we have
lim — > lim — =FEX]", a.s.
n

n—oo n

However, by the monotone convergence theorem, E(XM)* 1 E(X;") = oo, hence
EXM = B(XM)* - B(XM)™ 1 +00.

Therefore,

. n
lim— = oo, a.s.
n

and the result is proved. [

§7. Two Applications.

We begin with an example from Renewal Theory. Suppose X7, Xs,... be
are ii.d. and 0 < X; < oo, a.s. Let T,, = X; + ...+ X,, and think of T),
as the time of the nth occurrence of an event. For example, X; could be the
lifetime of ith lightbulb in a room with infinitely many lightbulbs. Then T,, =
is the time the nth lightbulb burns out. Let N; = sup{n:7,, < t} which in this

example is the number of lightbulbs that have burnt out by time t.

Theorem 7.1. Let X; be i.i.d. and set EX| = p which may or may not be finite.

Then &t — 1/p, a.s. ast — oo where this is 0 if p = co. Also, E(N(t))/t — 1/u

Continuing with our lightbulbs example, note that if the mean lifetime is

large then the number of lightbulbs burnt by time ¢ is very small.
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T, : .
Proof. We know — — p a.s. Note that for every w € ), N;(w) is and integer and
n
T(N,) <t < T(N, +1).

Thus,

T(N) L<T(Nt+1)'Nt+1
Ny N = N +1 Ny

Now, since T, < oo for all n, we have N; T oo a.s. By the law of large numbers
there is an Qo C Q such that P(y) = 1 and such that for w € Qy,

T, (w) (W)

— 1, and
Ny M

Thus t/Ni(w) — p a.s. and we are done. [

Let X1, X5, ... beii.d. with distribution F'. For = € R set
1 n
Fa(2,0) =~ 3 1ix<a ().
n=1

This is the observed frequency of values < z. Now, fix w € Q and set ar = Xy (w).
Then F,(z,w) is the distribution with jump of size % at the points aj. This is
called the imperial distribution based on n samples of F'. On the other hand, let
us fix z. Then F),(z,-) is a random variable. What kind of a random variable is

it? Define

w)=1 2 (W) =
) = Lz = { 7 LH S
Notice that in fact the pi are independent Bernoullians with p = F(x) and Ep, =

F(x). Writing
1 n
Fy(x, = -
(z,w) n 1;—1 Pk

we see that in fact Fj,(z,-) = *S;L—" and the Strong Law of Large numbers shows

that for every x € R, F,(z,w) — F(z) a.s. Of course, the exceptional set may

depend on z. That is, what we have proved here is that given x € R there is a set
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N, C Q such that P(N,) = 0 and such that F,,(z,w) — F(x) for w € N,. If we
set N = UzeqN, where we use () to denote the rational numbers, then this set
also has probability zero and off this set we have F, (z,w) — F(z) for all w € N
and all x € (). This and the fact that the discontinuities of distribution functions

are at most countable turns out to be enough to prove
Theorem 7.2 ( Glivenko—Cantelli Theorem). Let

D,(w) = ig% |Fp(z,w) — F(x)|.

Then D, — 0 a.s.
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VI
THE CENTRAL LIMIT THEOREM

§1 Convergence in Distribution.

If X,, “tends” to a limit, what can you say about the sequence F,, of d.f. or

the sequence {p, } of measures?

Example 1.1. Suppose X has distribution F' and define the sequence of random
variables X,, = X +1/n. Clearly, X,, — X a.s. and in several other ways. Fy,(z) =
P(X, <z)=P(X <xz—1/n)=F(zx—1/n). Therefore,

lim F,(z) = F(z—).

n—oo

Hence we do not have convergence of F,, to F. Even worse, set X, = X + C),

1 even o ,
where Cp, = ¢ " . Thenthe limit may not even exist.
—1/n  odd

Definition 1.1. The sequence {F,} of d.f. converges weakly to the d.f. F if
F,.(x) — F(z) for every point of continuity of F. We write F,, = F. In all

our discussions we assume F is a d.f. but it could just as well be a (sub. d.f.).

The sequence of random variables X, converges weakly to X if their distri-
butions functions F,(z) = P(X,, < x) converge weakly to F'(z) = P(X < x). We

will also use X,, = X.

Example 1.2.

(1) The Glivenko—Cantelli Theorem
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(2) X; = i.i.d. £1, probability 1/2. If S,, = X1 + ...+ X,, then

=230 e [

This last example can be written as i—" = N(0,1) and is called the the De
Moivre—Laplace Central limit Theorem. Our goal in this chapter is to obtain a very
general version of this result. We begin with a detailed study of convergence in

distribution.

Theorem 1.1 (Skorhod’s Theorem). IF F, = F, then there exists random
variables Y,,Y withY, —Y a.s. and Y, ~ F,, Y ~ F.

Proof. We construct the random variables on the canonical space. That is, let
Q = (0,1), F the Borel sets and P the Lebesgue measure. As in Chapter IV,
Theorem 1.1,

Yo(w) =inf{z:w < F,(2)}, Y(w) =inf{z:w < F(z)}.
are random variables satisfying Y,, ~ F,, and Y ~ F

The idea is that if F;, — F then F;! — F~1 but of course, the problem is
that this does not happen for every point and that the random variables are not
exactly inverses of the distribution functions. Thus, we need to proceed with some
care. In fact, what we shall show is that Y,,(w) — Y (w) except for a countable
set. Let 0 < w < 1. Given € > 0 chose and z for which YV(w) —¢ < 2z < Y (w)
and F(x—) = F(z), (that is for which F' is continuous at z). Then by definition
F(x) < w. Since F,(z) — F(x) we have that for all n > N, F,(z) < w. Hence,
again by definition, Y (w) —e < 2 < Y, (w), for all such n. Therefore,

lim Y, (w) > Y (w).

It remains to show that

lim Y, (z) < Y(x).
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Now, if w < w’ and € > 0, choose y for which Y(v') < y < Y(w') + € and F is
continuous at y. Now,

w<w <FY(W)) < Fly).

Again, since F,(y) — F(y) we see that for all n > N, w < F,(y) and hence
Y, (w) <y < Y(w') + e which implies lim Y;,(w) < Y (o). If Y is continuous at w
we must have

lim Y, (w) < Y(w).

The following corollaries follow immediately from Theorem 1.1 and the results

in Chapter II.

Corollary 1.1 (Fatou’s in Distribution). Suppose X,, = X and g > 0 and
continuous. Then E(g(X)) <lmE(g(X,)).

Corollary 1.2 (Dominated Convergence in Distribution). If X,, = X, ¢
is continuous and and E|(g(X,)| < C, then

E(9(Xn)) — E(9(X)).

The following is a useful characterization of convergence in distribution.

Theorem 1.2. X,, = X if and only if for every bounded continuous function g
we have E(g(X,)) — E(g(X)).

Proof. 1f X,, = X then Corollary 2.1 implies the convergence of the expectations.

Conversely, let
1 y<z

gm,a(y) = 0 y>x+e
linear x<y<xz+e
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It follows from this that
P(X, <) < E(gz,(Xn))
and therefore,

ImP(X, <z) <ImE(g: (X))

= E(gs-(X))

<PX<z+e).
Now, let ¢ — 0 to conclude that

limP(X, <z) < P(X <2x).

In the same way,

P(X <z —¢) < E(gs—c,(X))
- h_m E(gm—a,s(Xn))

n—oo

< lim P(X, <uz).

n—oo

Now, let ¢ — 0. If F' continuous at z, we obtain the result. [J
Corollary 1.3. Suppose X,, — X 1in probability. Then X,, = X.

Lemma 1.1. Suppose X,, — 0 in probability and |X,| <Y with E(Y) < oc.
Then E|X,| — 0.

Proof. Fix € > 0. Then P{|X,| > e} — 0, as n — oco. Hence by Proposition 2.6 in
Chapter 11,

/ Y| dP — 0,as n — oc.
{IXn|>e}
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Since

E|Xn| :/ |Xn|dp+/ |Xn|dP
{IXnl<e} {IXn|>e}

<e +/ Y| dP,
{1 Xn]>e}

the result follows. O

Proof of Corollary 1.3. 1f X,, — X in probability and g is bounded and continuous
then ¢g(X,) — ¢(X) in probability (why ?) and hence E(g(X,)) — E(g9(X)),
proving X,, = X.

An alternative proof is as follows. Set a,, = F(G(X,)) and a = E(X). Let
an, be a subsequence. Since X,,, converges to X in probability also, we have a
subsequence Xnkj which converges almost everywhere and hence by the dominated
convergence theorem we have Qn,,, — @ and hence the sequence a,, also converges

to a, proving the result. [

Theorem 1.3 (Continuous mapping Theorem). Let g be a measurable func-
tion in R and let D, = {x:g is discontinuous at xz}. If X;, = X and P{X €
Dy} = pu(Dy) =0, then g(X,) = g(X)

Proof. Let X,, ~Y,,, X ~Y and Y,, — Y a.s. Let f be continuous and bounded.
Then D¢y C Dy. So,
P{Yo € Dyog} =0.

Thus,
flg(Yn)) — f(g(Y))

a.s. and the dominated convergence theorem implies that E(f(g(Y))) — E(f(g9(Y))

and this proves the result.

Next result gives a number of useful equivalent definitions.
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Theorem 1.4. The following are equivalent:
(i) X, = X.

(i) For all open sets G C R, imP(X,, € G) > P(X € G) or what is the
same, limp, (G) > w(G), where X,, ~ p, and X ~ p.

(i4i) For all closed sets K C R , imP(X,, € K) < P(X € K).
(v) For all sets A C R with P(X € 0A) = 0 we have lim P(X,, € A) =

P(X € A).

We recall that for any set A, A4 = A\ A° where A is the closure of the set
and AY is its interior. It can very well be that we have strict inequality in (ii) and
(iii). Consider for example, X,, = 1/n so that P(X,, = 1/n) = 1. Take G = (0, 1).
Then P(X,, € G) =1. But 1/n — 0 € JG, so,

P(X eG)=0.

Also, the last property can be used to define weak convergence of probability
measures. That is, let p,, and p be probability measures on (R, B). We shall say
that p, converges to u weakly if u,(A) — p(A) for all borel sets A in R with the
property that p(0A) = 0.

Proof. We shall prove that (i) = (ii) and that (ii)< (iii). Then that (ii) and (iii)
= (iv), and finally that (iv) = (i).

Proof. Assume (i). Let Y, ~ X,,, Y ~ X, Y,, — Y a.s. Since G is open,
liml(y,eq) (W) = lyes) (w)
Therefore Fatou’s Lemma implies

P(Y € G) <limP(Y, € G),
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proving (ii). Next, (ii) = (iii). Let K be closed. Then K¢ is open. Put

P(X,eK)=1—-P(X, € K9

P(X€K)=1-P(X € K°).

The equivalence of (ii) and (iii) follows from this.

Now, (ii) and (iii) = (iv). Let K = A, G = A° and 94 = A\A°. Now,
G = K\OA and under our assumption that P(X € dA) = 0,

P(XeK)=P(X €A =PXecq).
Therefore, (ii) and (iii) =

lim P(X, € A) <lim P(X,, € K)
< P(X € K)
=P(X e A

lim P(X, € A) > lim P(X, € G)

and this gives

P(Xe € G) = P(X € A).

To prove that (iv) implies (i), take A = (—oo,z]. Then 0A = {z} and this
completes the proof. [J

Next, recall that any bounded sequence of real numbers has the property that
it contains a subsequence which converges. Suppose we have a sequence of prob-
ability measures p,,. Is it possible to pull a subsequence ,, so that it converges
weakly to a probability measure 7 Or, is it true that given distribution functions
F,, there is a subsequence {F},, } such that F,,, converges weakly to a distribution

function F'? The answer is no, in general.
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Example 1.3. Take F,(z) = 31(;5n)(%) + $1(z>—n)(z) + 5G(z) where G is a

distribution function. Then

nh_}n;O F,(z)=F(x)=1/3+1/3G(x)

lim f(z) = 2/3 < 1

llifn F(z)=1/3+#0.

Lemma 1.1. Let f be an increasing function on the rationals Q and define f on

R by

f(z)= inf f(t)=inf{f(t):x <t e Q}

<teQ
= lim f(tn)

tnlx

Then f 1s tncreasing and right continuous.

Proof. The function f is clearly increasing. Let zop € R and fix ¢ > 0. We shall

show that there is an x > xo such that
0 < f(z) — f(xo) < e.
By the definition, there exists ty €  such that ¢ty > xy and
f(to) —e < flxo) < f(to)-
Hence
[f(to) = f(a)] <e.

Thus if ¢ € @) is such that z¢ < t < tp, we have

0 < f(t) — f(xo) < f(to) — flzo) < e.

That is, for all z¢g <t < tg, we have

f(t) < flzo) +e

and therefore if xg < z < tg we see that

0< f(a) = flwo) <,

proving the right continuity of f . O
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Theorem 1.5 (Helly’s Selection Theorem). Let {F,} be a sequence of of
distribution functions. There exists a subsequence {F,, } and a right continuous
nondecreasing function function F such that F, (x) — F(x) for all points x of

continuity of F.

Proof. Let q1,q2,... be an enumeration of the rational. The sequence {F,,(¢q1)}
has values in [0, 1]. Hence, there exists a subsequence F),,(q1) — G(q1). Similarly

for F,,(g2) and so on. schematically we see that

G:Fny,... — G(q)

q2: Fryy ... — G(g2).

qk: Foy (qr) - .. — G(ar)

Now, let {F,, } be the diagonal subsequence. Let ¢; be any rational. Then

an (Qj) - G(Qj)'
So, we have a nondecreasing function GG defined on all the rationals. Set
F(z) =inf{G(q):q € Q:q > =}
= lim G(¢n)
qnlT
By the Lemma 1.1 F'is right continuous and nondecreasing. Next, let us show

that F),, (z) — F(x) for all points of continuity of F'. Let x be such a point and

pick r1,79,8 € QQ with r; < ro < x < s so that
F(z) —e < F(r1) < F(rs)
< F(z) < F(s)

< F(z)+e.
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Now, since F,, (r2) — F(re) > F(r1) and F,, (s) — F(s) we have for n; large
enough,

F(z)—e < F,, (ro) < F,, () < F, (s) < F(x)+¢

and this shows that F,, (z) — F(x), as claimed. [
When can we guarantee that the above function is indeed a distribution?

Theorem 1.6. FEvery weak subsequential limit p of {i,} is a probability measures

if and only if for every e > 0 there exists a bounded interval I. = (a,b] such that

inf py, (1) > 1 —e. (*)

In terms of the distribution functions this is equivalent to the statement that
for all € > 0, there exists an M. > 0 such that sup, {1 — F,(M.)+ F,(—M.)} < e.
A sequence of probability measures satisfying (x) is said to be tight. Notice that
if u, is unit mass at n then clearly u, is not tight. “The mass of u, scapes to

infinity.” The tightness condition prevents this from happening.

Proof. Let pi,, = p. Let J D I, and pu(0J) = 0. Then

p(R) 2 p(J) = Tim pi, (J)
> Timyuy, (I2)

>1—e.
Therefore, p(R) = 1 and p is a probability measure.

Conversely, suppose (x) fails. Then we can find an € > 0 and a sequence ny,

such that

pn, (1) <1 —¢,
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for all n; and all bounded intervals /. Let Mg, = 14 weakly. Let J be a continuity

interval for p. Then

p(J) = My, (J) < limpin, ()
<1-—e.
Therefore, 1(R) < 1 — e and p is not a probability measure. [

§2 Characteristic Functions.

Let © be a probability measure on R and define its Fourier transform by

a(t) = / e™du(x). Notice that the Fourier transform is a a complex valued

R
function satisfying |f(t)] < u(R) =1 for all ¢ € R. If X be a random variable its

characteristic function is defined by
ox(t) = E(e"™™) = E(cos(tX)) + iE(sin(tX)).
Notice that if uis the distribution measure of X then

ex(t) = [ e*duta) = ilt)
and again |px(t)| < 1. Note that if X ~ Y then px(t) = ¢y (¢) and if X and Y
are independent then
pxiv(t) = B e™) = ox (H)py (t).
In particular, if X1, Xo,..., X, are are i.i.d., then

px, () = (px, (1)"

Notice also that if (a +ib) = a — ib then px(t) = ¢x(—t). The function ¢ is
uniformly continuous. To see the this observe that
@t +h) = p(t)] = [Ble MY — X))

S E’eihX o 1’
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and use the continuity of the exponential to conclude the uniform continuity of

px. Next, suppose a and b are constants. Then
Pax1b(t) = e px (at).

In particular,

p-x(t) = px(=t) = px(t).

If —X ~ X then px(t) = px(t) andpx is real. We now proceed to present some

examples which will be useful later.

Examples 2.1.

(i) (Point mass at a) Suppose X ~ F' = §,. Then
(,O(t) — E(ez’tX) — eita

(i) (Coin flips) P(X =1) = P(X = —1) = 1/2. Then

; 1. 1 _. 1, . .
go(t) — E<eti) — 56“ + 56_” _ 5(6” + e—zt) _ COS(t).

(iii) (Bernoulli) P(X =1)=p, P(X =0)=1—p. Then

o(t) = E(e"™) = pe + (1 —p)

=1+p(”—1)

(iv) (Poisson distribution) P(X = k) = e_)‘%, k=0,1,2,3...

00 Mk 00 ity k
_ ak€ ATy (Ae)
‘p(t) - Z € k! =e€ Z k!
k=0 k=0
_ efAeAe”
A(eft—1)

=e
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(v) (Exponential) Let X be exponential with density e~?. Integration by parts

gives

(vi) (Normal) X ~ N(0,1).

Proof of (vi). Writing e**® = cos(tx) + isin(tz) we obtain

1 . 2 1 2
)= — [ etTe 220y — _— / costre * 2dx
90( ) \ 2T /R V2T JRr

2
o' (t) —zsin(tx)e” 12 dx
\/27/

=—— sin(tm)xe*xQ/Qda:

=—— tcos(tx)e*mrz/Qda:

This gives £ ((tt)) = —t which, together with the initial condition ¢(0) = 1, immedi-

ately yields ¢(t) = e™* */2 as desired. O

Theorem 2.1 (The Fourier Inversion Formula). Let u be a probability mea-

sure and let p(t) = [, e du(x). Then if x1 < x2

1 1 1 T e—ZtI1 _ 6_1t$2
2 - — lim — t)dt.
p(ry, z2) + SH(@1) + QH(QC?) 70 27 /T it P ()

Remark. The existence of the limit is part of the conclusion. Also, we do not mean

that the integral converges absolutely. For example, if 1 = §y then ¢(¢t) = 1. If

2sint

xr1 = —1 and x9 = 1, then we have the integral of which does not converse

absolutely.
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Recall that

1 a>0
sign(a) =¢ 0  a=0
-1 a<0
Lemma 2.1. For all y > 0,
. T
0< sign(a)/ sin(az) dz §/ el dzx, (2.1)
0 x o 7T
/ sinfaz) dx = 7/2 sign(a), (2.2)
0 x
* 1—cosax T
/O 1200 g = Tal, (2.3)

Proof. Let ax = wu. It suffices to prove (2.1)—(2.3) for a = 1. For (2.1), write

[0,00) = [0, 7] U [, 27],... and choose n so that nm < y < (n+ 1)7w. Then
/y sin z d — i /(k“)7r sinxdx +/y sin x s
0 T E—0 km T nm L

Tsinz 27 sinx 37T sinx Y singx
= dx + dxr + dr + ...+ dx
0 x s z 27 z nt <L

:/ Slzxda:-l-(—l)al+(—1)2a2+...+(—1)”_1an_1-|—(—1)”/
0 n

Y sinzx

dx

r X

Y

sin
where |ajy1| < |a;|. If n is odd then n — 1 is even and /

dxr < 0. Comparing
x
nm

terms we are done. If n is even, the result follows by replacing y with (n+ 1)7 and
using the same argument.
For (2.2) and (2.3) apply Fubini’s Theorem to obtain
/ Sy g / sinx/ e "““dudx
0 x 0 0
= / </ e “Tsin xd:c) du
0 0
B / > du
N 0 1 + U2

=m/2.
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and

/ w dxz/ —2/ sin ududx
0 xXr e

/ smu/ —du

/OO smu

= i ”

=m/2.

This completed the proof. [

Proof of Theorem 2.1. We begin by observing that

Z2
/ e—ztudu
T

eit(m—xl) _ eit(w—mg)

it

<|z1 —x2

and hence for any T > 0,

T
/ / |xe — xo|dtdu(x) < 2T |21 — 22| < 0.
Rt J T

From this, the definition of ¢ and Fubini’s Theorem, we obtain

1 T e—i-l—ml . e—itazg —ztazl . —ztocg )
o m t)dt = / / e dtdu(x)
T (3

-T 2mit
T eit(x—z1) _ it(z—x2)
= dt| d
/—oo /—T 2mit /'L(x)
:/ F(T,x,21,22)dp(x) (2.4)
Now,
1 [T cos(t(x — [T sin(t(x —
F(T, 2, 21, 5) _/ cos(t(x — x1)) gt sin(t(x — x1)) gt
21t J_p t 27m _T t
_L. T cos(t(x — x2)) dt—i' T sin(t(x — x2)) gt
27T'l -7 t 271'2 -T t

s t T

1 M=) 1 (Tsin(ta—m)
T
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sin(t(x — x;)) . cos(t(x — x;)

using the fact that is even and ; odd.
By (2.1) and (2.2),
2 t
’F(T,x,.ftl,.%’z)’ < _/ Slid
™ Jo t
and - ) '
—5—(—5):0, 1f$<33'1
Th_r)réoF(Txxl,xg) 1-(-3)=1, ifz<z<az
% 0= % if £ = a9
\%—%:0, if £ > xo

Therefore by the dominated convergence theorem we see that the right hand side

of (2.4) is

1
/ O-d;H—/ 5du+/ 1-du—|—/§du+/ 0-du
(—o0,z1) {z1} (z1,22) (22,00)

1 1
= (w1, w2) + B ples ) + 5 plrat,

proving the Theorem. [J

Corollary 2.1. If two probability measures have the same characteristic function

then they are equal.
This follows from the following

Lemma 2.1. Suppose The two probability measures py and ps agree on all inter-

vals with endpoints in a given dense sets, then they agree on all of B(R).
This follows from our construction, (see also Chung, page 28).

Proof Corollary 2.1. Since the atoms of both measures are countable, the two

measures agree, the union of their atoms is also countable and hence we may

apply the Lemma. [J
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Corollary 2.2. Suppose X is a random variable with distribution function F

and characteristic function satisfying /|g0X|dt < o0. Then F is continuously
R

differentiable and

1 —i
F'(z) = %/Re Wox(y)dy.

Proof. Let x1 =x —h, xo =z, h > 0. Since pu(x1,z2) = F(xa3—) — F(z1) we have
Flay=) — Fla) + 5(F(a1) = F@=)) + 3 (F(z2) — F(es-))
= s, w) + o} + pudee)

1 00 e—it(az—h) _ e itz
< i > QOX(t)dt.

a: .
= ‘/ GZtydy‘ S h
z—h

:% .

Since

e—it(m—h) _ etz
1t

we see that

. 1 1
Jm (p(z1,22) + S (@) + gpize} <

Hence, pu{z} = 0 for any x € R, proving the continuity of F. Now,

F(x+h)— F(x)

1 e—it . e—it(x—i—h)
= — t)dt
1 e~ it(z+h) _ o—itx
-2 R_( - ) o)t

Let h — 0 to arrive at
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Note that the continuity of F’ follows from this, he continuity of the exponential

and the dominated convergence theorem. [J

Writing
F(zx) = / F'(t)dt = / f(t)dt
we see that it has a density

1

= — [ e "oy (t)dt.
F= g5 [ ex

and hence also

o) = [ e o
R
83 Weak convergence and characteristic functions.

Theorem 3.1. Let {u,} be a sequence of probability measures with characteristic
functions ¢y,. (i) If ., converges weakly to a probability measure p with charac-
teristic function @, then @, (t) — @(t) for all t € R. (ii) If o, (t) — @(t) for all
t € R where ¢ is a continuous function at 0, then the sequence of measures { i, }
1s tight and converges weakly to a measure y and @ is the characteristic function

of w. In particular, if v, (t) converges to a characteristic function ¢ then p, = p.

nt2

Example 3.1. Let p, ~ N(0,n). Then ¢,(t) = e 2 . (By scaling if X ~
N(p,0?) then px () = e#=7"t"/2 ) Clearly ¢, — 0 for all t # 0 and ¢, (0) = 1
for all n. Thus ¢,,(t) converges for ever ¢ but the limit is not continuous at 0. Also

with

1 [" e,
,un(—oo,x]z\/%/ et/ gy

a simple change of variables (r = \/Lﬁ) gives

1 )
,un:(—oo,:n]:\/T_7T e 2 dt —1/2

and hence no weak convergence.
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Proof of (i). This is the easy part. Note that g(x) = €**® is bounded and continu-
ous. Since p,, = pu we get that E(g(X,)) — E(y(X)) and this gives ¢, (t) — ¢(t)

for every t € R.
For the proof of (ii) we need the following Lemma.

Lemma 3.1 (Estimate of y in terms of cp). For all A > 0 we have

p[—2A,2A] >A’/ dt‘ —1. (3.1)

This, of course can also be written as

1— (t)|dt| > —pu[—2A,24], (3,2)
[

or

PﬂXﬁ>%ﬁ§2—A+/j:¢@M+ (3.3)

Proof of (ii). Let 6 > 0.

1 I
'%[fwﬂq%lfmw
1 0
+35 [ lenl) = 0l
Since ¢, (t) — ¢(t) for all t, we have for each fixed § > 0 (by the dominated
convergence theorem)

lim 5/]9% — (t)|dt — 0.

n—oo 2

1 9
Since ¢ is continuous at 0, gin% %/ lo(t)|dt = |¢(0)] = 1. Thus for all e > 0
- 5

there exists a § = d(e) > 0 and ng = ng(e) such that for all n > ny,

1 /9
1—¢/2< 25/ n(t)dt‘+5/2,
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: %'/_Z%@)dt’ > 92(1—2).

Applying the Lemma with A = % gives
2671, 2671 >5‘/ ‘>21—6)—1:1—25,

for all n > ng. Thus the sequence {u,, } is tight. Let p,, = v. Then v a probability
measure. Let 1 be the characteristic function of v. Then since p,, = v the first
part implies that ¢, (t) — ¥ (t) for all ¢. Therefore, ¢ (t) = $(t) and hence H(t) is

a characteristic function and any weakly convergent subsequence musty converge

to a measure whose characteristic function is ¢. This completes the proof. [

Proof of Lemma 3.1. For any T' > 0

T T
/ (1 —e™™)dt = 2T — / (costx + isintx)dt

7 -T
_ o _ 2sin(Tw)'
T
Therefore,
[ 0 e =2 [ 2D g
or

That is, for all T' > 0,

or | 7
Now, for any |z| > 2A4,

sin(T'z)
Tx
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and also clearly,
sinT'x

< 1, for all x.

Xz

Thus for any A > 0 and any 7" > 0,

=24 2A]+ﬁ[1— =24, 24]
1 1
[1_m] [~24,24] + .

Now, take T'= A~! to conclude that

2o
Al

[ 24,24] +1/2

sin T'x

Pl

which completes the proof. [

Corollary. p{z:|z| > 2/T} < £ fiFT(l — p(t))dt, or in terms of the random

variable,
1 T
P{IX| > 2/T} < = / (1— p(t))dt,
T ) r

or
71

P{X|> T} < T/z/ (1— o(t))dt.

84 Moments and Characteristic Functions.

Theorem 4.1. Suppose X is a random variable with E| X |" < oo for some positive
integer n. Then its characteristic function ¢ has bounded continuous derivatives
of any order less than or equal to n and

oo

o®(t) = / (i) it dpu(z),

— 00
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for any k < n.

Proof. Let p be the distribution measure of X. Suppose n = 1. Since / |z|dp(z) <
R

oo the dominated convergence theorem implies that

iy g PEHR) — o) gilt+h)z _ gita

= /R(ia:)e“xdu(x).

We now continue by induction to complete the proof. [

Corollary 4.1. Suppose E|X|™" < oo, n an integer. Then its characteristic func-

tion @ has the following Taylor expansion in a neighborhood of t = 0.

p(t)=> z’mtmb;nﬂ + o(t™).
m=0 ’

We recall here that ¢g(t) = o(t™) as t — 0 means g(t)/t™ — 0 as t — 0.

Proof. By calculus, if ¢ has n continuous derivatives at 0 then

nooplm)
p(t)=> d m'(O)tm + o(t™).
m=0 )

In the present case, (") (0) = i™ E(X™) by the above theorem.

Theorem 4.2. For any random variable X and any n > 1

Jox 3 )7

m)!

. " E@GtX)™
'Ee”X—Z (Zt') ‘SE
m.

m=0
n+1 n
< 5 (omin (XL 20X
(n+1)!" nl

This follows directly from

m=0
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Lemma 4.2. For any real x and any n > 1,

iz _ N~ (@)™ et 21X
c _Z m! < min (n+1)! nl )

m=0

We note that this is just the Taylor expansion for €** with some information

on the error.

Proof. For all n > 0 (by integration by parts),

vt 7

Iw—s’”eiss: gca:—s”“eiss.
[ ot = oy |, oo

For n = 0 this is the same as

1 z @ .
—(e”—=1)= / eds = x + z/ (x — s)e**ds
¢ 0 0

x
=1 +z':1:+i2/ (x — s)e'*ds.
0

or

Forn =1,
_1+zx—i——+ / s)%e'ds

and continuing we get for any n,

n - \mMm n+1 )
Z ' /O(w—s)"ezsds.

m=0

So, need to estimate the right hand side.

Z'n—l—l x
— /(;(.CC— )n zsds

This is good for |z| small. Next,

’x|n—|—1

1
< — —_—.
(n+1)!

n!

/Om(x — s)"dx| =

n

i/ (x — s)"e*ds = Ty / (x — s)" e ds.
0 n 0

n
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Since ;
xn . n—1
- —/(x s)" " ds
0
we set
i/ (x—s)"eisds:/ (x —8)" e —1)ds
nJo 0
or
e [emsretas= T [T - 1a
x—s)"eds = x—s e s
n! Jo (n—1! J
This gives

and this completes the proof. [J

Corollary 1. If EX = pi and E|X|* = 0% < 00, then ¢(t) = 1+itp— 2= +o(t)?,

ast — 0.

Proof. Applying Theorem 4.1 with n = 2 gives

RN | (X 21X

and the expectation goes to zero as ¢t — 0 by the dominated convergence theo-

rem. [

65. The Central Limit Theorem.

We shall first look at the i.i.d. case.

Theorem 5.1. {X;} i.i.d. with EX; = p, var(X;) = 0? < co. Set S, = X1 +
...+ X,,. Then
Sn —np

o = N(0,1).
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Equivalently, for any real number x,

S — U 1 /a: 2
n <z}l — — e Y /24t
oyn } V2T J_s

P

Proof. By looking at X! = X; — u, we may assume pu = 0. By above

1252
ox,(t) =1~ 5 +9(t)

with 42 — 0 as t — 0. By i.i.d.,

os, )= (155 +o))

— 0 as t — 0, we have (for fixed t) that

)

Since 12

() o),

/vn)3? 5

as n — 00. This can be written as

t
— 0 .
ng(a\/ﬁ)ﬁ as n — oo

t2
Next, set C,, = 5 + ng (—) and C' = —t2/2. Apply Lemma 5.1 bellow to

get

o= (1= 4+ altlovm) =t

ovn

and complete the proof. [J
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Lemma 5.1. If C,, are complex numbers with C,, — C € C. Then (1 + —) —
n

e“.

Proof. First we claim that if 21, 29,...,2, and wq,... ,w, are complex numbers

with |z;| and |w;| < for all j, then

‘ ﬁ Zm ﬁ wm‘ <" Zn: |2m — Wi (5.1)
m=1

m=1 m=1
If n = 1 the result is clearly true for n = 1; with equality, in fact. Assume it for
n — 1 to get
n n—1 n—1
‘ [ = - me‘ < fou I 2n = me‘
Zn H Zm — Zn me+zn H Wm — Wn H wm‘

<n Hzm_me‘+ me
m=1 m=1 m=1
n—1

<2 Z |2m — W] + 7"z — Wil

m=1
n
="t Z |2 — Wi
m=1

Next, if b € C and |b| < 1 then

|2n — Wi

le? — (14b)| < |b]°. (5.2)

For this, Writeebzl-l—b-l-%—i-g—f—l—....Then

b|? 26| 2|b)?
\eb—(1+b)\§%(1+M LJF)
b|? 1 1 1
g%(1+§+2—2+2—3+...):|b|2,

TR

which establishes (5.2).
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With both (5.1) and (5.2) established we let ¢ > 0 and choose v > |C|. Take
< 1. Set z = (1+<»)

C
n large enough so that |C,| < v and 227 /n < € and ’—n
n

and w; = (e“»/™) for all i = 1,2,... ,n. Then
Cn
|z;| = ‘1—# —| < <1+ 1) and |w;| < /"
n n

hence for both z; and |w;| we have the bound /™ (1+ 2). By (5.1) we have

Setting b = C,,/n and using (5.2) we see that this quantity is dominated by

n—1
< ex(n=1) (1 n 1) n
n

C 2

n

e (143)"

n

IA

726%(71—1)67 - ,}/2627

<k,
n n

which proves the lemma [J

Example 5.1. Let X; be i.i.d. Bernoullians 1 and 0 with probability 1/2. Let
S, = X1+ ...+ X,, = total number of heads after n—tones.

EX;=1/2, var(X;) = EX? — (E(X))*=1/2 - (i) =1/4

and hence
Sy — Hn Sp — %

TN

From a table of the normal distribution we find that

= x = N(0,1).

P(x >2)~1— .9773 = 0.227.
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Symmetry:
P(|y| < 2) =1 — 2(0.227) = .9546.

S _n
095~ P | |——2|<2
([l <2)

-2 n 2

i < N -
P{z\/ﬁ—s’”‘ 2<2‘/ﬁ}
P{g—ﬁ<sn§\/ﬁ+n/2}.

Hence for n large we should have

If n = 250, 000,

g — /n = 125,000 — 500

g +/n = 125,000 + 5000.

That is, with probability 0.95, after 250,000 tosses you will get between 124,500
and 125,500 heads.

Examples 5.2. A Roulette wheel has slots 1-38 (18 red and 18 black) and two
slots 0 and 00 that are painted green. Players can bet $1 on each of the red and
black slots. The player wins $1 if the ball falls on his/her slot. Let X1,..., X, be
iid. with X; = {1} and P(X; =1) =8, P(X; =-1)=2. 5, =X+ -+ X,

is the total fortune of the player after n games. Suppose we want to know P(S,, > 0)

after large numbers tries. Since

By _2_-2_ 1
738 38 38 19

var(X;) = EX? — (BE(x))* =1 — (%9)2 =0.9972

we have

P(SnZO)ZP(Sn_nM> —nu).

ovn T oyn
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Take n such that

i) _,

(.9972)
This gives /n = 2(19)(0.9972) or n ~ 3 61.4 = 1444. Hence

Sn —np
P > =P —>2
(S1444 > 0) ( T = )

~P(x =2)
=1-0.9772

= 0.0228

Also,

1444
E(Sl444) = —W - —419

= —T76.

Thus, after n = 1444 the Casino would have won $76 of your hard earned dollars,
in the average, but there is a probability .0225 that you will be ahead. So, you

decide if you want to play!

Lemma 5.2. Let C,, ,, be nonnegative numbers with the property that 1£na}<< Cnom —
<m<n

0 and Z Cn,m — A. Then

m=1

n

(1-Chm) — e .

m=1
Proof. Recall that
lim 1 (li”> 1
(0] =
alo 87 g

Therefore, given € > 0 there exists 6 > 0 such that 0 < a < ¢ implies

1
(1—5)aglog(1

—a

) < (1+¢)a.
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If n is large enough, C,, , < ¢ and

(1 - &)Cynn < log <—

Thus

and this is the same as
Z log(1—Chypn) — —A
m=1

or

log <ﬁ (1-— Cmm)) — =\

m=1

This implies the result. [J

Theorem 5.2 (The Lindeberg—Feller Theorem). For each n, let X, ,,, 1 <

m < n, be independent r.v.’s with EX,, ,,, = 0. Suppose

(i) Z EX?Lm — %, o€ (0,00).
m=1

(ii) For alle >0, lim Y E(|Xym|* [Xpm|>¢e) =0.

m=1

Then, Sy, = Xp1+ Xno+ ...+ Xom = N(0,02).

Example 5.3. Let Y7,Y5,... be iid., EY;

)

= 0, E(Y?) = 02 Let X,,, =

Y /n'/?. Then Xy + Xy + ...+ Xy = 2. Clearly,
n E, Y2 2 n
I PRl
m=1 n n m=1

Also, for all € > 0,

- 2. e
> Bl ol >2) = (5 B

= E(|V1|% |Y1| > en'/?)
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and this goes to 0 as n — oo since E|Y1]? < .

Proof. Let on m(t) = E(e"Xmm), o2 = E(X? ). It is enough to show that

n,m

n
I enm(t) — e 22

m=1

Let € > 0 and set 2, = ©nm(t), wnm = (1 — tQJEL’m/2). We have

X l® 20X ]2
31 51
1t Xnm|® 20X m]?

5 N g Xnml=e

tXnml® 207 X m |2
+E(’ g;m‘ A '27””‘ : IXn,m|>s)

t X m|?
<E (g [ Xom| < 6)

<5

3!
+ E (tXnm|?% | Xnm| > ¢)

t3
= %E|Xn,m|2 + P E(|Xnml* [Xnm| > €)

Summing from 1 to n and letting n — oo gives (using (i) and (ii))
) . et3o?
nan;o Z |Zn,m - c")n,m’ S 6

m=1

Let € — 0 to conclude that

as n — 0o0. Now,

Tnm <+ E(|Xpml* [ Xnm| > €)
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and therefore,

max 0721
1<m<n ’

m S e + Z E(|Xn,m|2§ ‘Xn,m| > ¢).

m=1

The second term goes to 0 as n — oo. That is, max 0'7217m — 0.Set Cp . =

1<m<n
Then
n t2
z:l Cn.m - 50-

and Lemma 5.2 shows that
ﬁ <1 o tQO'n,m) N 6_#,
2
m=1

completing the proof of the Theorem. [J

We shall now return to the Kolmogorov three series theorem and prove the
necessity of the condition. This was not done when we first stated the result earlier.

For the sake of completeness we state it in full again.

The Kolmogorov’s Three Series Theorem. Let X, X5,... be independent

random variables. Let A > 0 and Y,,, = Xml(x,.1<ay- Then Z X, converges a.s.

n=1

if and only if the following three hold:

(i) 32 P(1Xal > 4) < o0,

n=1

(i) ZEYn converges and

n=1
(iii) Z var(Yy,) < oo.
n=1

Proof. We have shown that if (i), (ii), (iii) are true then ) X,, converges a.s. We
n=1
now show that if ZX” converges then (i)—(iii) hold. We begin by proving (i).

n=1
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Suppose this is false. That is, suppose

Y P(|Xn| > A) = 0.

m=1

Then the Borel-Cantelli lemma implies that
P(|X,| > Aio.)>0.

n
Thus, lim ) X, cannot exist. Hence if the series converges we must have (i).
m=1

Next, suppose (i) holds but Z var(Y,,) = co. Let

n=1

(Y, — EY,,

C, = Z var(Y,,) and X, , = e

m=1
Then
EXym=0and » EX} =1

m=1

2A
Let € > 0 and choose n so large that —i5 <E Then
Ch

- - 24
2. 2.
2 B Xl Xuml >2) < 3 B (‘Xn,m! Kol > C—/)
m=1 m=1 n
- 24 |Y,|+EY,,
=20 <|Xn’m|2; 72 < | |+1/2| |)'

m=

But
Yol + ElYm| _ 24

oy T ol

So, the above sum is zero. Let

n

1
Sp=Xp1+Xpo+... Xom= o Zl(ym — EY,,).

By Theorem 5.2,
Sn, = N(0,1).
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Now, if lim Z X, exists then lim ) Y, exists also. (This follows from (i).)

Let
n Ym
T, =
mz_1 Ch/?
1 n
— Ym
o mZ_

and observe that T,, = 0. Therefore, (S,, — T,,) = x where x ~ N(0,1). (This
follows from the fact that lim,, oo E(g(Sn —T1%)) = lim, o0 E(9(Sn)) = E(9(x))-)
But

Sp— T = —— ZH:E(Ym)

chl? =
which is nonrandom. This gives a contradiction and shows that (i) and (iii) hold.

Now, Z var(Y,) < oo implies Z (Y, — EY,,) converges, by the corollary

n=1 m=1
mn
to Kolmogorov maximal inequality. Thus if Z X,, converges so does Y Y,, and

m=1

hence also ) EY,,. O

§6. The Polya distribution.

We begin with some discussion on the Polya distribution. Consider the density

function given by

flz)=(1- |$|)1me(—1,1)
= (1 Jz])".

Its characteristic function is given by

2(1 — cost)
p(t) = 2
and therefore for all y € R,
2 Lo (1 — t
(-l = = [ emllct)

T o Je 2

:l/ 1 —cost oty g
i R t2
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Take y = —y this gives

R e R
R

T t2

1 ——coszx

So, if f(z) =

T2

which has /f1 (z)dzr =1, and we take X ~ F where F has
R

density f; we see that (1—|¢|)" is its characteristic function This is called the Polya

l—cosax

distribution. More generally, If f,(z) = ~=5>7%, then then we get the characteristic
+
function @, (t) = (1 — ‘ﬁD , just by changing variables. The following fact will be

useful below. If F1, ..., F, have characteristic functions 1, ... ,v,, respectively,
n n

and \; > 0 with > \; = 1. Then the characteristic function of Z A Fj is Z Aii.
i=1 i=1
Theorem 6.1 (The Polya Criterion). Let ¢(t) be a real and nonnegative
function with p(0) = 1, o(t) = @(—t), decreasing and convex on (0,00) with
ltilnél o(t) =1, tl%m ©(t) = 0. There is a probability measure v on (0,00) so that

and ¢(t) is a characteristic function.

Example 6.1. ¢(t) = e7I!I” for any 0 < o < 2. If @ = 2, we have the normal
density. If & = 1, we have the Cauchy density. Let us in show here that exp(—|t|%)
is a characteristic function for any 0 < o < 1. With a more delicate argument, one
can do the case 1 < a < 2. We only need to verify that the function is convex.

Differentiating twice this reduces to proving that
at®* ™ — 7% 4+ at® 2 > 0.

This is true if a2t® — a2 + a > 0 which is the same as o?t® — a? + o > 0 which

follows from at® 4+ a(1 — «) > 0 since 0 < a < 1.
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§7. Rates of Convergence; Berry—Esseen Estimates.

Theorem 7.1. Let X; be i.i.d., E|X;|?> = 0%, EX; =0 and E|X;]?> = p < c0. If

ov/n

cp
F,(z) — ®(z)| < —1—,
22%' (z) = ()] < — N

where ¢ is an absolute constant. In fact, we may take ¢ = 3.

F,, s the distribution of

and ®(x) is the normal distribution, we have

More is actually true:

Hl(m)+H2($)+.'_+H3_(m)+...

Vn n n3/2

where H;(x) are explicit functions involving Hermit polynomials. We shall not

Fo(z) = ¢(z) +

prove this, however.

Lemma 7.1. Let F be a distribution function and G a real-valued function with

the following conditions:

(i) lim G(x)=0, lim G(z)=1,

Tr— —00 r——+00

1
(i1) G has bounded derivative with sup |G’ (z)] < M. Set A = 527 SUP |F(z) — G(z)].
zeR zeR

There is a number o such that for all T > 0,

TA |
2MTA{3/ 1=cosw d:c—w}
0 i

1 —cosTx
g‘/_wT{F(x+a)—G(z+a)}da:

Proof. Observe that A < oo, since G is bounded and we may obviously assume that
it is positive. Since F(t) — G(t) — 0 at t — %00, there is a sequence z,, — b € R

such that
2MA

F(x,) — G(zy,) — § or :
—2MA
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Since F'(b) > F(b—) it follows that either
F(b)—G(b)=2MA
or
F(b—)—G(b) = —2MA.

Assume F(b—) — G(b) = —2M A, the other case being similar.
Put
a=b—A<b, since
A=(b—a).
If |x| < A we have
G(b) -Gz +a) =G (§)(b—a—x)
— G4 —7)

Since |G'(§)] < M we get

G(z +a) =G(0) + (x — A)G' (&)
> G(b) + (x — A)M.
So that
F(z+a) — Gz +a) < F(b=) — [G() + (z — A)M]
= 2MA—xM + AM
— —M(z + A)

for all x € [-A, A]. Therefore for all T > 0,

A 4 A4
/ M{F(m—l—a) -G+ a)}dr < —M/ ! COSTx(x+A)d:v
—A

_A .7132 .’132

A —
— _2MA / (—1 = Tx) dz
0 X
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—A 9
1 T
gMA{/ -/ }+_d
—00 A x

:4MA/ 1—cosTx de.
A

2

Also,

H /_:: +/AOO }1_;%“{1?(90 +a)— Gz +a)}de

Adding these two estimates gives

/ (ﬂ) (F(z +a) — Gz + a) o

<2MA{ / +2/ }{1_C08Tx}dx

_2MA{—3/ +2/ }{1_008Tx}da:

:2MA{ —3/ —1_CZSTxdx+2/ —I_CZST’” d:c}
0 x 0 Y

A _
_ 2MA{ _ 3/ 1-cosTa C(;STxdx 42 (£> }
0 X 2

TA 4
:2MTA{—3/ ﬂdm+w}<0,
0

xr2

proving the result. [

Lemma 7.2. Suppose in addition that G is of bounded variation in (—oo,00) (for

example if G has a density) and that

/|F 2)|dz < oo.

Let f(t) and g(t) be the characteristic functions of F' and G, respectively. Then

LT f) —9()] 12
< f—
A= 2rM /_T t dt+ Tr’

for any T > 0.

Proof. Since F' and G are of bounded variation,

1) -0 = it [ T {F(2) - Gla))e e,
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Therefore,

f(t) - g(t) e—ita — /OO (F(.I‘) i G(x))e—itoz—i—itxdx

—0

= / F(z+a) - G(z + a)edz.

It follows from our assumptions that the right hand side is uniformly bounded in

a. Multiply the left hand side by (7" — |t|) and integrating gives

[

-/ i / Z{F("” +a) - Gla+ )} (T - [t])dadt
= /_O:O{F(a:—l—a) G(r+« }/ e (T — |t|)dtdx

/_00 (F(z+a) — G(x+a))/ (T — |t|)dtdz.

=T
=1
Writing
1—cosTx 1 (7 .
2 TCosAT _/ (T — [t])eit=dt
IQ 2 _T

we see that

which gives

‘/ { (@ + ) G(x+a)}{1_;+“}dm

< 1‘/T (0 =9(0) iva M)dt‘

o —it

T J—
<7/ / M‘dt
-T
Therefore by Lemma 7.1,

t
TA ¢ T
QMA{s/ wm_ﬁ}gl/
0 z 2 ) r

70— 9() ‘ "
t
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However,
TA [e’e) o0
1— 1-— 1—
3/ czosx dx—7r:3/ c2osx dm—3/ czosx do —
0 T 0 x TA x
:3(z>_3/”1—ﬂdx_w
2 TA 1'2
3 * dx T 6
> ——6 — T == — —
2 TA T2 2 TA
Hence,

or equivalently,

1 T
A< /
oM |,

which proves the theorem. [

f(t) — g(t)‘ 12
'

Proof of Theorem 7.1. Without loss of generality, 02 = 1. Then p > 1. We will
apply the above lemmas with

F(z)=F,(x)=P (% > x)

and

G(z) = o(x) = \/% /_w e_y2/2dy.

Clearly they satisfy the hypothesis of Lemma 7.1 and in fact we may take M = 2/5
since

1
sup |®' ()| = —— = .39894 < 2/5.
sup ¢/(2)] = /

Also clearly G is of bounded variation. We need to show that

/|Fn(:1;) — &(z)|dr < oo.

R
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To see this last fact, note that Clearly,

/ |F(z) — ®(x)|dx < oo

—1

and we need to verify that

/_ |y (x) — ®(x)|dx + /100 |F(z) — ®(x)|dr < . (7.1)

— 00

For z > 0, P(|X| > z} < 35 E|X|?, by Chebyshev’s inequality. Therefore,

(1= Fy(2)) :p(% >$) - %E’%

and if V denotes a normal random variable with mean zero and variance 1 we also

2<1
xr2

have
1

(1—®(x)) = P(N > ) < %E|N\2 =

In particular: for z > 0, max ((1 — F,,(z)), (1 — ®(z))) < . If < 0 then

Sn S, T I |
= —_— — - — < — - -
F,(x) P(\/ﬁ<:c) P( \/ﬁ> z)_a:QE’\/ﬁ >
and
1

Once again, we have max(F,(z), ®(z)) < 25 hence for all z # 0 we have

Therefore, (7.1) holds and we have verified the hypothesis of both lemmas. We

obtain
42
Fo(z) — @ (x) <1/T o (t)v/m) — e P, 241
" 7 )_p |t] s
2
<1/T o (t/v/n) —e 2] 48
7)o |t] 5rT
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Assume n is large and take T = %ﬁ. Then

48 48-3  12-3 [ 36p
57rT_57T4\/ﬁp_57r\/ﬁp_ S5my/n |

Next we claim

1
2

n 2 1 2, (262 |t?
(" (t/) — 72| < e t/4{7+%} (7.2)

for —T <t <T,T =4y/n/3p and n > 10. If this were the case then

T 2 3
e 2t |t] 48
T|F,(z) — ®(z)| < QA S o
7T|F,(x) (a:)|_/Te {9 18} :

T 2 3
2t t 48
-7 9 18 5)

2 [ 1 [
< / e_t2/4t2dt—|—ﬁ/ e /A tdt + 9.6

=9
=1+1I+9.6.
Since
2 [~ —t% /442 8
— todt = —
9/_006 V™
and
1 s —t2/4 Ry /4
— |t|°e dt = 2 t’e dt
18 —00 0
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Therefore,
8 8
7T |Fp(z) — ®(z)] < (§ﬁ+ 9 + 9.6).
This gives,
Fole) ~ 0(a)| < o= S(14 V) +96
n(x 2 <519 T .
3p 8
=—— < (1 .
4¢ﬁvr{9( +ﬁ>+96}
3p
<%.

For n <9, the result is clear since 1 < p. It remains to prove (7.2). Recall that

n . m n n
that [p(t) — 3 EEX" | < p(min BT 217 ) hig gives

o (n+1)! n!
2| _ plt]?
-1+ —| <20
ot -1+ 5| < 2%
and hence
t3
o) <122+ A0
for t2 < 2.

4
With T = 420 if [¢] < T then 28l < (4/3) < 2 and t/v/n = 3, < 2. Thus

£l
2n  6y/n n
. t2 4 t?
- 2n 18 n
o, 5t
N 18n
—5¢2
< e18n

52
given that 1 — 2 < e~®. Now, let z = o(t/\/n), w = et /2" and v = e 15+ . Then

for n > 10, v~ 1 < e~t’/4 and the lemma above gives

2" —w"] <"z — wl
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which implies that

lo(t/v/m) — e /2| < meTon D p(t//n) — et /2

t2 t2
< me Aot/ v) — 1+ o — e -
t2 t2
< ne 4 p(t/ /) — 1+ o |t ne= /41 — S et /2n
t| 2 t
< pe—t’/4 Pl —t2/4
- 6n3/2+n 2-4n?’

using the fact that |[e™® — (1 — x gw—Q for 0 <z < 1. We get
g 3 g

the—t2/4 e—t2/4‘t‘3

p(t/vn) —e /2 < 57 ”

2 3
6y/n  8n
1 22t |t?
< Zett/a) 2t M
=7° { 9 T8 [
1 1 1 4_1
using p/v/n = 3T and — T

- < _-T=
n  nyn 3 3

the proof of (7.2) and the proof of the theorem. [

, p>1and n > 10.This completed

Let us now take a look at the following question. Suppose F' has density f.
S,
Is it true that the density of —= tends to the density of the normal? This is not
n

NG

always true. as shown in Feller, volume 2, page 489. However, it is true if add some

other conditions. We state the theorem without proof.

Sn
Theorem. Let X; be i.i.d., EX; =0 and EX? = 1. If p € L', then T has a
n
—z2/2

\/12_7r e =n(z).

density f, which converges uniformly to

¢8. Limit Theorems in R¢.

Recall that R? = {(z1,... ,24):2; € R}. For any two vectors z,y € R? we

will write x < y if x; < y; forallt=1,...,d and write z — oo if x; — oo for all
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i. Let X = (z1,...,x4) be a random vector and defined its distribution function

by F(z) = P(X < x). F has the following properties:
(i) If z <y then F(z) < F(y).

(ii) lim F(z)=1, lim F(z)=0.

r— 00 T;——00

(iii) F is right continuous. That is, lifn F(x) = F(z).
ylx

The distribution measure is given by u(A) = P(X € A), for all A € B(R?).
However, unlike the situation of the real line, a function satisfying (i) < (ii) may

not be the distribution function of a random vector. Example: we must have:

P(X S (al,bl] X (ag,bg]) = F(bl,bg) — F(al,bg)

P(CL < X; < bl,ag < X5 < bg) — F(bl,ag) + F(al,ag).

Need: measure of each vect. > 0,

Example 8.1.
17 T1, 21 > 1

2/3, 33121, OSCL‘QSl
2/3, x9>1,0<z; <1

0, else

F(iCl,SCQ) =

If0<CL1, a2<1§b1, bz<OO, then

F(bl,bg) —F(al,bg) —F(bl,ag) +F(a1,a2) =1 —2/3—2/3+0
= —1/3.
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Hence the measure has

1(0,1) = p(1,0) =2/3, u(l,1) =-1/3
which is a signed measure (not a probability measure).

If F is the distribution function of (Xi,...,X,), then F;(z) = P(X; < x),

x € R is called the marginal distributions of F'. We also see that

Fi(x) = lim F(m,... ,m,z;,...,m)

As in the real line, F' has a density if there is a nonnegative function f with

R[f(y)dy:[R"'Af(ylvy2y-~-»yn)dy1...dyn:1

and

X1 Xd
s = [ [ s

Definition 8.1. IfF,, and F are distribution functions in R%, we say F,, converges

weakly to F, and write F,, = F, if lim F,(x) = F(x) for all points of continuity
n—oo

of F'. As before, we also write X,, = X, pn, = p.

As in the real line, recall that A in the closure of A and A° is its interior and
0A = A — A° is its boundary. The following two results are exactly as in the real

case. We leave the proofs to the reader.

Theorem (Skorohod) 8.1. Suppose X,, = X. Then there exists a sequence of

random vectors Y,, and a random vector Y with'Y,, ~ X,, and Y ~ X such that

Y, —Y a.e.

Theorem 8.2. The following statements are equivalent to X,, = X.

(i) Ef(X,) — E(f(X)) for all bounded continuous functions f.
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(iii) For all closed sets K, limP(X, € K) < P(X € K).
(iv) For all open sets G, limP(X,, € G) > P(X € G).

(v) For all Borel sets A with (P(X € 0A) =0,

lim P(X, € A) = P(Xsx € A).

n—oo

(vi) Let f:R% — R be bounded and measurable. Let D¢ be the discontinuity
points of f. If P(X € Dy) =0, then E(f(X,)) = E(f(Xw)).

Proof. X,, = Xo = (i) trivial. (i) = (ii) trivial. (i) = (ii). Let d(z, K) = inf{|z —

yl:y € K}. Set
1 t<0
pj(t)=¢ 1—jt 0<t<j!
0 1<t

and let f;(z) = ¢;(dist (z, K)). The functions f; are continuous and bounded by
1 and f;(x) | Ix(x), since K is closed. Therefore,

lim sup pu,, (K) < nll_%o E(f;(Xn))

= E(f;(X))

and this last quantity | P(X € K) as j T oo.

That (iii) = (iv) follows by taking complements. For (v) implies convergence
in distribution, assume F' is continuous at z = (z1,... ,24), and set A = (—o0,z] =
(—o0,x1] X ... (=00, x4]. We have u(0A) = 0. So, F,(z) = F(z, € A) - P(Xx €
A)=F(z). O

As in the real case, we say that a sequence of measurers pu,, is tight if given

€ > 0 exists an M. > 0 such that

inf g, ([~ Me, M%) > 1 —¢.
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We remark here that Theorem 1.6 above holds also in the setting of R?.
The characteristic function of the random vector X = (X1,...,Xy) is defined as

o(t) = E(e™*) where t - X = 1 X1 + ...+ t4X4.

Theorem 8.3 (The inversion formula in R?). Let A = [ay,b1] X ... X [ag, b4]

with w(0A) = 0. Then

J(A) = Tim @/_T.../_Twl(tl)w(t)...wd(td)go(t)dtl,... dt

T—o0

d
1
= lim /) Pi(t;)p(t)dt,
A G [_le:Il i(t)e(t)

isa; __ ,—sb;
= (222,

where

for s e R.

Proof. Applying Fubini’s Theorem we have

=
S
<
S
St
T
m@.
.
)
Q.
=
—
=
SN—

_ / TT 5 (t)es s dtdp(x)

d

7 g 1 {W(l(“j’bj)(xj) + 1[%%](%’)} dp(z)
Jj=1

and this proves the result.
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Theorem (Continuity Theorem) 8.4. Let X,, and X be random vectors with

characteristic functions ¢, and @, respectively. Then X, = X if and only if
en(t) — o(t).

Proof. As before, one direction is trivial. Let f(z) = e!®. This is bounded and

continuous. X,, = X implies ¢, (x) = E(f(X,)) — ©(t).

For the other direction we need to show tightness. Fix § € RY. Then for
Vs €R p,(s0) — p(s0). Let X,, =60 X,,. Then ¢ (s) = px(fs) and

0z (8) = px(s).

n

Therefore the distribution of X, is tight by what we did earlier. Thus the random
variables e; - X,, are tight. Let € > 0. There exists a constant positive constant M;
such that

liglp(ej - X, € M, M;]) >1—e.

Now take M = maxi<;<q M;. Then
P(X, € [M,M*>1—¢
and the result follows.
Remark. As before, if ¢, (t) — @(t) and ¢ is continuous at 0, then ¢(¢) is the
characteristic function of a random vector X and X, = X.

Also, it follows from the above argument that If - X,, = 6- X for all € R¢
then X,, = X. This is often called the Cramér—Wold devise.

Next let X = (X1,...,X4) be independent X; ~ N(0,1). Then X has den-

sity (%%dm e=121°/2 where |z|? = Zle |z;|2. This is called the standard normal

distribution in R¢ and its characteristic function is

d

ox(t) = E( 11 X) i,

j=1
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Let A = (a;;) be a d x d matrix. and set Y = AX where X is standard normal.

The covariance matrix of this new random vector is

Lij = E(Y:Y})

Thus T’ = (T;;) = AAT. and the matrix  is symmetric; I'" = I'. Also the quadratic

form of I' is positive semidefinite. That is,
> Tijtit; = (Tt t) = (ATt, ATt)
(]

= |ATt? > 0.

oy (1) = B(e4X)

— E(eiATt-X)

_ \ATt|2
= e 2

— Z Fijtitj
=e Y .

So, the random vector Y = AX has a multivariate normal distribution with co-

variance matrix I'.

Conversely, let I be a symmetric and nonnegative definite d x d matrix. Then

there exists an orthogonal matrix O such that

o'ro =D
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where D is diagonal. Let Dy = /D and A = OD,.
Then AAT = ODy(DIOT) = ODOT =T. So, if we let Y = AX, X normal, then
Y is multivariate normal with covariance matrix I'. If I' is non—singular, so is A

and Y has a density.

Theorem 8.5. Let X1, Xs,... be i.i.d. random vectors, EX,, = i and covariance

matrix

Lij = E(X1j — py) (X1 — pi))-

If S, = X1 +...+ X, then
Sn —nu

Jn

where x is a multivariate normal with covariance matriz I' = (I';;).

=X

Proof. By setting X!, = X,,—u we may assume g = 0. Let t € RZ. Then X, =tX,

are i.i.d. random variables with E(X,,) = 0 and
) d 2
E|X,? = E(Zti(Xn)i) = tit;Ty;.
i=1 ij

So, with S, = Z(t - X;) we have
j=1

3, (1) = B(e®") —e ¥

n

This is equivalent to

05, (t) = B(e"5) ¢ 5 .

Theorem. Let X; be i.i.d. E|X;|> =02, EX; =0 and E|X;|> = p < co. Then if
Sn
ov/n
sup |F(z) — (z)| < —L

z€R o3

F, is the distribution of and ®(x) is the normal we have

(may take c = 3).

B
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2?2 is actually true:

Hl(x)+H2($)_|_ _|_H3_(‘T)+...

Jn n 32

where H;(x) are explicit functions involving Hermid polynomials.

Fo(z) = ¢(z) +

Lemma 1. Let F be a d.f., G a real-valued function with the following conditions:

(i) lm G(z)=0, lim G(z)=1,

T— —00 r—-+00

1
(i1) G has bounded derivative with sup |G’ (z)] < M. Set A = 227 SUP |F(x) — G(x)|.
zeR z€R

There is a number a s.t. ¥ 1T >0

TA |
QMTA{gf 1-coso dx_ﬂ}
0 X

< ' /_O; L= ST P 4 a) — Gla + a)}de

T

b<—a

Proof. A < oo since G is bounded. Assume L.H.S. is > 0 so that A > 0. azob'
a
—b<—a

Since F' — G = 0 at +o00, d sequence z,, — b € R s.t.

2MA
F(x,) — G(zy,) —  or :
—2MA

So, either

F(b) — G(b) =2MA

or

F(b—) — G(b) = —2MA.
Assume F(b—) — G(b) = —2MA.

Put

a=0b—A <b, since

A=(b—a)
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if |x| < A we have

G(b) — Gz +a) =G (E)(b—a— )
=G"(A-2) |G'(YI<M

or

Gr+a)=G0) + (z — AG(§)
> G(b) + (z — A)M.

So that

F(z+a)—G(x+a) < F(b—)—[G() + (x — A)M]
= —2MA —xM + AM
—M(x+A)Vxe|[-AA]

0o A

. T to be chosen: we will consider / = / +rest
—00 —A

/A L~ cos Tx{F(x +a) - Gz + a)}de

A
1— T
< M/ o8 3: + A)dz

:_QMA/O <1—(;28Tx>dx
H/__AJF/OO}{F(x+a)—G(x+a)}dx

—_A 0o
1 T 1—cosT
<2MA{/ / } +C°S xdx_élMA/ R
A xr

dx.

(2)
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Add:

/00 (ﬂ) {F(z+a) -Gz +a)lde

<2MA{ /+2/ }{1_COSTx}dac

_2MA{—3/ +2/ }{ COSTx}dx

:QMA{—B/ —1_CZST””dx+2/ —1_628%3 da:}
0 x 0 xz

A J—
:QMA{—3/ 1-costa CZSTxdanZ(ﬂ)}
0 X 2

TA
:2MTA{ —3/ %dw%—w} < 0.
0

Lemma 2. Suppose in addition that

(iii) G is of bounded variation in (—oo,00). (Assume G has a density).

(iv) / F(z) — G()]dz < oo.
Let
6= [ eare), o) = [ edcw)
Then .
1 1f(t) —g(t)] 12
As 2rM ) _p t dt =+ T
Proof.
F) =gty =—it [ {F(x) - Gx)} "dy
and ",

f(t) _ g(t) e—z‘ta — /OO (F(m) _ G(I))e_iw—Hde

:/ F(z+a)— Gz + a)etdr.
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.. By (iv), R.H.S. is bounded and L.H.S. is also. Multiply left hand side by (7'—|t|)

/T{f@»—mw}ém( e

:/ / (F(z+a) — Gla + a)}e'™ (T — [¢t|)dwdt
/OO{F(HCL) :L‘—I—a}/ ¢t (T |t])dtda

:/_OO (F(x +a) — G(x—i—a))/_Te”x( — |t|)dtdx

and integrade

Now,

1—cosTz 1 [T .
= [ @ tetar

x 2 /_
above o /_O;(F(:c +Ta) _ G+ a)){l_;%h}dx
or /Oo {F(a:—l—a) G(x+a)}{1_fc%“}dx
< 2‘/ J) — 9(t) ”a(T—|t|)dt‘

f@ (Wﬁ
t
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or
/T O =90 oo (on (T 6
o t - 2 TA
24M
—2M7TA—T
or

pe b [T U000, 12

dt + 2=
SomT ) . | T

We have now bound the difference between the d.f. satisfying certain conditions
by the average difference of.

Now we apply this to our functions: Assume wlogo? =1, p > 1.

F(z) = Fo(z) = P (% > :1:) . Xqiid.

G(zr) =¢(x) = P(N >z) = \/%_7 /_w eV 2y,

Clearly F,, and @ satisfy (i).

sup |9’ ()| =
Vo= 7

= .39894 < 2/5 = M.

|
¥l -
3

(iii) Satisfy:
(iv) /|Fn(x) _ &)z < .
]élearly, [ 1F(z) = ¢(2)|dz < oo
Need:
/_O: P (2) — ()| + /100 F(z) — B(x)|dz < .

Assume wlogo? = 1. For z > 0. P(|X| > z) = 55 F|z|*.

Sp 1 Sp

1-F,(z) =P —= < ____Ep|lZ22

) (ﬁ”)‘le? ’ﬁ

1—®(z)=P(N>z)< i2E|N|2 _
X

x>

1

2
< —
X2
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In particular: for z > 0. max((1 — F,(x)), max1 — ®(z)) < 1.

||

If z < 0. Then
S, S, 118,12 1
Fn(m):P<—n<x :P<—%>—x>gﬁE% -
1
®(z) = P(N <z) < =
R (o), ®(2)) <
Fx) = ®(x)| < = itz < 0
(|F(z) — ¢(x)| =
— 1 - (z) — (1 - F(x))| < % r>0
*. (iv) hold.
LT |en(t/y/n) —e ] 24M
|Fn($)—¢($)’§;/_T |t‘ dt+7T—T
N D 48
S%[T 0 W+ 5o

tells us what we must do. Take T' = multiple of \/n.
Assume n > 10.

Take T = %ﬁ: Then

48 483 12-3 [ 36p
57rT_57T4\/ﬁp_57r\/ﬁp_ S5my/n |

For second. Claim:

1
il (/v - e V2| <

< Lol W) ST

1 > 10
T 9 T8> T=4yn/3p 7
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| Fy(z) — (z)| g/

T 2 3
—t?/4 2i ﬂ dt
- { o T8

+ -

9.6

/T 2/ 2t2+\t|3 dt+48
= e —_— —_— —_
7 9 = 18 5

2 [ 1 [ .
< 5/ e /A2 dt + —/ e /At dt + 9.6

18
=JT+11+9.6.
1 2 2
Recall: /e_t 1207424t — 52,
V2mo?
Take 02 = 2
2 o 2 2 2 2.2.9
—/ e V2240t =2\ 2.2 = NZs
9/ o 9 9
8
— §\/7?

or

Py (2) — B(a)| < %{2(1 + \/E) +9.6}
< 4\% 7T{2(1 + /) +9.6}
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For n < 9, the result follows. |1 < p |since o2 = 1.

X 20X

" E( tX
Proof of claim. Recall: 02 =1, Z (i ‘ < E(min
m=0
t 3
(1) ‘gp(t)—1+ 5 p|6| and
2 P’ K 2
(2) Jo(t)] <1 —1t2/2+ = for t? < 2.
4 1
So,ifT:ﬁif]t\gL: p|| <(4/3) = 6<2.
3p vn 9
4
= Also, t//n = 3, < 2. So,
P
t ot £ ol |2
— ) <1-— =1—- —4+—F——
'SD<\/H>‘_ 2n+6n3/2 2n+\/ﬁ n
2 442 2
P VR
2n 3 n 18n

—5t2

<eT8n, gives that 1 —x <e

—X

Now, let v = (t//n), B =e""/2" and y = eT8n . Then n > 10 = y"~1 < ¢=1/4,

" — 3" <ny"Ha— Bl &
42 =52 —i2/9n
[p(t//n) — e " 2| < metsn (| p(t//n) — e /27

t2
< ne—t2/4|(‘0<t/\/ﬁ) — 1+ % o 6—t2/2n—1—t2/2n|

t2 +2
<ne " Mp(t/v/n) — 1+ 2_| Fne U1 — — — et/
n

2n

3 4
_2 Pl —e2j4 1t
< ne 6m3/2 + ne 5 an2
2
using |[e™ — (1 —z)| < 5 for0<z <1

or
tZe—t2/4 e—t2/4’t|3

e/ V) - e < s =

2 3
6y/n  8n

<l —t%/4 2_t2+@
T 9 18

[¢]

(n+1)!

n!

)
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1 1 1
using p/y/n = 3T and —

1
= — 3’ p>1and n > 10. Q.E.D.

ool»lk

S
Question: Suppose F' has density f. Is it true that the density of \/—71 tends to the
n

density of the normal? This is not always true. (Feller v. 2, p. 489). However, it is

true if more conditions.

Let X; be iid. EX; =0, FX2=1.

S
Theorem. If ¢ € L', then \/—n_ has a density f, which converges uniformly to
n
1 7.,1:2/2

e =n(x).

N n(z)

Proof.
1
— [ e
27T R
L ztye—ft
2T
1

| fal@) =l — o(t/v/n)" — e 1/2F |at

[\.')

under the assumption

()] < e~ i for |t| < 6.

At 0, both sides are 0.

Both have 7?7 derivatives of social derivative of ¢(¢) at 0 is —1 smaller than

the second derivative of r.h.s.
Limit Theorems in R?

Recall: R? = {(z1,... ,2q):2; € R}.
If X = (z1,...,X4) is a random vector, i.e. a r.v. X:w — R% We defined its
distribution function by F(z) = P(X < z),where X <z & X, <uz;,i=1,... ,d.

F has the following properties:
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() v <y = F(r) < F(y).

(i) lim F(z) =1,

Xr— 00

lim F(z) = 0.

T;——00

(iii) F is right cont. i.e. lim F(x) = F(x).

ylz

X, — 0o we mean each coordinate goes to zero. You know what X; — —oo.

There is also the distribution measure on (R%, B(R9)): u(A4) = P(X € A).

If you have a function satisfying (i) < (ii), this may not induce a measure. Exam-

ple: we must have:

P(X S (al,bl] X ((Ig,bg]) = F(bl,bg) — F(al,bg)

P(CL < X; < bl,CLQ < X5 < bz) — F(bl,az) + F(al,ag).

Need: measure of each vect. > 0,

Example. f(zq,z2) =

(

\

1 r1,21 > 1

2/3

2/3 x1>21,0<2,<1.
0 ro2>1, 0521 <1

else

Ifo<ay, aa<1<by, bp <o0=

F(bl,bg)—F(al,bg)—F(bl,a2)+F(a1,a2) = 1—2/3—2/3+0

— —1/3.
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The measure has:

,LL(O, 1) = ,u(l,O) = 2/37 “(17 1) = _1/3

for each, need measure of 77

Other simple 77

Recall: If F' is the dist. of (x1,...,X,), then Fj(z) = P(X; < z), = real in the

marginal distributions of F

Fi(z)= lim F(m,...,m,Tit1,...m)

F has a density if 94 f > 0 with /0:f and

Rd
X1 Tq
F(iUl,ZL’Q,ZL’d):/ / f(y)dyldy2

Def: If F' F,, is a distribution function in R?, we say F, converges weakly to F, if
F, = F,if lim F,(z) = F(x) for all pts of continuity of F'.
Xn = X, pn = p.

Recall: A = set of limits of sequences in A, closure of A. A° = R4\ (R?|A) interior.

OA = A — A°. A Borel set A is a y—continuity set if u(9A4) = 0.
Theorem 1 Skorho. X,, = X =drv. X, ~X,,, Y ~ X, s.t. Y, —Y a.e.

Theorem 2. The following statements are equivalent to X,, = X .
(i) Ef(Xn) — E(f(Xx))V bounded cont. f.
(i4i) V closed sets k, imP(X, € k) < P(Xo € k).
(iv) ¥ open sets G, imP(X, € G) > P(X»x € G).
(v) ¥ continuity A, (P(X € 0A).

lim P(X, € A) = P(X € A).

n—oo
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(vi) Let D, = discontinuity sets of f. If P(Xs € D) = 0= E(f(X,)) —
E(f(X)), f bounded.

Proof. X,, = Xo = (i) trivial. (i) = (ii) trivial. (i) = (ii). Let d(z, k) = inf{d(z—
y):y € k}.

1 t<0
pit) =4 1—jt 0<t< 7!
0 1<t

Let f;j(z) = ¢;(dist (z,k)). f; is cont. and bounded by 1 and f;(z) | I(x) since

k is closed.

o limsup g (k) = lim E(f;(X5))

n—oo

= E(fJ(Xoo)) | P(Xw € K). Q.E.D.

(iii) = (iv): A open iff A€ closed and P(X € A) + P(X € A°) = 1.

(v) = implies conv. in dis. If F' is cont. at X, then with A = (—o0, z1] X
oo (=00, 4], x = (x1,... ,2,) we have u(0A) = 0. So, F,,(x) = F(z, €
A) - P(Xs € A) = F(z). Q.E.D.

As in 1-dim. p, is tight if 3 given € > 0 s.t.
inf i, ([~M, M]%) > 1 —¢.

weak

Theorem. If p, is tight = I, s.t. pn;, — p.

Ch. f. Let X = (X1,...,Xy) be a . vector. (t) = E(e"'X) is the Ch.f. t - X =
t1 X1+ ..+ tg Xy

Inversion formula: Let A = [a1,b1] X ... X [ag, bg] with u(0A) = 0. Then

pA) = lim [ oot vattaeodn, ...t

T—o0
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where

Proof. Apply Fubini’s Theorem:
A =ay,b1] x ... X [ag,bq) with p(0A) = 0. Then

[l L
/_ Jﬁ / it it X g ) i
[ TlTﬁ Yeit X didua)

LI, el

7j=1
d
7 g 1 {W(l(“j’bj)(xj) + 1[%%](331')} dp(z)

j=1
results = p(A).

Continuity Theorem. Let X,,, 1 <n < oo be random vectors with Ch. f.’s ¢,.

Then X, = Xoo © ©n(t) = vool(t).

Proof. f(x) = e"® is bounded and cont. to, X,, = z implies p,(z) = E(f(X,)) —
Poo(t)-

Next, we show as earlier, that sequence is tight.
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Fix O € R%. Then for V s € R ¢,,(50) — ¢uo(sO). Let X,, = O - X,:
Then ¢ ¢(s) = ¢x(Os). Then

vz (8) = px(s).

n

. The dist. of X,, is tight.

Thus, for each vector, e; - X, is tight.

So, given € > 0, JM; s.t.
liranP(Xi" € [M;, M;]) >1—e.
Now, w[M;, M;] take M = largest of all.
P(X, e [M,M])>1-e.  QED.

Remark. As before, if ¢, (t) — pq(t) and ¢ is cont. at 0, then @ (t) is the
Ch.f. of ar.vec. X and X,, = X.

We also showed: Cramér—Wold device

fO - X,=0 - X VORI = X, = X.

0) — »(0)
Q.E.D.

Proof the condition implies E(e'©%n) — E(ei©Xn)y O € RY . 2
Last time: (Continuity Theorem): X,, = X iff ¢, (t) — @0 ().
We showed: O - X,, = O - X,V O € R

Implies: X,, = X
This is called Cramér—Wold device.

Next let X = (Xi,...,X4) be independent X; ~ N(0,1). Then X; has
1 =2

e 27,

density
2m



. X has density

r=(21,...,2q), |2|* =

This is called the standard normal.

The Ch.f.

d
j=1

Let A = (a;;) be a d x d matrix. Let

Z .

Y = AX, X normal

d
Yj=) auXi

=1

Let

d
= E Qi1 Q41
=1

= (i) = AAT.

Recall: For any matrix, (Bz,z) = (x, BTz). So, T is symmetric. ['7

Also,

Z Tyjtit; = (Tt t) =

(Aft, A't)

= |A%t| > 0.

=T

175
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So, I' is nonnegative definite.

E(eit-AX) — E(eitAitX)

_ \ATt\Q
= e 2

—e U
So, the random vector Y = AX has a multivariate normal distribution with co-

variance matrix I'.

Conversely: Let I' be a symmetric and nonnegative definite d x d matrix.

Then 3 O orthogonal s.t.
OTTO = D — D diagonal.

Let Do = VD and A = OD,.
Then AAT = ODy(DIOT) = ODOT =T. So, if we let Y = AX, X normal, then
Y is multivariate normal with covariance matrix I'.

If T is non—singular, so is A and Y has a density.

Theorem. Let X1, Xo,... be i.i.d. random vectors, EX,, = p and covariance

matrix

Lij = E(X1; — ) (X1 — pi))-

IfS, =X1+...X, then
Sn —np

Jn

X is a multivariate normal with covariance matriz I' = (T'y;).

= X where

Proof. Letting X! = X,, — u we may assume u = 0. Let t € R, Then X, =t-X,

are i.i.d. random variables with E(X,,) = 0 and

d 2
E|X,|? = E(ZtXn) =Y tit;Ty;.
i=1 ij



So, with S,, = Z(t - X;) we have

Jj=1

p5, (1) = B(eS) — e

n

or

177
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Math/Stat 539. Ideas for some of the problems in final homework assignment. Fall
1996.

#1b) Approximate the integral by

E(/OlBtdt) — (/ / BBtdsdt>
_ // (B, B,)dtds
:2/O/Ssdtds:§

20 Cyec/<”

#2a) Use the estimate C), = m

from class and choose € ~ ¢/,/p.

#2b) Use (a) and sum the series for the exponential.

#2c) Show ¢(2X) < co(A) for some constant c. Use formula F(¢ /qb' YP{X > A}dA
and apply good—\ inequalities. "

#3a) Use the “exponential” martingale and ...

#3b) Take b =0 in #3a).

#4)(i) As in the proof of the reflection property. Let

1, s<tandu<w(t—s)<wv

viw = {

0 else

and
1, s<t,2a—v<w(t—s)<2a—u

V) - {

Then E,(Y}!) = E,(Y?) (why?) and with 7 = (inf{s: Bs = a}) A t, we apply the

0 else.

strong Markov property to get

Eo(YYo0,|F) " B, (Y2 00,|F,)
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and ... gives the result.
#4)(i) Let the interval (u,v) | x to get

1 _ (20,71)2
2t

e
V27t

Po{M; > a, By =2} = Pp{B; =2a —z} =

and differentiate with respect to a.

#5a) Follow Durrett, page 402, and apply the Markov property at the end.
#7)(1)

E(Xps1|Fy) = e5n= (4 1)9(0) pebenin| £, )

_ eeSn—nw(@(gnH independent of F,,).
(i) Show ¢'(6) = ¢'()/(6) and

S0/(0) B 90//(0) B <'0/(9) 2 _ - ,
<<P(9)) —o(0) (¢(9) > E(Yy) — (BE(Yy))” >0
Ox

©(0)

where Yy has distribution

(iii)

(distribution of &;). (Why is true?)

_ X0/2 v (5)-14(0)

Strict convexity, 1¥(0) = 0, and ... imply that

Br/X0 = entv($)=5e0) _ g

as n — oo. This implies X? — 0 in probability.
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Chapter 7
1) Conditional Expectation.
(a) The Radon—Nikodym Theorem.
Durrett p. 476

Signed measures: If ©y and po are two measures, particularly prob. measures, we

could add them. i.e. yt = py + po is a measure.

But what about g — ps?

Definition 1.1. By a signed measure on a measurable space ({2, F) we mean an

extended real valued function v defined on F such that

(i) v assumes at most one of the values +o00 or —oo.

(ii) 1/( U Ej) = ZV(Ej), E;’s are disjoint in F. By (iii) we mean that
j=1 j=1

the series is absolutely convergent if l/( Ej) is finite and properly
1

j:
oo

divergent if 1/< U Ej) is infinite or — infinite.

J=1

Example. f e L'[0,1], then (if f > 0, get a measure)

V(E):/Efda:

(Positive sets): A set A € F is a positive set if v(E) > 0 for every mble subset
E C A.

(Negative sets): A set A € F is negative if for every measurable subset E C
A, v(E) <0.

(Null): A set which is both positive and negative is a null set. Thus a set is null

iff every measurable subset has measure zero.
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Remark. Null sets are not the same as sets of measure zero.
Example. Take v given above.

Our goal now is to prove that the space {2 can be written as the disjoint union

of a positive set and a negative set. This is called the Hahn—Decomposition.

Lemma 1.1. (i) Every mble subset of a positive set is positive.
oo

(ii) If Ay, As, ... are positive then A = U A; is positive.
i=1

Proof. (i): Trivial.

Proof of (ii). : Let A = U A;. A, positive. Let E C A be mble. Write

n=1

E=U E;, ENE; =0, i #j .
n=1
Ej:EﬂAjﬁAg_lm...ﬂAgCAj

= I/(Ej) >0

v(F)=Xv(E;) >0

We show (%): Let z €e E; =c € Fande € Ejbuta € Aj_4,... A1. . x € E;
if j > 4. If v € E, let j = first j such that x € A;. Then = € Ej}, done. (Such a j

exists become E C A).

Lemma 1.2. Let E be measurable with 0 < v(E) < oo. Then there is mble set
A C E. A positive such that 0 < v(A).

Proof. If E is positive we are done. Let n; = smallest positive number such that
there is an £y C E with
V(El) S —1/7’L1.

Now, consider E|F; C E.



182

Again, if E|F is positive with v(E|E;) > 0 we are done. If not no = smallest

integer such that
1) dFE, C E|E1 with V(Eg) < 1/712
Continue:

Let ni = smallest positive integer such that

k—1
3B, C E| | J E;
j=1
with
(B) <~
14 —_—.
k "
Let
A=E|| ] Ex
k=1

Claim: A will do.

First: v(A) > 0. Why?

since negative.

Now,

0<v(E) <oo= iV(Ek)
k=1

converges.

Problem 1: Prove that A is also positive.
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Absolutely. ..

oo

Znik <—ZV(Ek)<oo.

k=1
Suppose A is not positive. Then A has a subset Ag with Ap) < —e for some & > 0.

Now, since Znik < 00, Ng — 0.

Theorem 1.1 (Hahn-Decomposition). Let v be a signed measure on (2, F).

There is a positive set A and a negative set B with ANB=¢, AUB=X.

Proof. Assume v does not take +00. Let A = sup{v(A): A € positive sets}. ¢ €
Positive sets, sup > 0. Let A,, € p s.t.

A= lim v(4,).

n—oo

Set -
A=A
n=1

A is positive. Also, A > v(A). Since

A\A, C A= v(A|A,) >0

and
v(A) =v(A,) +v(A|A,) > v(Ay).
Thus,
v(A) > A=0<v(4) =)< x.
0<wv(A).
Let B = A°.

Claim B is negative.

Let E C B and FE positive.

We show v(E) = 0. This will do it.




184

For suppose £ C B, 0 < v(E) < co = E has a positive subset of positive measure

by Lemma 1.2.
To show v(E) = 0, observe E'U A is positive
LA UV(EUA)=v(E)+v(A)
=v(E)+A=v(E)=0.
Q.E.D.

Problem 1.b: Give an example to show that the Hahn decomposition is not unique.

Remark 1.1. The Hahn decomposition give two measures v and v~ defined by
vH(E)=v(ANE)
v (E)=—-v(BNE).
Notice that v (B) = 0 and v~ (A) = 0. Clearly v(E) = v (E) — v (E).
Definition 1.2. Two measures v; and vy are mutually singular (v; L wg) if

there are two measurable subsets A and B with AN B = ¢ AU B = ) and
v1(A) = vo(B) = 0. Notice that v L v~

Theorem 1.2 (Jordan Decomposition). Let v be a signed measure. These are two

mutually singular measures vt and v~ such that

This decomposition is unique.

Example. f € L![a,}]
V(E) = /E fdz.
Then
vH(B) :/Eﬁd;p, v (B) :—/Ef_dx.
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Definition 1.3. The measure v is absolutely continuous with respect to p, written

v << p, if u(A) =0 implies v(A) = 0.

Example. Let f > 0 be mble and set v(A) = [ fdu.
A

Theorem 1.3 (Radon—Nikodym Theorem). Let (2, F,u) be o—finite measure
spaces. Assume v << p. Then there is a nonnegative measurable function f such

that

V(E):/Efd,u.

The function f is unique a.e. [u]. We call f the Radon—Nikodym derivative of v

with respect to p and write
_dv
=

f
Remark 1.2. The space needs to be o—finite.
Example. (Q,F,u) = ([0, 1], Borel, 4 = counting). Then

m << u, m = Lebesgue.

If
m(E) = [ fdy

= f(z) =0 for all x € [0, 1].

. m=20, Contra.

3. Lemmas.
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Lemma 1.3. Suppose {By}acp is a collection of mble sets index by a countable
set of real numbers D. Suppose B, C Bg whenever o < 3. Then there is a mble

function f such that f(z) < « on B, and f(x) > «a on BS.

Proof. For x € (), set

f(x) = first « such that = € B,
= inf{a € D:x € B,}.

inf{¢} = oc.

o If v ¢ B,, v ¢ Bg for any < a and so, f(z) > «a.
e If z € B,, then f(z) < « provided we show f is mble. Q.E.D.

Claim: V\ real
{z: f(z) <A} = | Bs.

B<A
BeD

If f(x) <A, thenz € Dgsave <A Ifz € Bg, f<A= f(a) <A Q.E.D.

Lemma 1.4. Suppose {Bs}acp as in Lemma 1.3 but this time o < (3 implies
only p{Dx\Bs} = 0. Then there exists a mble function f on Q such that f(z) < «

a.e. on B, and f(z) > « a.e. on B,

Lemma 1.5. Suppose D is dense. Then the function in Lemma 1.3 is unique and

the function in lemma 1.4 is unique p a.e.

Proof of Theorem 1.3. Assume u(€2) = 1. Let
Vo =V —au, «oc¢cQ.
Vo 1s a signed measure. Let {A,, B, } be the Hahn—Decomp of v,. Notice:

QO =B, By,=0, ifa<0, (1)

Ba‘Bg :Baﬂ(X‘Bg) :BaﬁAg. (2)



Thus,

or

Thus,

Vo(Ba|Bg) <0

v3(Bal|Bg) = 0

© v(Ba|Bg) — ap(Ba|Bg) < 0

Bu(Ba|Bg) < v(Ba|Bg) < ap(Ba|Bg).

Thus, if a < 3, we have

v(Ba|Bg) — Bu(Bal|Bg) = 0.

1(Ba|Bg) = 0.
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Thus, 3n mble f st. Va € Q, f > «a a.e. on A, and f(x) < a a.e. on B,. Since
By =¢, f>0a.e.

Let N be very large. Put

Then Eo,El, ce

So,

on

Ek:Eﬂ(

Eo =0

k=0

By 41

N

L Biw-

, Eo are disjoint and

E= GE;{UEOO.

k=0

Bk/N), k=0,1,2,...

k=0
B4 B4
B NA
N k/N N k/N
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We have,

k41
kIN < f(z) < ; ae
and so,
k kE+1
2 W(EL) < <2 (E
Nu( k) < . f(z)dp N p(Er)
Also
k
Ey C AN = NM(Ek) < v(Ey)
and
B k+1
Ej, ¢ =k iu(Ek)g%u(Ek).
Thus:
(Br) — —u(B) < ~u(Emy) < [ fa)d
VkNMk_Nuk_Ekxx

on

k 1
< —u(FE —u(E
_NM( k)+NH( k)

< v(Ey) + %M(Ek)

Fy, f=o00a.e.

If W(Es) > 0, then v(Ey) = 0 since (v — ap)(Ex) > 0V a. If p(Fy) =0 =

V(Ex) = 0. So, either way:

V(Bao) = [Em fdu.

Add:
1

v(E) — ~u(E) < /E fap < v(E) + ()

N

Since N is arbitrary, we are done.

Uniqueness: If v(F) = /gdu, VEeB

E

:>1/(E)—a,u(E):/E(g—a)duVonECAa.
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Since
0 < v(E) - an(E) = [ (g~ a)dn
E
We have:
g—a>0[u] a.e on A,

or

g>aae onA,.
Similarly,

g < aa.e. on B,.
=

f=gae.
Suppose p is ofinite: v << p. Let Q; be s.t. Q;NQ; = ¢, JQ& = Q. p(Q) < o0.
Put p;(E) = p(ENQ;) and v;(E) = v(ENQ;). Then v; <<
vi(E) = / fidp
E
or

v(ENQy) :/

fudp = / ddp.
ENQ; E

= result.

Theorem 1.4 (The Lebesgue decomposition for measures). Let (2, F) be a mea-
surable space and p and v o—finite measures on F. Then vy L p and v1 << p

such that v = vy + v1. The measure vy and vy are unique.

(f € BV = f=h+g. h singular g a.c.).

Proof. Let A = p+ v. A is o-finite.

AE) = 0= u(E) = v(E) = 0.
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V(E) = /E gd.

Let

A={f>0}, B={f=0}
Q=AUB, AnNB=¢, u(B)=0.

Let vy(E) = v(E N B). Then
vo(A) =0, sovg L p

set

n(E)=v(ENA) = /EOA gdA.

Clearly 11 + vy = v and it only remains to show that 14 << p. Assume u(E) = 0.
Then

/fdAzO:fEOa.e. Al. (f >0)
E
on k.

Since f >0on ENA= AENA)=0. Thus

ul(E):/E 94 =0 QED.
N

uniqueness. Problem.

P(ANB)
P(B)
we work with probability measures. Let (€2, Fy, P) be a prob space, F C Fy a

o-algebra and X € o(Fp) with E|X| < co.

You know: P(A|B) = , A, B. P and B indept. P(A|B) = P(A). Now
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Definition 1.4. The conditional expectation of X given F, written as F(X|F),

is any random variable Y with the properties
(i) Y € o(F)

(ii) VA € F,
/ XdP = / YdP or E(X;A) = E(Y; A).
A A

Existence, uniqueness.

First, let us show that if Y has (i) and (ii), then E|Y| < E|X].

With A ={Y > 0} € F, observe that
/ Ydp = / Xdp < / | X |dp
A A A

—Ydp = —Xdp g/ | X |dp.
Ac Ac

and

Ac
So,

ElY| < E|X|.

Uniqueness: If Y also satisfies (i) and (ii), then

/de:/Y'deAE]:
A A

= /ydp:/Y'dp‘v’Aefor
A A

/(Y—Y’)dszVAE]-“.
A

=Y =Y a.e.

Existence:

Consider v defined on (2, F) by

v(A) = /Xdp. AeF.
A
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v is a signed measure. v << P.
o 3Y eo(F) st
V(A):/de VAeF.
A

o JYdp= [zdp. YVA€EF.
A A
Example 1. Let A, B be fixed sets in Fy. Let
F=o{B} ={¢,Q}, B, B}.
E(14]F)?

This is a function so that thwn we integrate over sets in F, we get integral of 14

over the sets.

/ E(14|F)dP = [ 14dP
B B
— P(ANB).
E(14|F)P(B) = P(AN B)
E(L4|F)15(B) = P(AN B)
P(AB) = | E(La|F)1p = %

In general. If X is a random variable and F = o(€Q1,Qs, ... ) where Q; are disjoint,
then

lo, E(X|F) =

or
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Notice that if F{¢,2}.
Thus

Properties:
(1) If X € F = E(X|F) = X. E(X) = E(E(X|F)).
(2) X is independent of F, i.e. (o(X) L F)
P(X € B)n A) = P(X € B)P(A).
= E(X|F) = E(X) (as in P(A|B) = P(A)).
Proof. To check this, (1) E(X) € F.

(ii) Let A € F. Thus
/AEXdP = FE(X)E(1,)
= FE(X1,4) :/Xdp
A
. BE(X|F)=EX.

Theorem 1.5. Suppose that X,Y and X,, are integrable.

(i) If X =a= E(X|F)=a

(ii) For constants a and b, E(aX +bY) = aE(X|F) + bE(Y|F).

(i) If x <Y = E(X|F) < E(X|F). In particular, |E(X|F)| < E(|X||F).

(v) If lim X, =X and |X,| <Y, Y integrable, then E(X,|F) — E(X|F)

a.s.

(vi) Monotone and Fatou’s hold the same way.

Proof. (i) Done above since clearly a € F.
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(i) [aE(z|F)dp+ [bE(Y|F)dP
A A

/A(aE(xU:) +bE(Y|I))dp =
:a/ E(X|J-")dP—l—b/ E(Y|F)dP
A A

:a/ XdP+b/ de:/(aX+bY)dp:/E(aXerY\]-")dP
A A A A
(iii)
/E(X|.7—")dP:/XdP§/YdP
A A A
:/E(Y\]—")dP. VAeF
A

- B(X|F) < E(Y|F). as.

(iv) Let Z,, = sup|Xy — X|. Then Z,, | 0 a.s.
k>n

|E(Xn|F) — E(X|F)| < E(| X, = Y||Fn)

< E[Z,|F].

Need to show E[Z,|F) | 0 with pub. 1. By (iii), E(Z,|F,) | decreasing.
So, let Z = limit. Need to show Z = 0.

We have Z,, <2Y.

L B(2) = [ B2y (B2 = BEEIF)
= E(E(Z|F)) < E(E(Z,|F)) = E(Z,) — 0 by D.C.T.

Theorem 1.6 (Jensen Inequality). If ¢ is conver E|X| and E|p(X)| < oo, then

p(E(X|F)) < E(e(X)|F).

Proof.
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p(x0) + A(zo) (2 — w0) < ¢().
xo=EX|F)z=X.

p(E(X|F)) + A(EX[F)(X — E(X|F)) < p(X).
Note expectation of both sides.

Elp(E(X|F)) + A(E(X|F))(X - E(X|F)|F) < E(p(X|F)

= ¢(E(X|F)) + A(BE(X[|F)EX]F) - E(X|F)] < E(p(X]F)).

Corollary.

|E(X|F)P < E(|X|P|F) for 1 <p< o0

exp(E(X|F)) < E(eX|F).

Theorem 1.7. (1) If Fy C Fy then
(a) E(E(X|F1)|F2)) = E(X|F1)
(b) E(E(X|F2)|F1)) = E(X|F)). (The smallest field always wins).
(2) If X € o(F), E|Y|, E|XY| < o0
= E(XY|F) = XE(Y|F)

(measurable functions act like constants). (Y =1, done before).

Proof. (a) E(X|Fy) € (F1) C (Fo).

.. Done.

(b) E(X|F1) € Fi. So A € Fy C F, we have
[ BCeiFan = [ (xap
A A

=/ﬂﬂﬂmm/EMMwam
A A
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Durrett: p 220: #1.1
p. 222: #1.2
p-225: #1.3
p. 227: 1.6
p- 228: 1.8.

Let
L*(Fo) = {X € Fop: EX?Noo}

and

L*(F) ={Y € F1: EY? < c}.

Then L?(F) is a closed subspace of L?(Fp). In fact, with (X1, X3) = E(X; - X3),
L?(Fy) and L2(F) are Hilbert spaces. L?(F;) is closed subspace in L?(Fp). Given
any X € L?(Fy), 3Y € L?(F;) such that

dist (X, L2(F1)) = E(z — y)?

Theorem 1.8. Suppose Ex? < oo, then

inf E(X-Y|*)=E(X — (EX|F))>.
Xeng(fl) (| 1) (] (EX|F1))

Proof. Need to show
E(IX - Y[?) 2 B|X — E(X|F1))*
for any y € L(Fy). Let y € L?(F;) out set. Set

Z =Y — E(X|F) € L*(Fy),

Y = Z + E(X|F).

Now, since

E(ZE(X|F)) = E(ZX|F)) = E(ZX)
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we see that

E(ZE(X|F)) — E(ZX) = 0.

E(X -Y)*=E{X -7 E(X|F)}?

= BE(X — E(X|F))*+ E(Z%)
—2E((X - E(X|F))Z)

> B(X — E(X|F))
—2E(X Z) + 2E(ZE(X|F))

= EBE(X — E(X|F))?®  QED.

By the way: If X and Y are two r.v. we define
E(X]Y) = E(z]|o(Y)).
Recall conditional expectation for 77

Suppose X and Y have joint density f(z,y)

P(X,Y)eB) = /B f(z,y)dzdy, B cC R

And suppose /f(x,y)da: > 0 Vy. We claim that in this case, if E|g(X)| < oo,

R
then

E(g(X))Y) = h(Y)

and

 fa@)f (@ y)dy
") =T G nde

Treat the “given” density as if the second probability

P(X ==z Y =y)
P(Y =vy)

PX =z|Y =y) =
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Now: Integrale:
BGCOY = 1) = [ 9a)P(X = 2)Y = )iy
To verify: (i) clearly h(Y) € o(Y). For (ii): let
A={Y € B for B € B(R).

Then need to show

LS., B(h(Y)1g(X) - A

/ / f(z,y)dxdy
/] (£t 7 3yd3> F(ary)drdy

f(z,y)d

- o

)1B(Y)) = E(9(X); A).

(If /f(x,y)dy = 0, define h by h(y)/f(ac,y)daz = /g(x)f(ac,y)dy i.e. h can be

anything where /f(x, y) dy = 0).



