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I

SIGMA ALGEBRAS AND MEASURES

§1 σ–Algebras: Definitions and Notation.

We use Ω to denote an abstract space. That is, a collection of objects called

points. These points are denoted by ω. We use the standard notation: For A,B ⊂

Ω, we denote A ∪ B their union, A ∩ B their intersection, Ac the complement of

A, A\B = A − B = {x ∈ A:x 6∈ B} = A ∩ Bc and A∆B = (A\B) ∪ (B\A).

If A1 ⊂ A2, . . . and A = ∪∞n=1An, we will write An ↑ A. If A1 ⊃ A2 ⊃ . . .

and A = ∩∞n=1An, we will write An ↓ A. Recall that (∪nAn)c = ∩nAcn and

(∩nAn)c = ∪nAcn. With this notation we see that An ↑ A ⇒ Acn ↓ Ac and

An ↓ A⇒ Acn ↑ Ac. If A1, . . . , An ∈ Ω, we can write

∪nj=1Aj = A1 ∪ (Ac1 ∩A2) ∪ (Ac1 ∩Ac2 ∩A3) ∪ . . . (Ac1 ∩ . . . ∩Acn−1 ∩An), (1.1)

which is a disjoint union of sets. In fact, this can be done for infinitely many sets:

∪∞n=1An = ∪∞n=1(A
c
1 ∩ . . . ∩Acn−1 ∩An). (1.2)

If An ↑, then

∪nj=1Aj = A1 ∪ (A2\A1) ∪ (A3\A2) . . . ∪ (An\An−1). (1.3)

Two sets which play an important role in studying convergence questions are:

limAn) = lim sup
n

An =
∞⋂
n=1

∞⋃
k=n

Ak (1.4)

and

limAn = lim inf
n

An =
∞⋃
n=1

∞⋂
k=n

Ak. (1.5)
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Notice

(limAn)c =

( ∞⋂
n=1

∞⋃
k=n

An

)c

=
∞⋃
n=1

( ∞⋃
k=n

Ak

)c

=
∞⋃
n=1

∞⋂
k=n

Ack = limAcn

Also, x ∈ limAn if and only if x ∈
∞⋃
k=n

Ak for all n. Equivalently, for all n there is

at least one k > n such that x ∈ Ak0 . That is, x ∈ An for infinitely many n. For

this reason when x ∈ limAn we say that x belongs to infinitely many of the A′ns

and write this as x ∈ An i.o. If x ∈ limAn this means that x ∈
∞⋂
k=n

Ak for some

n or equivalently, x ∈ Ak for all k > n. For this reason when x ∈ limAn we say

that x ∈ An, eventually. We will see connections to limxk, limxk, where {xk} is a

sequence of points later.

Definition 1.1. Let F be a collection of subsets of Ω. F is called a field (algebra)

if Ω ∈ F and F is closed under complementation and finite union. That is,

(i) Ω ∈ F

(ii) A ∈ F ⇒ Ac ∈ F

(ii) A1, A2, . . . An ∈ F ⇒
n⋃
j=1

Aj ∈ F .

If in addition, (iii) can be replaced by countable unions, that is if

(iv) A1, . . . An, . . . ∈ F ⇒
∞⋃
j=1

Aj ∈ F ,

then F is called a σ–algebra or often also a σ–field.

Here are three simple examples of σ–algebras.

(i) F = {∅,Ω},
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(ii) F = {all subsets of Ω},

(iii) If A ⊂ Ω, F = {∅,Ω, A,Ac}.

An example of an algebra which is not a σ–algebra is given by the following.

Let Ω = R, the real numbers and take F to be the collection of all finite disjoint

unions of intervals of the form (a, b] = {x: a < x ≤ b}, −∞ ≤ a < b < ∞. By

convention we also count (a,∞) as right–semiclosed. F is an algebra but not a

σ–algebra. Set

An = (0, 1− 1
n

].

Then,
∞⋃
n=1

An = (0, 1) 6∈ F .

The convention is important here because (a, b]c = (b,∞) ∪ (−∞, a].

Remark 1.1. We will refer to the pair (Ω,F) as a measurable space. The reason

for this will become clear in the next section when we introduce measures.

Definition 1.2. Given any collection A of subsets of Ω, let σ(A) be the smallest

σ–algebra containing A. That is if F is another σ–algebra and A ⊂ F , then

σ(A) ⊂ F .

Is there such a σ–algebra? The answer is, of course, yes. In fact,

σ(A) =
⋂
F

where the intersection is take over all the σ–algebras containing the collection A.

This collection is not empty since A ⊂ all subsets of Ω which is a σ–algebra.

We call σ(A) the σ–algebra generated by A. If F0 is an algebra, we often write

σ(F0) = F0.

Example 1.1. A = {A}, A ⊂ Ω. Then

σ(A) = {∅, A,Ac,Ω}.
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Problem 1.1. Let A be a collection of subsets of Ω and A ⊂ Ω. Set A ∩ A =

{B ∩A:B ∈ A}. Assume σ(A) = F . Show that σ(A ∩A) = F ∩A, relative to A.

Definition 1.2. Let Ω = R and B0 the field of right–semiclosed intervals. Then

σ(B0) = B is called the Borel σ–algebra of R.

Problem 1.2. Prove that every open set in R is the countable union of right

–semiclosed intervals.

Problem 1.3. Prove that every open set is in B.

Problem 1.4. Prove that B = σ({all open intervals}).

Remark 1.2. The above construction works equally in Rd where we take B0 to be

the family of all intervals of the form

(a1, b1]× . . . (ad, bd], −∞ ≤ ai < bi <∞.

§2. Measures.

Definition 2.1. Let (Ω,F) be a measurable space. By a measure on this space we

mean a function µ : F → [0,∞] with the properties

(i) µ(∅) = 0

and

(ii) if Aj ∈ F are disjoint then

µ

 ∞⋃
j=1

Aj

 =
∞∑
j=1

µ(Aj).
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Remark 2.1. We will refer to the triple (Ω,F , µ) as a measure space. If µ(Ω) = 1

we refer to it as a probability space and often write this as (Ω,F , P ).

Example 2.1. Let Ω be a countable set and let F = collection of all subsets of Ω.

Denote by #A denote the number of point in A. Define µ(A) = #A. This is called

the counting measure. If Ω is a finite set with n points and we define P (A) = 1
n#A

then we get a probability measure. Concrete examples of these are:

(i) Coin flips. Let Ω = {0, 1} = {Heads, Tails} = {T,H} and set P{0} =

1/2 and P{1} = 1/2

(2) Rolling a die. Ω = {1, 2, 3, 4, 5, 6}, P{w} = 1/6.

Of course, these are nothing but two very simple examples of probability

spaces and our goal now is to enlarge this collection. First, we list several elemen-

tary properties of general measures.

Proposition 2.1. Let (Ω,F , µ) be a measure space. Assume all sets mentioned

below are in F .

(i) If A ⊂ B, then µ(A) ≤ µ(B), (monotonicity).

(ii) If A ⊆
∞⋃
j=1

Aj, then µ(A) ≤
∞∑
j=1

µ(Aj), (subadditivity).

(iii) If Aj ↑ A, then µ(Aj) ↑ µ(A), (continuity for below).

(iv) If Aj ↓ A and µ(A1) <∞, then µ(Aj) ↓ µ(A), (continuity from above).

Remark 2.2. The finiteness assumption in (iv) is needed. To see this, set Ω =

{1, 2, 3, . . . } and let µ be the counting measure. Let Aj = {j, j + 1, . . . }. Then

Aj ↓ ∅ but µ(Aj) = ∞ for all j.

Proof. Write B = A ∪ (B\A). Then

µ(B) = µ(A) + µ(B\A) ≥ µ(A),
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which proves (i). As a side remark here, note that if if µ(A) < ∞, we have

µ(B\A) = µ(B) − µ(A). Next, recall that
∞⋃
n=1

An =
∞⋃
n=1

(Ac1 ∩ . . . ∩ Acn−1 ∩ An)

where the sets in the last union are disjoint. Therefore,

µ

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ(An ∩Ac1 . . . ∩Acn−1) ≤
∞∑
n=1

µ(An),

proving (ii).

For (iii) observe that if An ↑, then

µ

( ∞⋃
n=1

An

)
= µ

( ∞⋃
n=1

(An\An−1)

)

=
∞∑
n=1

µ(An\An−1)

= lim
m→∞

m∑
n=1

µ(An\An−1)

= lim
m→∞

µ

(
m⋃
n=1

An\An−1

)
.

For (iv) we observe that if An ↓ A then A1\An ↑ A1\A. By (iii), µ(A1\An) ↑

µ(A1\A) and since µ(A1\An) = µ(A1) − µ(An) we see that µ(A1) − µ(An) ↑

µ(A1)− µ(A), from which the result follows assuming the finiteness of µ(A1).

Definition 2.2. A Lebesgue–Stieltjes measure on R is a measure on B = σ(B0)

such that µ(I) < ∞ for each bounded interval I. By an extended distribution

function on R we shall mean a map F : R → R that is increasing, F (a) ≤ F (b) if

a < b, and right continuous, lim
x→x+

0

F (x) = F (x0). If in addition the function F is

nonnegative satisfying lim
x→∞

FX(x) = 1 and lim
x→−∞

FX(x) = 0, we shall simply call

it a distribution function.

We will show that the formula µ(a, b] = F (b)−F (a) sets a 1-1 correspondence

between the Lebesgue–Stieltjes measures and distributions where two distributions

that differ by a constant are identified. of course, probability measures correspond

to distributions.
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Proposition 2.2. Let µ be a Lebesgue–Stieltjes measure on R. Define F : R → R,

up to additive constants, by F (b)−F (a) = µ(a, b]. For example, fix F (0) arbitrary

and set F (x) − F (0) = µ(0, x], x ≥ 0, F (0) − F (x) = µ(x, 0], x < 0. Then F is

an extended distribution.

Proof. Let a < b. Then F (b)− F (a) = µ(a, b] ≥ 0. Also, if {xn} is such that x1 >

x2 > . . . → x, then µ(x, xn] → 0, by Proposition 2.1, (iv), since
∞⋂
n=1

(x1, xn] = ∅

and (x, xn] ↓ ∅. Thus F (xn)− F (x) → 0 implying that F is right continuous.

We should notice also that

µ{b} = lim
n→∞

µ

(
b− 1

n
, b

]
= lim
n→∞

F (b)− F (b− 1/n) = F (b)− F (b−).

Hence in fact F is continued at {b} if and only if µ{b} = 0.

Problem 2.1. Set F (x−) = lim
x→x−

F (x). Then

µ(a, b) = F (b−)− F (a) (1)

µ[a, b] = F (b)− F (a−) (2)

µ[a, b) = F (b−)− F (a−) (3)

µ(R) = F (∞)− F (−∞). (4)

Theorem 2.1. Suppose F is a distribution function on R. There is a unique

measure µ on B(R) such that µ(a, b] = F (b)− F (a).

Definition 2.3. Suppose A is an algebra. µ is a measure on A if µ : A → [0,∞],

µ(∅) = 0 and if A1, A2, . . . are disjoint with A =
⋃∞
j Aj ∈ A, then µ(A) =∑∞

j µ(Aj) . The measure is σ–finite if the space Ω = ∪∞j=1Ωj where the Ωj ∈ A

are disjoint and µ(Ωj) <∞.
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Theorem 2.2 (Carathèodory’s Extension Theorem). Suppose µ is σ–finite

on an algebra A. Then µ has a unique extension to σ(A).

We return to the proof of this theorem later.

Definition 2.4. A collection S ⊂ Ω is a semialgebra if the following two condi-

tions hold.

(i) A, B ∈ S ⇒ A ∩B ∈ S,

(ii) A ∈ S then Ac is the finite union of disjoint sets in S.

Example 2.2. S = {(a, b]:−∞ ≤ a < b < ∞}. This is a semialgebra but not an

algebra.

Lemma 2.1. If S is a semi-algebra, then S = {finite disjoint unions of sets in

S} is an algebra. This is called the algebra generated by S.

Proof. Let E1 = ∪nj=1Aj and E2 = ∪nj=1Bj , where the unions are disjoint and

the sets are all in S. Then E1 ∩ E2 = ∪i,jAi ∩ Bj ∈ S. Thus S is closed under

finite intersections. Also, if E = ∪nj=1Aj ∈ S then Ac = ∩jAcj . However, by the

definition of S, and S, we see that Ac ∈ S. This proves that S is an algebra.

Theorem 2.3. Let S be a semialgebra and let µ be defined on S. Suppose µ(∅) = 0

with the additional properties:

(i) If E ∈ S, E =
n⋃
i=1

Ei, Ei ∈ S disjoint, then µ(E) =
n∑
i=1

µ(Ei)

and

(ii) If E ∈ S, E =
∞⋃
i=1

Ei, Ei ∈ S disjoint, then µ(E) ≤
∞∑
i=1

µ(Ei).

Then µ has a unique extension µ to S which is a measure. In addition, if µ is

σ–finite, then µ has a unique extension to a measure (which we continuo to call

µ) to σ(S), by the Carathéodary extension theorem
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Proof. Define µ on S by

µ(E) =
n∑
i=1

µ(Ei),

if E =
⋃n
i=1Ei, Ei ∈ S and the union is disjoint. We first verify that this is well

defined. That is, suppose we also have E =
⋃m
j=1 Ẽj , where Ẽj ∈ S and disjoint.

Then

Ei =
m⋃
j=1

(Ei ∩ Ẽj), Ẽj =
n⋃
i=1

(Ei ∩ Ẽj).

By (i),

n∑
i=1

µ(Ei) =
n∑
i=1

µ(Ei ∩ Ẽj) =
∑
m

∑
n

µ(Ei ∩ Ẽj) =
∑
m

µ(Ẽj).

So, µ is well defined. It remains to verify that µ so defined is a measure. We

postpone the proof of this to state the following lemma which will be used in its

proof.

Lemma 2.2. Suppose (i) above holds and let µ be defined on S as above.

(a) If E, Ei ∈ S, Ei disjoint, with E =
n⋃
i=1

Ei. Then µ(E) =
n∑
i=1

µ(Ei).

(b) If E, Ei ∈ S, E ⊂
n⋃
i=1

Ei, then µ(E) ≤
n∑
i=1

µ(Ei).

Note that (a) gives more than (i) since Ei ∈ S not just S. Also, the sets in

(b) are not necessarily disjoint. We assume the Lemma for the moment.

Next, let E =
∞⋃
i=1

Ei, Ei ∈ S where the sets are disjoint and assume, as

required by the definition of the measures on algebras, that E ∈ S. Since Ei =
n⋃
j=1

Eij , Eij ∈ S, with these also disjoint, we have

∞∑
i=1

µ(Ei)
(i)
=

∞∑
i=1

n∑
j=1

µ(Eij) =
∑
i,j

µ(Eij).
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So, we may assume Ei ∈ S instead of S, otherwise replace it by Eij . Since

E ∈ S, E =
n⋃
j=1

Ẽj , Ẽj ∈ S and again disjoint sets, and we can write

Ẽj =
∞⋃
i=1

(Ẽj ∩ Ei).

Thus by assumption (ii),

µ(Ẽj) ≤
∞∑
i=1

µ(Ẽj ∩ Ei).

Therefore,

µ(E) =
n∑
j=1

µ(Ẽj)

≤
n∑
j=1

∞∑
i=1

µ(Ẽj ∩ Ei)

=
∞∑
i=1

n∑
j=1

µ(Ẽj ∩ Ei)

≤
∞∑
i=1

µ(Ei),

which proves one of the inequalities.

For the apposite inequality we set (recall E =
⋃∞
i=1Ei) An =

⋃n
i=1Ei and

Cn = E ∩Acn so that E = An ∪ Cn and An, Cn ∈ S and disjoint. Therefore,

µ(A) = µ(An) + µ(Cn) = µ(B1) + . . .+ µ(Bn) + µ(Cn)

≥
n∑
i=1

µ(Bi),

with n arbitrary. This proves the other inequality. �

Proof of Lemma 2.2. Set E =
n⋃
i=1

Ei, then Ei =
m⋃
j=1

Eij , Sij ∈ S. By assumption

(i),

µ(A) =
∑
ij

µ(Eij) =
n∑
i=1

µ(Ei)
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proving (a).

For (b), assume n = 1. If E ⊂ E1, then

E1 = E ∪ (E1 ∩ Ec), E1 ∩ Ec ∈ S.

µ(E) ≤ µ(E) + µ(E1 ∩ Ec) = µ(E1).

For n > 1, set
n⋃
i=1

Ei =
n⋃
i=1

(Ei ∩ Ec1 ∩ . . . ∩ Eci−1) =
n⋃
i=1

Fi.

Then

E = E ∩

(
n⋃
i=1

Ei

)
= E ∩ F1 ∪ . . . ∪ (E ∩ Fn).

So by (a), µ(E) =
∑n
i=1 µ(E ∩ Fi). Now, the case n = 1 gives

n∑
i=1

µ(E ∩ Fi) ≤
n∑
i=1

µ(Ei)

≤
n∑
i=1

µ(Fi)

= µ

(
n⋃
i=1

Ei

)
,

where the last inequality follows from (a). �

Proof of Theorem 2.1. Let S = {(a, b]:−∞ ≤ a < b <∞}. Set F (∞) = lim
x↑∞

F (x)

and F (−∞) = lim
x↓−∞

F (x). These quantities exist since F is increasing. Define for

any

µ(a, b] = F (b)− F (a),

for any −∞ ≤ a < b ≤ ∞, where F (∞) > −∞, F (−∞) < ∞. Suppose (a, b] =
n⋃
i=1

(ai, bi], where the union is disjoint. By relabeling we may assume that

a1 = a

bn = b

ai = bi−1.
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Then µ(ai, bi] = F (bi)− F (ai) and

n∑
i==1

µ(ai, bi] =
n∑
i=1

F (bi)− F (ai)

= F (b)− F (a)

= µ(a, b],

which proves that condition (i) holds.

For (ii), let −∞ < a < b < ∞ and (a, b] ⊂
∞⋃
i=1

(ai, bi] where the union is

disjoint. (We can also order them if we want.) By right continuity of F , given

ε > 0 there is a δ > 0 such that

F (a+ δ)− F (a) < ε,

or equivalently,

F (a+ δ) < F (a) + ε.

Similarly, there is a ηi > 0 such that

F (bi + ηi) < F (bi) + ε2−i,

for all i. Now, {(ai, bi + ηi)} forms a open cover for [a + δ, b]. By compactness,

there is a finite subcover. Thus,

[a+ δ, b] ⊂
N⋃
i=1

(ai, bi + ηi)

and

(a+ δ, b] ⊂
N⋃
i=1

(ai, bi + ηi].
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Therefore by (b) of Lemma 2.2,

F (b)− F (a+ δ) = µ(a+ δ, b]

≤
N∑
i=1

µ(ai, bi + ηi]

=
N∑
i=1

F (bi + ηi)− F (ai)

=
N∑
i=1

{F (bi + ηi)− F (bi) + F (bi)− F (ai)}

≤
N∑
i=1

ε2−i +
∞∑
i=1

(F (bi)− F (ai))

≤ ε+
∞∑
i=1

F (bi)− F (ai).

Therefore,

µ(a, b] = F (b)− F (a)

≤ 2ε+
∞∑
i=1

F (bi)− F (ai)

= 2ε+
∞∑
i=1

µ(ai, bi],

proving (ii) provided −∞ < a < b <∞.

If (a, b] ⊂
∞⋃
i=1

(ai, bi], a and b arbitrary, and (A,B] ⊂ (a, b] for any −∞ < A <

B <∞, we have by above

F (B)− F (A) ≤
∞∑
i=1

(F (bi)− F (ai))

and the result follows by taking limits. �

If F (x) = x, µ is called the Lebesgue measure on R. If

F (x) =


0, x ≤ 0
x, 0 < x ≤ 1
1, x > 1
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the measure we obtain is called the Lebesgue measure on Ω = (0, 1]. Notice that

µ(Ω) = 1.

If µ is a probability measure then F (x) = µ(−∞, x] and limx→∞ F (x) = 1.

limx↓−∞ F (x) = 0.

Problem 2.2. Let F be the distribution function defined by

F (x) =


0, x < −1
1 + x, −1 ≤ x < 0
2 + x2, 0 ≤ x < 2
9, x ≥ 2

and let µ be the Lebesgue–Stieltjes measure corresponding to F . Find µ(E) for

(i) E = {2},

(ii) E = [−1/2, 3),

(iii) E = (−1, 0] ∪ (1, 2),

(iv) E = {x: |x|+ 2x2 > 1}.

Proof of Theorem 2.3. For any E ⊂ Ω we define µ∗(E) = inf
∑
µ(Ai) where the

infimum is taken over all sequences of {Ai} in A such that E ⊂ ∪Ai. Let A∗ be

the collection of all subsets E ⊂ Ω with the property that

µ∗(F ) = µ∗(F ∩ E) + µ∗(F ∩ Ec),

for all sets F ⊂ Ω. These two quantities satisfy:

(i) A∗ is a σ–algebra and µ∗ is a measure on A∗.

(ii) If µ∗(E) = 0, then E ∈ A∗.

(iii) A ⊂ A∗ and µ∗(E) = µ(E), if E ⊂ A.

We begin the proof of (i)–(iii) with a simple but very useful observation. It

follows easily from the definition that E1 ⊂ E2 implies µ∗(E1) ≤ µ∗(E2) and that
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E ⊂ ∪∞j=1Ej implies

µ∗(E) ≤
∞∑
j=1

µ∗(Ej).

Therefore,

µ∗(F ) ≤ µ∗(F ∩ E) + µ∗(F ∩ Ec)

is always true. Hence, to prove that E ∈ A∗, we need to verify that

µ∗(F ) ≥ µ∗(F ∩ E) + µ∗(F ∩ Ec),

for all F ∈ Ω. Clearly by symmetry if E ∈ A∗ we have Ec ∈ A∗.

Suppose E1 and E2 are in A∗. Then for all F ⊂ Ω,

µ∗(F ) = µ∗(F ∩ E1) + µ∗(F ∩ Ec1)

= (µ∗(F ∩ E1 ∩ E2) + µ∗(F ∩ E1 ∩ Ec2))

+ (µ∗(F ∩ Ec1 ∩ E2) + µ∗(E ∩ Ec1 ∩ Ec2))

≥ µ∗(F ∩ (E1 ∪ E2)) + µ∗(F ∩ (E1 ∪ E2)c),

where we used the fact that

E1 ∪ E2 ⊂ (E1 ∩ E2) ∪ (E1 ∩ Ec2) ∪ (Ec1 ∩ E2)

and the subadditivity of µ∗ observed above. We conclude that E1∪E2 ∈ A∗. That

is, A∗ is an algebra.

Now, suppose Ej ∈ A∗ are disjoint. Let E =
⋃∞
j=1Ej and An =

n⋃
j=1

Ej . Since

En ∈ A∗ we have (applying the definition with the set F ∩An)

µ∗(F ∩An) = µ∗(F ∩An ∩ En) + µ∗(F ∩An ∩ Ecn)

= µ∗(F ∩ En) + µ∗(F ∩An−1)

= µ∗(F ∩ En) + µ(F ∩ En−1) + µ∗(F ∩An−2)

=
n∑
j=1

µ∗(F ∩ Ej).
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Now, the measurability of An together with this gives

µ∗(F ) = µ∗(F ∩An) + µ∗(F ∩Acn)

=
n∑
j=1

µ∗(F ∩ Ej) + µ∗(F ∩Acn)

≥
n∑
j=1

µ∗(F ∩ Ej) + µ∗(F ∩ Ec).

Let n→∞ we find that

µ∗(F ) ≥
∞∑
j=1

µ∗(F ∩ Ej) + µ∗(F ∩ Ec)

≥ µ∗(∪∞j=1(F ∩ Ej)) + µ∗(F ∩ Ec)

= µ∗(F ∩ E) + µ∗(F ∩ Ec) ≥ µ∗(F ),

which proves that E ∈ A∗. If we take F = E we obtain

µ∗(E) =
∞∑
j=1

µ∗(Ej).

From this we conclude that A∗ is closed under countable disjoint unions and that

µ∗ is countably additive. Since any countable union can be written as the disjoint

countable union, we see that A∗ is a σ algebra and that µ∗ is a measure on it.

This proves (i).

If µ∗(E) = 0 and F ⊂ Ω, then

µ∗(F ∩ E) + µ∗(F ∩ Ec) = µ∗(F ∩ Ec)

≤ µ∗(F ).

Thus, E ∈ A∗ and we have proved (ii).

For (iii), let E ∈ A. Clearly

µ∗(E) ≤ µ(E).
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Next, if E ⊂
∞⋃
j=1

Ei, Ei ∈ A, we have E =
∞⋃
j=1

Ẽi, where Ẽj = E ∩

(
Ej

∖ j−1⋃
i=1

Ej

)
and these sets are disjoint and their union is E. Since µ is a measure on A, we

have

µ(E) =
∞∑
j=1

µ(Ẽj) ≤
∞∑
j=1

µ(Ej).

Since this holds for any countable covering of E by sets in A, we have µ(E) ≤

µ∗(E). Hence

µ(E) = µ∗(E), for all E ∈ A.

Next, let E ∈ A. Let F ⊂ Ω and assume µ∗(F ) < ∞. For any ε > 0, choose

Ej ∈ A with F ⊂
∞⋃
j=1

Ej and

∞∑
j=1

µ(Ej) ≤ µ∗(F ) + ε.

Using again the fact that µ is a measure on A,

µ∗(F ) + ε ≥
∞∑
j=1

µ(Ej)

=
∞∑
j=1

µ(Ej ∩ E) +
∞∑
j=1

µ(Ej ∩ Ec)

≥ µ∗(F ∩ E) + µ∗(F ∩ Ec)

and since ε > 0 is arbitrary, we have that E ∈ A∗. This completes the proof of

(iii).

With (i)–(iii) out of the way, it is clear how to define µ∗. Since A ⊂ A∗,

and A∗ is a σ–algebra, σ(A) ⊂ A∗. Define µ(E) = µ∗(E) for E ∈ σ(A). This is

clearly a measure and it remains to prove that it is unique under the hypothesis

of σ–finiteness of µ. First, the construction of the measure µ∗ clearly shows that

whenever µ is finite or σ–finite, so are the measure µ∗ and µ.
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Suppose there is another measure µ̃ on σ(A) with µ(E) = µ̃(E) for all E ∈ A.

Let E ∈ σ(A) have finite µ∗ measure. Since σ(A) ⊂ A∗,

µ∗(E) = inf


∞∑
j=1

µ(Ej):E ⊂
∞⋃
j=1

Ej , Ej ∈ A

 .

However, since µ(Ej) = µ̃(Ej), we see that

µ̃(E) ≤
∞∑
j=1

µ̃(Ej)

=
∞∑
j=1

µ(Ej).

This shows that

µ̃(E) ≤ µ∗(E).

Now let Ej ∈ A be such that E ⊂ ∪∞j=1Ej and

∞∑
j=1

µ(Ej) ≤ µ∗(E) + ε.

Set Ẽ = ∪∞j=1Ej and Ẽn = ∪nj=1Ej . Then

µ∗(Ẽ) = lim
k→∞

= lim
k→∞

µ̃(En)

= µ̃(Ẽ)

Since

µ∗(Ẽ) ≤ µ∗(E) + ε,

we have

µ∗(Ẽ\E) ≤ ε.
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Hence,

µ∗(E) ≤ µ∗(Ẽ)

= µ̃(Ẽ)

≤ µ̃(E) + µ̃(E\E)

≤ µ̃(E) + ε.

Since ε > 0 is arbitrary, µ(E) = µ∗(E) = µ̃∗(E) for all E ∈ σ(A) of finite µ∗

measure. Since µ∗ is σ–finite, we can write any set E = ∪∞j=1(Ωj ∩ E) where the

union is disjoint and each of these sets have finite µ∗ measure. Using the fact that

both µ̃ and µ are measures, the uniqueness follows from what we have done for

the finite case. �

What is the difference between σ(A) and A∗? To properly answer this ques-

tion we need the following

Definition 2.5. The measure space (Ω,F , µ) is said to be complete if whenever

E ∈ F and µ(E) = 0 then A ∈ F for all A ⊂ E.

By (ii), the measure space (Ω,A∗, µ∗) is complete. Now, if (Ω,F , µ) is a

measure space we define F∗ = {E ∪ N : E ∈ F , and N ∈ F , µ(N) = 0}. We

leave the easy exercise to the reader to check that F∗ is a σ–algebra. We extend

the measure µ to a measure on F∗ by defining µ∗(E ∪ N) = µ(E). The measure

space (Ω,F∗, µ∗) is clearly complete. This measure space is called the completion

of (Ω,F , µ). We can now answer the above question.

Theorem 2.4. The space (Ω,A∗, µ∗) is the completion of (Ω, σ(A), µ).
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II

INTEGRATION THEORY

§1 Measurable Functions.

In this section we will assume that the space (Ω.F , µ) is σ–finite. We will say

that the set A ⊂ Ω is measurable if A ∈ F . When we say that A ⊂ R is measurable

we will always mean with respect to the Borel σ–algebra B as defined in the last

chapter.

Definition 1.1. Let (Ω,F) be a measurable space. Let f be an extended real

valued function defined on Ω. That is, the function f is allowed to take values in

{+∞,∞}. f is measurable relative to F if {ω ∈ Ω : f(ω) > α} ∈ F for all α ∈ R.

Remark 1.1. When (Ω,F , P ) is a probability space and f : Ω → R, we refer to

measurable functions as random variables.

Example 1.1. Let A ⊂ Ω be a measurable set. The indicator function of this set

is defined by

1A(ω) =
{

1 if ω ∈ A
0 else.

This function is clearly measurable since

{x: 1A(ω) < α} =


Ω 1 ≤ α

∅ α < 0
Ac 0 ≤ α < 1.

This definition is equivalent to several others as seen by the following
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Proposition 1.1. The following conditions are equivalent.

(i) {ω : f(ω) > α} ∈ F for all α ∈ R,

(ii) {ω : f(ω) ≤ α} ∈ F for all α ∈ R,

(iii) {ω : f(ω) < α} ∈ F for all α ∈ R,

(ii) {ω : f(ω) ≥ α} ∈ F for all α ∈ R.

Proof. These follow from the fact that σ–algebras are closed under countable

unions, intersections, and complementations together with the following two iden-

tities.

{ω : f(ω) ≥ α} =
∞⋂
n=1

{ω : f(ω) > α− 1
n
}

and

{ω : f(ω) > α} =
∞⋃
n=1

{ω : f(ω) ≥ α+
1
n
} �

Problem 1.1. Let f be a measurable function on (Ω,F). Prove that the sets

{ω : f(ω) = +∞}, {ω : f(ω) = −∞}, {ω : f(ω) < ∞}, {ω : f(ω) > −∞}, and

{ω : −∞ < f(ω) <∞} are all measurable.

Problem 1.2.

(i) Let (Ω,F , P ) be a probability space. Let f : Ω → R. Prove that f is measurable

if and only if f−1(E) = {ω : f(ω) ∈ E} ∈ F for every Borel set E ⊂ R.

(ii) With f as in (i) define µ on the Borel sets of R by µ(A) = P{ω ∈ Ω : f(ω) ∈

A}. Prove that µ is a probability measure on (R,B).

Proposition 1.2. If f and f2 are measurable, so are the functions f1 + f2, f1f2,

max(f1, f2), min(f1, f2) and cf1, for any constant c.
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Proof. For the sum note that

{ω : f1(ω) + f2(ω)} =
⋃

({ω : f1(ω) < r} ∩ {ω : f2(ω) < α− r}) ,

where the union is taken over all the rational. Again, the fact that countable

unions of measurable sets are measurable implies the measurability of the sum. In

the same way,

{ω : max(f1(ω), f2(ω)) > α} = {ω : f1(ω) > α} ∪ {ω : f2(ω) > α}

gives the measurability of max(f1, f2). The min(f1, f2) follows from this by taking

complements. As for the product, first observe that

{ω : f2
1 (ω) > α} = {ω : f1(ω) >

√
α} ∪ {ω : f1(ω) < −

√
α}

and hence f2
1 is measurable. But then writing

f1f2 =
1
2
[
(f1 + f2)2 − f2

1 − f2
2

]
,

gives the measurability of the product. �

Proposition 1.3. Let {fn} be a sequence of measurable functions on (Ω,F), then

f = inf
n
fn, sup

n
fn, lim sup fn, lim inf fn are measurable functions.

Proof. Clearly {inf
n
fn < α} = ∪{fn < α} and {supn fn > α} = ∪{fn > α} and

hence both sets are measurable. Also,

lim sup
n→∞

fn = inf
n

{
sup
m≥n

fm

}
and

lim inf
n→∞

fn = sup
n

(
inf
m≥n

fm

)
,

the result follows from the first part. �
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Problem 1.3. Let fn be a sequence of measurable functions. Let E = {ω ∈ Ω :

lim fn(ω) exists}. Prove that E is measurable.

Problem 1.4. Let fn be a sequence of measurable functions converging pointwise

to the function f . Proof that f is measurable.

Proposition 1.4.

(i) Let Ω be a metric space and suppose the collection of all open sets are in the

sigma algebra F . Suppose f : Ω → R is continuous. Then f is measurable.

In particular, a continuous function f : Rn → R is measurable relative to the

Borel σ–algebra in Rn.

(ii) Let ψ : R → R be continuous and f : Ω → R be measurable. Then ψ(f) is

measurable.

Proof. These both follows from the fact that for every continuous function f ,

{ω : f(ω) > α} = f−1(α,∞) is open for every α. �

Problem 1.5. Suppose f is a measurable function. Prove that

(i) fp, p ≥ 1,

(ii) |f |p, p > 0,

(iii) f+ = max(f, 0),

(iv) f− = −min(f, 0)

are all measurable functions.

Definition 1.2. Let f : Ω → R be measurable. The sigma algebra generated by f

is the sigma algebra in Ω1 generated by the collection {f−1(A):A ∈ B}. This is

denoted by σ(f).
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Definition 1.3. A function ϕ define on (Ω,F , µ) is a simple function if ϕ(w) =
n∑
i=1

ai1Ai where the A′is are disjoint measurable sets which form a partition of Ω,

(
⋃
Ai = Ω) and the a′is are constants.

Theorem 1.1. Let f : Ω → [0,∞] be measurable. There exists a sequence of simple

functions {ϕn} on Ω with the property that 0 ≤ ϕ1(ω) ≤ ϕ2(ω) ≤ . . . ≤ f(ω) and

ϕn(ω) → f(ω), for every ω ∈ Ω.

Proof. Fix n ≥ 1 and for i = 1, 2, . . . , n2n, define the measurable sets

Ani
= f−1

[
i− 1
2n

,
i

2n

)
.

Set

Fn = f−1([n,∞])

and define the simple functions

ϕn(ω) =
n2n∑
i=1

i− 1
2n

1Ani
(ω) + n1Fn(ω).

clearly ϕn is a simple function and it satisfies ϕn(ω) ≤ ϕn+1(ω) and ϕn(ω) ≤ f(ω)

for all ω.

Fix ε > 0. Let ω ∈ Ω. If f(ω) < ∞, then pick n so large that 2−n < ε and

f(ω) < n. Then f(ω) ∈
[
i−1
2n ,

i
2n

)
for some i = 1, 2, . . . n2n. Thus,

ϕn(ω) =
i− 1
2n

and so,

f(x))− ϕn(ω) < 2−n.

By our definition, if f(ω) = ∞ then ϕn(ω) = n for all n and we are done. �

§2 The Integral: Definition and Basic Properties.
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Definition 2.1. Let (Ω,F , µ) be a measure space.

(i) If ϕ(w) =
n∑
i=1

ai1Ai
is a simple function and E ∈ F is measurable, we define

the integral of the function ϕ over the set E by∫
E

ϕ(w)dµ =
n∑
i=1

aiµ(Ai ∩ E). (2.1)

(We adapt the convention here, and for the rest of these notes, that 0·∞ = 0.)

(ii) If f ≥ 0 is measurable we define the integral of f over the set E by∫
E

fdµ = sup
ϕ

∫
E

ϕdµ, (2.2)

where the sup is over all simple functions ϕ with 0 ≤ ϕ ≤ f.

(iii) If f is measurable and at least one of the quantities
∫
E
f+dµ or

∫
E
f−dµ is

finite, we define the integral of f over E to be∫
E

fdµ =
∫
E

f+dµ−
∫
E

f−dµ.

(iv) If ∫
E

|f |dµ =
∫
E

f+dµ+
∫
E

f−dµ <∞

we say that the function f is integrable over the set E. If E = Ω we denote

this collection of functions by L1(µ).

We should remark here that since in our definition of simple functions we did

not required the constants ai to be distinct, we may have different representations

for the simple functions ϕ. For example, if A1 and A2 are two disjoint measurable

sets then 1A1∪A2 and 1A1 + 1A2 both represents the same simple function. It is

clear from our definition of the integral that such representations lead to the same

quantity and hence the integral is well defined.

Here are some basic and easy properties of the integral.
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Proposition 2.1. Let f and g be two measurable functions on (Ω,F , µ).

(i) If f ≤ g on E, then
∫
E

fdµ ≤
∫
E

gdµ.

(ii) If A ⊂ B and f ≥ 0, then
∫
A

fdµ ≤
∫
B

fdµ.

(iii) If c is a constant, then
∫
E

cfdµ = c
∫
E

fdµ.

(iv) f ≡ 0 on E, then
∫
E

fdµ = 0 even if µ(E) = ∞.

(v) If µ(E) = 0, then
∫
E

fdµ = 0 even if f(x) = ∞ on E.

(vi) If f ≥ 0, then
∫
E

fdµ =
∫
Ω

gfEfdµ.

Proposition 2.2. Let (Ω,F , µ) be a measure space. Suppose ϕ and ψ are simple

functions.

(i) For E ∈ F define

ν(E) =
∫
E

ϕdµ.

The ν is a measure on F .

(ii)
∫
Ω

(ϕ+ ψ)dµ =
∫
Ω

ϕdµ+
∫
Ω

ψdµ.

Proof. Let Ei ∈ F , E =
⋃
Ei. Then

ν(E) =
∫
E

ϕdµ =
n∑
i=1

αiµ(Ai ∩ E)

=
n∑
i=1

αi

∞∑
j=1

µ(Ai ∩ Ej) =
∞∑
j=1

n∑
i=1

αiµ(Ai ∩ Ej)

=
∞∑
i=1

ν(Ei).

By the definition of the integral, µ(∅) = 0. This proves (i). (ii) follows from

(i) and we leave it to the reader.
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We now come to the “three” important limit theorems of integration: The

Lebesgue Monotone Convergence Theorem, Fatou’s lemma and the Lebesgue Dom-

inated Convergence theorem.

Theorem 2.1 (Lebesgue Monotone Convergence Theorem). Suppose {fn}

is a sequence of measurable functions satisfying:

(i) 0 ≤ f1(ω) ≤ f2(ω) ≤ . . . , for every ω ∈ Ω,

and

(ii) fn(ω) ↑ f(ω), for every ω ∈ Ω.

Then ∫
Ω

fndµ ↑
∫
fdµ.

Proof. Set

αn =
∫
Ω

fndµ.

Then αn is nondecreasing and it converges to α ∈ [0,∞]. Since∫
Ω

fndµ ≤
∫
Ω

fdµ,

for all n we see that if α = ∞, then
∫
Ω
fdµ = ∞ and we are done. Assume∫

Ω
fdµ <∞. Since

α ≤
∫

Ω

fdµ.

we need to prove the opposite inequality. Let 0 ≤ ϕ ≤ f be simple and let 0 < c <

1. Set

En = {ω: fn(ω) ≥ c ϕ(ω)}.

Clearly, E1 ⊂ E2 ⊂ . . . In addition, suppose ω ∈ Ω. If f(ω) = 0 then ϕ(ω) = 0

and ω ∈ E1. If f(ω) > 0 then cs(ω) < f(ω) and since fn(ω) ↑ f(ω), we have that
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ω ∈ En some n. Hence
⋃
En = Ω, or in our notation of Proposition 2.1, Chapter

I, En ↑ Ω. Hence ∫
Ω

fndµ ≥
∫
En

fndµ

≥ c

∫
En

ϕ(ω)dµ

= cν(En).

Let n ↑ ∞. By Proposition 2.2 above and Proposition 2.1 of Chapter I,

α ≥ lim
n→∞

∫
Ω

fndµ ≥ cν(Ω) = c

∫
Ω

ϕdµ

and therefore, ∫
ΩE

ϕdµ ≤ α,

for all simple ϕ ≤ f and

sup
ϕ≤f

∫
Ω

ϕdµ ≤ α,

proving the desired inequality. �

Corollary 2.1. Let {fn} be a sequence of nonnegative measurable functions and

set

f =
∞∑
n=1

fn(ω).

Then ∫
Ω

fdµ =
∞∑
n=1

∫
Ω

fndµ.

Proof. Apply Theorem 2.1 to the sequence of functions

gn =
n∑
j=1

fj .

�
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Corollary 2.2 (First Borel–Contelli Lemma). Let {An} be a sequence of

measurable sets. Suppose
∞∑
n=1

µ(An) <∞.

Then µ{An, i.o.} = 0.

Proof. Let f(ω) =
∞∑
n=1

1An(ω). Then

∫
Ω

f(ω)dµ =
∞∑
n=1

∫
Ω

1Andµ

=
∞∑
n=1

µ(An) <∞.

Thus, f(ω) <∞ for almost every ω ∈ Ω. That is, the set A where f(ω) = ∞ has

µ–measure 0. However, f(ω) = ∞ if and only if ω ∈ An for infinitely many n. This

proves the corollary. �

Let µ be the counting measure on Ω = {1, 2, 3, . . . } and define the measurable

functions f by f(j) = aj where aj is a sequence of nonnegative constants. Then

∫
Ω

f(j)dµ(j) =
∞∑
j=1

aj .

From this and Theorem 2.1 we have

Corollary 2.3. Let aij ≥ 0 for all i, j. Then

∞∑
i=1

∞∑
j=1

aij =
∞∑
j=1

∞∑
i=1

aij .

The above theorem together with theorem 1.1 and proposition 2.2 gives
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Corollary 2.4. Let f be a nonnegative measurable function. Define

ν(E) =
∫
E

fdµ.

Then ν is a measure and ∫
Ω

gdν =
∫

Ω

gfdµ

for all nonnegative measurable functions g.

Theorem 2.2 (Fatou’s Lemma). Let {fn} be a sequence of nonnegative mea-

surable functions. Then ∫
Ω

lim inf fndµ ≤ lim inf
∫

Ω

fndµ.

Proof. Set

gn(ω) = inf
m≥n

fm(ω), n = 1, 2, . . .

Then {gn} is a sequence of nonnegative measurable functions satisfying the hy-

pothesis of Theorem 2.1. Since

lim
n→∞

gn(ω) = lim inf
n→∞

fn(ω)

and ∫
gndµ ≤

∫
fndµ,

Theorem 2.1 gives ∫
Ω

lim inf
n→∞

fndµ =
∫

Ω

lim
n
gndµ

= lim
n→∞

∫
Ω

gndµ

≤ lim inf
n→∞

∫
Ω

fndµ.

This proves the theorem. �
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Proposition 2.2. Let f be a measurable function. Then

∣∣ ∫
Ω

fdµ
∣∣ ≤ ∫

Ω

|f |dµ.

Proof. We assume the right hand side is finite. Set β =
∫
Ω

fdµ. Take α = sign(β)

so that αβ = |β|. Then ∣∣∣∣ ∫
Ω

fdµ

∣∣∣∣ = |β|

= α

∫
Ω

fdµ

=
∫

Ω

αfdµ

≤
∫

Ω

|f |dµ.

Theorem 2.3 (The Lebesgue Dominated Convergence Theorem ). Let

{fn} be a sequence of measurable functions such that fn(ω) → f(ω) for every

ω ∈ Ω. Suppose there is a g ∈ L1(µ) with |fn(ω)| ≤ g(ω). Then f ∈ L1(µ) and

lim
n→∞

∫
Ω

|fn − f |dµ = 0.

In particular,

lim
n→∞

∫
Ω

fndµ =
∫

Ω

fdµ.

Proof. Since |f(ω)| = lim
n→∞

|fn(ω)| ≤ g(ω) we see that f ∈ L1(µ). Since |fn− f | ≤

2g, 0 ≤ 2g − |fn − f | and Fatou’s Lemma gives

0 ≤
∫

Ω

2gdµ ≤ lim
n→∞

∫
Ω

2gdµ+ lim
(
−
∫

Ω

|fn − f |dµ
)

=
∫

Ω

2gdµ− lim
∫

Ω

|fn − f |dµ.
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It follows from this that

lim
∫

Ω

|fn − f |dµ = 0.

Since ∣∣∣∣ ∫
Ω

|fndµ−
∫

Ω

fdµ

∣∣∣∣ ≤ ∫
Ω

|fn − f |dµ,

the first part follows. The second part follows from the first. �

Definition 2.2. Let (Ω,F , µ) be a measure space. Let P be a property which a

point ω ∈ Ω may or may not have. We say that P holds almost everywhere on

E, and write this as i.e. , if there exists a measurable subset N ⊂ E such that P

holds for all E\N and µ(N) = 0.

For example, we say that fn → f almost everywhere if fn(ω) → f(ω) for all

ω ∈ Ω except for a set of measure zero. In the same way, f = 0 almost everywhere

if f(ω) = 0 except for a set of measure zero.

Proposition 2.3 (Chebyshev’s Inequality). Fix 0 < p < ∞ and let f be a

nonnegative measurable function on (Ω,F , µ). Then for any measurable set e we

have

µ{ω ∈ E:∈: f(ω) > λ} ≤ 1
λp

∫
E

fpdµ: .

Proof.

λpµ{ω ∈ E: f(ω) > λ} =
∫
{ω∈E:f(ω)>λ}

λpdµ

≤
∫
E

fpdµ ≤
∫
E

fpdµ

which proves the proposition. �

Proposition 2.4.
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(i) Let f be a nonnegative measurable function. Suppose∫
E

fdµ = 0.

Then f = 0 a.e. on E.

(ii) Suppose f ∈ L1(µ) and
∫
E

fdµ = 0 for all measurable sets E ⊂ Ω. Then

f = 0 a.e. on Ω.

Proof. Observe that

{ω ∈ E: f(ω) > 0} =
∞⋃
n=1

{ω ∈ Ω: f(ω) > 1/n}.

By Proposition 2.3,

µ{ω ∈ E: f(ω) > 1/n} ≤ n

∫
E

fdµ = 0.

Therefore, µ{f(ω) > 0} = 0, which proves (i).

For (ii), set E = {ω: f(ω) ≥ 0} = {ω: f(ω) = f+(ω)}. Then∫
E

f+dµ =
∫
E

fdµ = 0,

which by (i) implies that f+ = 0, a.e. But then∫
E

fdµ = −
∫
E

f−dµ = 0

and this again gives ∫
E

f−dµ = 0

which implies that f− = 0, a.e. �
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Definition 2.3. The function ψ: (a, b) → R (the “interval” (a, b) = R is permit-

ted) is convex if

ψ((1− λ)x+ λy) ≤ (1− λ)ψ(x) + λψ(y), (2.3)

for all 0 ≤ λ ≤ 1.

An important property of convex functions is that they are always continuous.

This “easy” to see geometrically but the proof is not as trivial. What follows easily

from the definition is

Problem 2.1. Prove that (2.3) is equivalent to the following statement: For all

a < s < t < u < b,
ϕ(t)− ϕ(s)

t− s
≤ ϕ(u)− ϕ(t)

u− t
.

and conclude that a differentiable function is convex if and only if its derivative is

a nondecreasing function.

Proposition 2.5 (Jensen’s Inequality). Let (Ω,F , µ) be a probability space.

Let f ∈ L1(µ) and a < f(ω) < b. Suppose ψ is convex on (a, b). The ψ(f) is

measurable and

ψ

(∫
Ω

fdµ

)
≤
∫

Ω

ψ(f)dµ.

Proof. The measurability of the function ψ(f) follows from the continuity of ψ

and the measurability of f using Proposition 1.4. Since a < f(ω) < b for all ω ∈ Ω

and µ is a probability measure, we see that if

t =
∫
Ω

fdµ,

then a < t < b. Let `(x) = c1x + c2 be the equation of the supporting line of

the convex function ψ at the point (t, ψ(t)). That is, ` satisfies `(t) = ψ(t) and
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ψ(x) ≥ `(x) for all x ∈ (a, b). The existence of such a line follows from Problem

2.1. The for all ω ∈ Ω,

ψ(f(ω)) ≥ c1f(ω) + c2 = `(f(ω)).

Integrating this inequality and using the fact that µ(Ω) = 1, we have∫
Ω

ψ(f(ω))dµ ≥ c1

∫
Ω

f(ω)dµ+ c2

= `

(∫
Ω

f(ω)dµ
)

= ψ

(∫
Ω

f(ω)dµ
)
,

which is the desired inequality. �

Examples.

(i) Let ϕ(x) = ex. Then

exp
∫
Ω

fdµ ≤
∫
Ω

efdµ.

(ii) If Ω = {1, 2, . . . , n} with the measure µ defined by µ{i} = 1/n and the

function f given by f(i) = xi, we obtain

exp{ 1
n

(x1 + x2 + . . .+ xn)} ≤
1
n
{ex1 + . . .+ exn}.

Setting yi = exi we obtain the Geometric mean inequality. That is,

(y1, . . . , yn)1/n ≤
1
n

(y1 + . . .+ yn) .

More generally, extend this example in the following way.

Problem 2.2. Let α1, · · · , αn be a sequence of positive numbers with α1 + · · · +

αn = 1 and let y1, · · · , yn be positive numbers. Prove that

yα1
1 · · · yαn

n ≤ α1y1 + · · ·+ αnyn.
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Definition 2.4. Let (Ω,F , µ) be a measure space. Let 0 < p <∞ and set

‖f‖p =
(∫

Ω

|f |pdµ
)1/p

.

We say that f ∈ Lp(µ) if ‖f‖p <∞. To define L∞(µ) we set

E = {m ∈ R+:µ{ω: |f(ω)| > m} = 0}.

If E = ∅, define ‖f‖∞ = ∞. If E 6= ∅, define ‖f‖∞ = inf E. The function

f ∈ L∞(µ) if ‖f‖∞ <∞.

Suppose ‖f‖∞ <∞. Since

f−1(‖f‖∞, ∞] =
∞⋃
n=1

f−1

(
‖f‖∞ +

1
n
, ∞

]
and µf−1(‖f‖∞ + 1

n , ∞] =, we see ‖f‖∞ ∈ E. The quantity ‖f‖∞ is called the

essential supremum of f .

Theorem 2.4.

(i) (Hölder’s inequality) Let 1 ≤ p ≤ ∞ and let q be its conjugate exponent. That

is, 1
p + 1

q = 1. If p = 1 we take q = ∞. Also note that when p = 2, q = 2.

Let f ∈ Lp(µ) and g ∈ lq(µ). Then fg ∈ L1(µ) and∫
|fg|dµ ≤ ‖f‖p‖g‖q.

(ii) (Minkowski’s inequality) Let 1 ≤ p ≤ ∞. Then

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

Proof. If p = 1 and q = ∞, or q = 1 and p = ∞, we have |fg(ω)| ≤ ‖g‖∞|f(ω)|.

This immediately gives the result when p = 1 or p = ∞. Assume 1 < p < ∞ and

(without loss of generality) that both f and g are nonnegative. Let

A =
(∫

Ω

fpdµ

)1/p

and B =
(∫

gqdµ

)1/q
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If A = 0, then f = 0 almost everywhere and if B = 0, then g = 0 almost everywhere

and in either case the result follows. Assume 0 < A < ∞ and same for B. Put

F = f/A > 0, G = g/B. Then∫
Ω

F pdµ =
∫

Ω

Gpdµ = 1

and by Problem 2.2

F (ω) ·G(ω) ≤ 1
p
F p +

1
q
Gq.

Integrating both sides of this inequality gives∫
F (ω)G(ω) ≤ 1

p
+

1
q

= 1,

which implies the (i) after multiplying by A ·B.

For (ii), the cases p = 1 and p = ∞ are again clear. Assume therefore that

1 < p < ∞. As before, we may assume that both f and G are nonnegative. We

start by observing that since the function ψ(x) = xp, x ∈ R+ is convex, we have(
f + g

2

)p
≤ 1

2
fp +

1
2
gp.

This gives ∫
Ω

(f + g)pdµ ≤ 2−(p−1)

∫
Ω

fpdµ+ 2−(p−1)

∫
Ω

gpdµ.

Thus, f + g ∈ Lp(dµ). Next,

(f + g)p = (f + g)(f + g)p−1 = f(f + g)p−1 + g(f + g)p−1

together with Hölder’s inequality and the fact that q(p− 1) = p, gives

∫
Ω

f(f + g)p−1dµ ≤
(∫

Ω

fpdµ

)1/p(∫
Ω

(f + g)q(p−1)dµ

)1/q

=
(∫

Ω

fpdµ

)1/p(∫
Ω

(f + g)pdµ
)1/q

.
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In the same way,∫
Ω

g(f + g)pdµ ≤
(∫

Ω

gpdµ

)1/p(∫
Ω

(f + g)pdµ
)1/q

.

Adding these inequalities we obtain∫
Ω

(f + g)pdµ ≤

{(∫
Ω

fpdµ

)1/p

+
(∫

Ω

gpdµ

)1/p
}{∫

Ω

(f + g)pdµ
}1/q

.

Since f + g ∈ Lp(dµ), we may divide by the last expression in brackets to obtain

the desired inequality. �

For f, g ∈ Lp(µ) define d(f, g) = ‖f − g‖p. For 1 ≤ p ≤ ∞, Minkowski’s

inequality shows that this function satisfies the triangle inequality. That is,

d(f, g) = ‖f − g‖p = ‖f − h+ h− g‖p

≤ ‖f − h‖p + ‖h− g‖p

= d(f, h) + d(h, g),

for all f, g, h ∈ Lp(µ). It follows that Lp(µ) is a metric space with respect to d(·, ·).

Theorem 2.4. Lp(µ), 1 ≤ p ≤ ∞, is complete with respect to d(· , ·).

Lemma 2.1. Let gk be a sequence of functions in Lp and (0 < p <∞) satisfying

‖gk − gh+1‖p ≤
(

1
4

)k
, k = 1, 2, . . ..

Then {gk} converges a.e.

Proof. Set

Ak = {ω: |gk(ω)− gk+1(ω)| > 2−k}.

By Chebyshev’s inequality,

µ{An} ≤ 2kp
∫

Ω

|gk − gk+1|pdµ

≤
(

1
4

)kp
· 2kp

=
1

2kp
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This shows that ∑
µ(An) <∞.

By Corollary 2.2, µ{An i.o.} = 0. Thus, for almost all ω ∈ {An i.o.}c there is an

N = N(ω) such that

|gk(ω)− gk+1(ω)| ≤ 2−k,

for all k > N . It follows from this that {gk(ω)} is Cauchy in R and hence { gk(ω)}

converges. �

Lemma 2.2. The sequence of functions {fn} converges to f in L∞ if and only if

there is a set measurable set A with µ(A) = 0 such that fn → f uniformly on Ac.

Also, the sequence {fn} is Cauchy in L∞ if and only if there is a measurable set

A with µ(A) = 0 such that {fn} is uniformly Cauchy in Ac.

Proof. We proof the first statement, leaving the second to the second to the reader.

Suppose ‖fn − f‖∞ → 0. Then for each k > 1 there is an n > n(k) sufficiently

large so that ‖fn − f‖∞ < 1
k . Thus, there is a set Ak so such that µ(Ak) = 0

and |fn(ω) − f(ω)| < 1
k for every ω ∈ Ack. Let A = ∪Ak. Then µ(A) = 0 and

fn → f uniformly on Ac. For the converse, suppose fn → f uniformly on Ac and

µ(A) = 0. Then given ε > 0 there is an N such that for all n > N and ω ∈ Ac,

|fn(ω)−f(ω)| < ε. This is the same as saying that ‖fn−f‖∞ < ε for all n > N . �

Proof of Theorem 2.4. Now, suppose {fn} is Cauchy in Lp(µ). That is, given any

ε > 0, there is a N such that for all n,m ≥ N , d(fn, fm) = ‖fn − fm‖ < ε for all

n,m > N . Assume 1 ≤ p <∞. The for each k = 1, 2, . . . , there is a nk such that

‖fn − fm‖p ≤ (
1
4
)k

for all n,m ≥ nk. Thus, fnk
(ω) → f a.e., by Lemma 2.1. We need to show that

f ∈ Lp and that it is the Lp(µ) limit of {fn}. Let ε > 0. Take N so large that
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‖fn−fm‖p < ε for all n,m ≥ N . Fix such anm. Then by the pointwise convergence

of the subsequence and by Fatou’s Lemma we have∫
Ω

|f − fm|pdµ =
∫

Ω

lim
k→∞

|fnk
− fm|pdµ

≤ lim inf
k→∞

∫
Ω

|fnk
− fm|p

< εp.

Therefore fn → f in Lp(µ) and∫
Ω

|f − fm|pdµ <∞

for m sufficiently large. But then,

‖f‖p = ‖fm − fm − f‖p ≤ ‖fm‖p + ‖fm − f‖p,

which shows that f ∈ Lp(µ).

Now, suppose p = ∞. Let {fn} be Cauchy in L∞. There is a set A with

µ(A) = 0 such that fn is uniformly Cauchy on Ac, by Lemma 2.2. That is, given

ε > 0 there is an N such that for all n,m > N and all ω ∈ Ac,

|fn(ω)− fm(ω)| < ε.

Therefore the sequence {fn} converges uniformly on Ac to a function f . Define

f(ω) = 0 for ω ∈ A. Then fn converges to f in L∞(µ) and f ∈ L∞(µ). �

In the course of proving Theorem 2.4 we proved that if a sequence of functions

in Lp, 1 ≤ p <∞ converges in Lp(µ), then there is a subsequence which converges

a.e. This result is of sufficient importance that we list it here as a corollary.

Corollary 2.5. Let fn ∈ Lp(µ) with 1 ≤ p < ∞ and fn → f in Lp(µ). Then

there exists a subsequence {fnk
} with fnk

→ f a.e. as k →∞.

The following Proposition will be useful later.
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Proposition 2.6. Let f ∈ L1(µ). Given ε > 0 there exists a δ > 0 such that∫
E

|f |dµ < ε whenever µ(E) < δ.

Proof. Suppose the statement is false. Then we can find an ε > 0 and a sequence

of measurable sets {En} with ∫
En

|f |dµ ≥ ε

and

µ(En) <
1
2n

Let An = ∪∞j=nEj and A = ∩∞n=1An = {En i.o.}. Then
∑
µ(En) < ∞ and by

the Borel–Cantelli Lemma, µ(A) = 0. Also, An+1 ⊂ An for all n and since

ν(E) =
∫
E

|f |dµ

is a finite measure, we have∫
A

|f |dµ = lim
n→∞

∫
An

|f |dµ

≥ lim
n→∞

∫
En

|f |dµ

≥ ε.

This is a contradiction since µ(A) = 0 and therefore the integral of any function

over this set must be zero. �

§3 Types of convergence for measurable functions.

Definition 3.1. Let {fn} be a sequence of measurable functions on (Ω,F , µ).

(i) fn → f in measure if for all ε > 0,

lim
n→∞

µ{ω ∈ Ω: |fn(ω)− f(ω)| ≥ ε} = 0.

(ii) fn → f almost uniformly if given ε > 0 there is a set E ∈ F with µ(E) < ε

such that fn → f uniformly on Ec.
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Proposition 3.1. Let {fn} be measurable and 0 < p < ∞. Suppose fn → f in

Lp. Then, fn → f in measure.

Proof. By Chebyshev’s inequality

µ{|fn − f | ≥ ε} ≤ 1
εp

∫
Ω

|fn − f |pdµ,

and the result follows. �

Example 3.1. Let Ω = [0, 1] with the Lebesgue measure. Let

fn(ω) =
{
en 0 ≤ ω ≤ 1

n

0 else
Then fn → 0 in measure but fn 6→ 0 in Lp(µ) for any 0 < p ≤ ∞. To see this

simply observe that

‖fn‖p =
∫ 1

0

|fn(x)|pdx =
1
n
enp →∞

and that ‖fn‖∞ = en →∞, as n→∞.

Proposition 3.2. Suppose fn → f almost uniformly. Then fn → f in measure

and almost everywhere.

Proof. Since fn → f almost uniformly, given ε > 0 there is a measurable set E

such that µ(E) < ε and fn → f uniformly on Ec. Let η > 0 be given. There is a

N = N(η) such that |fn(ω)− f(ω)| < η for all n ≥ N and for all ω ∈ Ec. That is,

{µ: |fn(ω)− f(ω)| ≥ η} ⊆ E, for all n ≥ N . Hence, for all n ≥ N ,

µ{|fn(ω)− f(ω)| ≥ η} < ε.

Since ε > 0 was arbitrary we see that for all η > 0,

lim
n→∞

µ{|fn(ω)− f(ω)| ≥ η} = 0,

proving that fn → f in measure.

Next, for each k take Ak ∈ F with µ(Ak) < 1
k and fn → f uniformly on Ack.

If E = ∪∞k=1A
c
k, then fn → f on E and µ(Ec) = µ (∩∞k=1Ak) ≤ µ(Ak) < 1

k for all

k. Thus µ(Ec) = 0 and we have the almost everywhere convergence as well. �
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Proposition 3.3. Suppose fn → f in measure. Then there is a subsequence {fnk
}

which converges almost uniformly to f .

Proof. Since

µ{|fn − fm| ≥ ε} ≤ µ{|fn − f | ≥ ε/2}+ µ{|fn − f | ≥ ε/2},

we see that µ{fn − fm| ≥ ε} → 0 as n and m→∞. For each k, take nk such that

nk+1 > nk and

µ{|fn(ω)− fm(ω)| ≥ 1
2k
} ≤ 1

2k

for all n, m ≥ nk. Setting gk = fnk
and Ak = {ω ∈ Ω: |gk+1(ω)− gk(ω)| ≥ 1

2k } we

see that
∞∑
k=1

µ(Ak) <∞.

By the Borel–Cantelli Lemma, Corollary 2.2, µ{An i.o.} = 0. However, for every

ω 6∈ {An i.o.}, there is an N = N(ω) such that

|gk+1(ω)− gk(ω)| < 1
2k

for all k ≥ N . This implies that the sequence of real numbers {gk(ω)} is Cauchy

and hence it converges to g(ω). Thus gk → g a.e.

To get the almost uniform convergence, set En = ∪∞k=nAk. Then µ(En) ≤∑∞
k=n µ(Ak) and this can be made smaller than ε as soon as n is large enough. If

ω 6∈ En, then

|gk(ω)− gk+1(ω)| < 1
2k

for all k ∈ {n, n+ 1, n+ 2, . . . }. Thus gk → g uniformly on Ecn.

For the uniqueness, suppose fn → f in measure. Then fnk
→ f in measure

also. Since we also have fnk
→ g almost uniformly clearly, fnk

→ g in measure

and hence f = g a.e. This completes the proof. �
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Theorem 3.1 (Egoroff’s Theorem). Suppose (Ω,F , µ) is a finite measure space

and that fn → f a.e. Then fn → f almost uniformly.

Proof. We use Problem 3.2 below. Let ε > 0 be given. For each k there is a n(k)

such that if

Ak =
∞⋃

n=n(k)

{ω ∈ Ω: |fn − f | ≥ 1
k
},

then µ(Ak) ≤ ε/2k. Thus if

A =
∞⋃
k=1

Ak,

then µ(A) ≤
∞∑
k=1

µ(Ak) < ε. Now, if δ > 0 take k so large that
1
k
< δ and then for

any n > n(k) and ω 6∈ A, |fn(ω) − f(ω)| < 1
k < δ. Thus fn → f uniformly on

Ac. �

Let us recall that if {yn} is a sequence a sequence of real numbers then

yn converges to y if and only if every subsequence {ynk
has a further subsequence

{ynkj
} which converges to y. For measurable functions we have the following result.

Proposition 3.3. The sequence of measurable functions {fn} on (Ω,F , µ) con-

verges to f in measure if and only if every subsequence {fnk
} contains a further

subsequence converging a.e. to f .

Proof. Let εk be a sequence converging down to 0. Then µ{|fn− f | > εk} → 0, as

n→∞ for each k. We therefore have a subsequence fnk
satisfying

µ{|fnk
− f | > εk} ≤

1
2k
.

Hence,
∞∑
k=1

µ{|fnk
− f | > εk} <∞
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and therefore by the first Borel–Cantelli Lemma, µ{|fnk
− f | > εk i.o.} = 0. Thus

|fnk
− f | < εk eventually a.e. Thus fnk

→ f a.e.

For the converse, let ε > 0 and put yn = µ{|fn − f | > ε} and consider

the subsequence ynk
. If every fnk

subsequence has a subsequence fnkj
such that

fnkj
→ f a.e. Then {ynk

} has a subsequence. ynkj
→ 0. Therefore {yn} converges

to 0 and hence That is fn → 0 in measure. �

Problem 3.1. Let Ω = [0,∞) with the Lebesgue measure and define fn(ω) =

1An(ω) where An = {ω ∈ Ω:n ≤ ω ≤ n+ 1
n}. Prove that fn → 0 a.e., in measure

and in Lp(µ) but that fn 6→ 0 almost uniformly.

Problem 3.2. Let (Ω,F , µ) be a finite measure space. Prove that fn → f a.e. if

and only if for all ε > 0

lim
n→∞

µ

( ∞⋃
k=n

Ak(ε)

)
= 0

where

Ak(ε) = {ω ∈ Ω: |fk(ω)− f(ω)| ≥ ε}.

Problem 3.3.

(i) Give an example of a sequence of nonnegative measurable functions fn for

which we have strict inequality in Fatou’s Lemma.

(ii) Let (Ω,F , µ) be a measure space and {An} be a sequence of measurable sets.

Recall that lim inf
n

An =
∞⋃
n=1

∞⋂
k=n

Ak and prove that

µ{lim inf
n→∞

An} ≤ lim inf
n→∞

µ{An}.

(converges) Suppose fn is a sequence of nonnegative measurable functions on (Ω,F , µ)

which is pointwise decreasing to f . That is, f1(ω) ≥ f2(ω) ≥ · · · ≥ 0 and
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fn(ω) → f(ω). Is it true that

lim
n→∞

∫
Ω

fndµ =
∫

Ω

fdµ?

Problem 3.4. Let (Ω,F , P ) be a probability space and suppose f ∈ L1(P ). Prove

that

lim
p→0

‖f‖p = exp{
∫

Ω

log |f |dP}

where exp{−∞} is defined to be zero.

Problem 3.5. Let (Ω,F , µ) be a finite measure space. Prove that the function

µ{|f | > λ}, for λ > 0, is right continuous and nonincreasing. Furthermore, if

f, f1, f2 are nonnegative measurable and λ1, λ2 are positive numbers with the prop-

erty that f ≤ λ1f1 + λ2f2, then for all λ > 0,

µ{f > (λ1 + λ2)λ} ≤ µ{f1 > λ}+ µ{f2 > λ}.

Problem 3.6. Let {fn} be a nondecreasing sequence of measurable nonnegative

functions converging a.e. on Ω to f . Prove that

lim
n→∞

µ{fn > λ} = µ{f > λ}.

Problem 3.7. Let (Ω,F , µ) be a measure space and suppose {fn} is a sequence

of measurable functions satisfying

∞∑
n=1

µ{|fn| > λn} <∞

for some sequence of real numbers λn. Prove that

lim sup
n→∞

|fn|
λn

≤ 1,

a.e.
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Problem 3.8. Let (Ω,F , µ) be a finite measure space. Let {fn} be a sequence of

measurable functions on this space.

(i) Prove that fn converges to f a.e. if and only if for any ε > 0

lim
m→∞

µ{|fn − fn′ | > ε, for some n′ > n ≥ m} = 0

(ii) Prove that fn → 0 a.e. if and only if for all ε > 0

µ{|fn| > ε, i.o} = 0

(converges) Suppose the functions are nonnegative. Prove that fn → ∞ a.e. if and only

if for all M > 0

µ{fn < M, i.o.} = 0

Problem 3.9. Let Ω = [0, 1] with its Lebesgue measure. Suppose f ∈ L1(Ω).

Prove that xnf ∈ L1(Ω) for every n = 1, 2, . . . and compute

lim
n→∞

∫
Ω

xnf(x)dx.

Problem 3.10. Let (Ω,F , µ) be a finite measure space and f a nonnegative real

valued measurable function on Ω. Prove that

lim
n→∞

∫
Ω

fndµ

exists, as a finite number, if and only if µ{f > 1} = 0.

Problem 3.11. Suppose f ∈ L1(µ). Prove that

lim
n→∞

∫
{|f |>n}

fdµ = 0
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Problem 3.12. Let Ω = [0, 1] and let (Ω,F , µ) be a finite measure space and f a

measurable function on this space. Let E be the set of all x ∈ Ω such that f(x) is

an integer. Prove that the set E is measurable and that

lim
n→∞

∫
Ω

(cos(πf(x))2ndµ = µ(E)

Problem 3.13. Let (Ω,F , P ) be a probability space. Suppose f and g are positive

measurable function such that fg ≥ 1 a.e. on Ω. Prove that∫
Ω

fgdP ≥ 1

Problem 3.14. Let (Ω,F , P ) be a probability space and suppose f ∈ L1(P ). Prove

that

lim
p→0

‖f‖p = exp{
∫

Ω

log |f |dP}

where exp{−∞} is defined to be zero.

Problem 3.15. Let (Ω,F , P ) be a probability space. Suppose f ∈ L∞(P ) and

‖f‖∞ > 0. Prove that

lim
n→∞

(∫
Ω
|f |n+1dP∫

Ω
|f |ndP

)
= ‖f‖∞

Problem 3.16. Let (Ω,F , P ) be a probability space and fn be a sequence of mea-

surable functions converging to zero in measure. Let F be a bounded uniformly

continuous function on R. Prove that

lim
n→∞

∫
Ω

F (fn)dP = F (0)
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Proclaim 3.17. Let (Ω,F , P ) be a probability space.

(i) Suppose F : R → R is a continuous function and fn → f in measure. Prove

that F (fn) → F (f) in measure.

(i) If fn ≥ 0 and fn → f in measure. Then∫
Ω

fdµ ≤ lim
∫

Ω

fndµ.

(ii) Suppose |fn| ≤ g where g ∈ L1(µ) and fn → f in measure. Then∫
Ω

fdµ = lim
∫

Ω

fndµ.

Problem 3.18. Let (Ω,F , µ) be a measure space and let f1, f2, · · · , fn be mea-

surable functions. Suppose 1 < p <∞. Prove that∫
Ω

∣∣ 1
n

n∑
j=1

fj(x)
∣∣pdµ(x) ≤ 1

n

∫
Ω

n∑
j=1

|fj(x)|pdµ(x)

and ∫
Ω

∣∣ 1
n

n∑
j=1

fj(x)
∣∣pdµ(x) ≤

 1
n

n∑
j=1

‖fj‖p

p

Problem 3.19. Let (Ω,F , µ) be a measure space and let fn be a sequence of

measurable functions satisfying ‖fn‖p ≤ n
1
p , for 2 < p < ∞. Prove that the

sequence { 1
nfn} converges to zero almost everywhere.

Problem 3.20. Suppose (Ω,F , P ) is a probability space and that f ∈ L1(P ) in

nonnegative. Prove that√
1 + ‖f‖21 ≤

∫
Ω

√
1 + f2dP ≤ 1 + ‖f‖1
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Problem 3.21. Compute, justifying all your steps,

lim
n→∞

∫ n

0

(
1− x

n

)n
ex/2dx.

Problem 3.22. Let probtrip be a probability space. Let f be a measurable function

with the property that ‖f‖2 = 1 and ‖f‖1 = 1
2 . Prove that

1
4

(1− η)2 ≤ P{ω ∈ Ω : |f(ω)| ≥ η

2
}.
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III

PRODUCT MEASURES

Our goal in this chapter is to present the essentials of integration in product

space. We begin by defining the product measure. Many of the definitions and

properties of product measures are, in some sense, obvious. However, we need to

be properly state them and carefully prove them so that they may be freely used

in the subsequent Chapters.

§1 Definitions and Preliminaries.

Definition 1.1. If X and Y are any two sets, their Cartesian product X × Y is

the set of all order pairs {(x, y):x ∈ X, y ∈ Y }.

If A ⊂ X, B ⊂ Y, A×B ⊂ X×Y is called a rectangle. Suppose (X,A), (X,B)

are measurable spaces. A measurable rectangle is a set of the form A × B, A ∈

A, B ∈ B. A set of the form

Q = R1 ∪ . . . ∪Rn,

where the Ri are disjoint measurable rectangles, is called an elementary sets. We

denote this collection by E .

Exercise 1.1. Prove that the elementary sets form an algebra. That is, E is closed

under complementation and finite unions.

We shall denote byA×B the σ–algebra generated by the measurable rectangle

which is the same as the σ–algebra generated by the elementary sets.
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Theorem 1.1. Let E ⊂ X × Y and define the projections

Ex = {y ∈ Y : (x, y) ∈ E}, and Ey = {x ∈ X: (x, y) ∈ E}.

If E ∈ A× B, then Ex ∈ B and Ey ∈ A for all x ∈ X and y ∈ Y .

Proof. We shall only prove that if E ∈ A × B then Ex ∈ B, the case of Ey being

completely the same. For this, let Ω be the collection of all sets E ∈ A × B for

which Ex ∈ B for every x ∈ X. We show Ω is a σ–algebra containing all measurable

rectangles. To see this, note that if

E = A×B

then

Ex =
{
B if x ∈ A
∅ if x 6∈ A.

Thus, E ⊂ Ω. The collection Ω also has the following properties:

(i) X × Y ∈ Ω.

(ii) If E ∈ Ω then Ec ∈ Ω.

This follows from the fact that (Ec)x = (Ex)c, and that A is a σ–algebras.

(iii) If Ei ∈ Ω then E =
∞⋃
i=1

Ei ∈ Ω.

For (iii), observe that Ex =
⋃∞
i=1(Ei)x where (Ei)x ∈ B. Once again, the fact that

A is a σ algebras shows that E ∈ Ω. (i)–(iii) show that Ω is a σ–algebra and the

theorem follows. �

We next show that the projections of measurable functions are measurable.

Let f :X × Y → R. For fix x ∈ X, define fx:Y → R by fx(y) = f(x, y) with a

similar definition for fy.

In the case when we have several σ–algebras it will be important to clearly

distinguish measurability relative to each one of these sigma algebras. We shall
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use the notation f ∈ σ(F) to mean that the function f is measurable relative to

the σ–algebra F .

Theorem 1.2. Suppose f ∈ σ(A× B). Then

(i) For each x ∈ X, fx ∈ σ(B)

(ii) For each y ∈ X, fy ∈ σ(A)

Proof. Let V be an open set in R. We need to show that f−1
x (V ) ∈ B. Put

Q = f−1(V ) = {(x, y): f(x, y) ∈ V }.

Since f ∈ σ(A× B), Q ∈ F × G. However,

Qx = f−1
x (V ) = {y: fx(y) ∈ V },

and it follows by Theorem 1.1 that Qx ∈ B and hence fx ∈ σ(B). The same

argument proves (ii). �

Definition 1.2. A monotone class M is a collection of sets which is closed under

increasing unions and decreasing intersections. That is:

(i) If A1 ⊂ A2 ⊂ . . . and Ai ∈M, then ∪Ai ∈M

(ii) If B1 ⊃ B2 ⊃ . . . and Bi ∈M, then ∩Bi ∈M.

Lemma 1.1 (Monotone Class Theorem). Let F0 be an algebra of subsets of X and

let M be a monotone class containing F0. If F denotes the σ–algebra generated

by F0 then F ⊂M.

Proof. Let M0 be the smallest monotone class containing F0. That is, M0 is the

intersection of all the monotone classes which contain F0. It is enough to show that

F ⊂M0. By Exercise 1.1, we only need to prove that M0 is an algebra. First we
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prove that M0 is closed under complementation. For this let Ω = {E : Ec ∈M0}.

It follows from the fact that M0 is a monotone class that Ω is also a monotone

class and since F0 is an algebra, if E ∈ F0 then E ∈ Ω. Thus, M0 ⊂ Ω and this

proves it.

Next, let Ω1 = {E : E∪F ∈M0 for all F ∈ F0}. Again the fact that M0 is a

monotone class implies that Ω1 is also a monotone class and since clearly F0 ⊂ Ω1,

we have M0 ⊂ Ω1. Define Ω2 = {F : F ∪E ∈M0 for all E ∈M0}. Again Ω2 is a

monotone class. Let F ∈ F0. Since M0 ∈ Ω1, if E ∈M0, then E ∪F ∈M0. Thus

F0 ⊂ Ω2 and hence M0 ⊂ Ω2. Thus, if E,F ∈M0 then E ∪ F ∈M0. This shows

that M0 is an algebra and completes the proof. �

Exercise 1.2. Prove that an algebra F is a σ–algebra if and only if it is a mono-

tone class.

Exercise 1.3. Let F0 be an algebra and suppose the two measures µ1 and µ2 agree

on F0. Prove that they agree on the σ–algebra F generated by F0.

§2 Fubini’s Theorem.

We begin this section with a lemma that will allow us to define the product

of two measures.

Lemma 2.1. Let (X,A, µ) and (Y,B, ν) be two σ–finite measure spaces. Suppose

Q ∈ A× B. If

ϕ(x) = ν(Qx) and ψ(y) = µ(Qy),

then

ϕ ∈ σ(A) and ψ ∈ σ(B)

and ∫
X

ϕ(x)dµ(x) =
∫
Y

ψ(y)dν(y). (2.1)
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Remark 2.1. With the notation of §1 we can write

ν(Qx) =
∫
Y

χQ(x, y)dν(y) (2.2)

and

µ(Qy) =
∫
X

χQ(x, y)dµ(x). (2.3)

Thus (2.1) is equivalent to∫
X

∫
Y

χQ(x, y)dν(y)dµ(x) =
∫
Y

∫
X

χQ(x, y)dµ(x)dν(y).

Remark 2.2. Lemma 2.1 allows us to define a new measure µ× ν on A× B by

(µ× ν)(Q) =
∫
X

ν(Qx)dµ(x) =
∫
Y

µ(Qy)dν(y). (2.4)

To see that this is indeed a measure let {Qj} be a disjoint sequence of sets in

A×B. Recalling that (∪Qj)x = ∪(Qj)x and using the fact that ν is a measure we

have

(µ× ν)

 ∞⋃
j=1

Qj

 =
∫
X

ν

 ∞⋃
j=1

Qj


x

 dµ(x)

=
∫
X

ν

 ∞⋃
j=1

Qjx

 dµ(x)

=
∫
X

∞∑
j=1

ν(Qjx)dµ(x)

=
∞∑
j=1

∫
X

ν(Qjx)dµ(x)

=
∞∑
j=1

(µ× ν)(Qj),

where the second to the last equality follows from the Monotone Convergence

Theorem.
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Proof of Lemma 2.1. We assume µ(X) < ∞ and ν(Y ) < ∞. Let M be the

collection of all Q ∈ A×B for which the conclusion of the Lemma is true. We will

prove that M is a monotone class which contains the elementary sets; E ⊂M. By

Exercise 1.1 and the Monotone class Theorem, this will show that M = F × G.

This will be done in several stages. First we prove that rectangles are in M. That

is,

(i) Let Q = A×B, A ∈ A, B ∈ B. Then Q ∈M.

To prove (i) observe that

Qx =
{
B if x ∈ A
∅ if x 6∈ A.

Thus

ϕ(x) =
{
ν(B) if x ∈ A
0 if x 6∈ A.

= χA(x)ν(B)

and clearly ϕ ∈ σ(A). Similarly,

ψ(y) = 1B(y)µ(A) ∈ B.

Integrating we obtain that

∫
X

ϕ(x)dµ(x) = µ(A)ν(B)

∫
Y

ϕ(y)dν(y) = µ(A)ν(B),

proving (i).

(ii) Let Q1 ⊂ Q2 ⊂ . . . , Qj ∈M. Then Q =
∞⋃
j=1

Qj ∈M.

To prove this, let

ϕn(x) = ν((Qn)x) = ν

 n⋃
j=1

Qj


x
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and

ψn(y) = µ(Qyn) = µ

 n⋃
j=1

Qj

y .

Then

ϕn(x) ↑ ϕ(x) = ν(Qx)

and

ψn(x) ↑ ψ(x) = µ(Qx).

Since ϕn ∈ σ(A) and ψn ∈ σ(B), we have ϕ ∈ σ(A) and ψ ∈ σ(B). Also by

assumption ∫
X

ϕn(x)dµ(x) =
∫
Y

ψn(y)dν(y),

for all n. By Monotone Convergence Theorem,∫
X

ϕ(x)dµ(x) =
∫
Y

ϕ(y)dν(y)

and we have proved (ii).

(iii) Let Q1 ⊃ Q2 ⊃ . . . , Qj ∈M. Then Q =
∞⋂
j=1

Qj ∈M.

The proof of this is the same as (ii) except this time we use the Dominated Conver-

gence Theorem. That is, this time the sequences ϕn(x) = ν((Qn)x), ψn(y) = µ(Qyn)

are both decreasing to ϕ(x) = ν(Qx) and ψ(y) = µ(Qy), respectively, and since

since both measures are finite, both sequences of functions are uniformly bounded.

(iv) Let {Qi} ∈ M with Qi ∩Qj = ∅. Then
∞⋃
j=1

Qi ∈M.

For the proof of this, let Q̃n =
n⋃
i=1

Qi. Then Q̃n ∈ M, since the sets are disjoint.

However, the Q̃′ns are increasing and it follows from (ii) that their union is in M,

proving (iv).

It follows from (i)–(iv) that M is a monotone class containing the elementary

sets E . By the Monotone Class Theorem and Exercise 1.1, A×B = σ(E) = M. This

proves the Lemma for finite measure and the following exercise does the rest. �
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Exercise 2.1. Extend the proof of Lemma 2.1 to the case of σ–finite measures.

Theorem 2.1 (Fubini’s Theorem). Let (X,A, µ) and (Y,B, ν) be σ–finite measure

spaces. Let f ∈ σ(A× B).

(a) (Tonelli) If f is nonnegative and if

ϕ(x) =
∫
X

fx(y)dν(y), ψ(y) =
∫
X

fy(x)dµ(x), (2.5)

then

ϕ ∈ σ(A), ψ ∈ σ(B)

and ∫
X

ϕ(x)dµ(x) =
∫
X×Y

f(x, y)d(µ× ν) =
∫
Y

ψ(y)dν(y).

(b) If f is complex valued such that

ϕ∗(x) =
∫
Y

|f(y)|xdν(y) =
∫
X

|f(x, y)|dν(y) <∞ (2.6)

and ∫
X

ϕ∗(x)dµ(x) <∞

then

f ∈ L1(µ× ν).

and (2.6) holds. A similarly statement holds for y in place ofx.

(c) If f ∈ L1(µ × ν), then fx ∈ L1(ν) for a.e. x ∈ X, fy ∈ L1(µ) for

a.e. y ∈ Y , the functions defined in (2.5) are measurable and (2.6)

holds.

Proof of (a). If f = χQ, Q ∈ A×B, the result follows from Lemma 2.1. By linearity

we also have the result for simple functions. Let 0 ≤ s1 ≤ . . . be nonnegative simple

functions such that sn(x, y) ↑ f(x, y) for every (x, y) ∈ X × Y . Let

ϕn(x) =
∫
Y

(sn)x(y)dν(y)
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and

ψn(y) =
∫
X

syn(x)dµ(x).

Then ∫
X

ϕn(x)dµ(x) =
∫
X×Y

sn(x, y)d(µ× λ)

=
∫
Y

ψn(y)dµ(y).

Since sn(x, y) ↑ f(x, y) for every (x, y) ∈ X × Y , ϕn(x) ↑ ϕ(x) and ψn(y) ↑ ψ(y).

The Monotone Convergence Theorem implies the result. Parts (b) and (c) follow

directly from (a) and we leave these as exercises. �

The assumption of σ–finiteness is needed as the following example shows.

Example 2.1. X = Y = [0, 1] with µ = the Lebesgue measure and ν = the

counting measure. Let f(x, y) = 1 if x = y, f(x, y) = 0 if x 6= y. That is, the

function f is the characteristic function of the diagonal of the square. Then∫
X

f(x, y)dµ(x) = 0, and
∫
Y

f(x, y)dν(y) = 1.

Remark 2.1. Before we can integrate the function f in this example, however, we

need to verify that it (and hence its projections) is (are) measurable. This can be

seen as follows: Set

Ij =
[
j − 1
n

,
j

n

]
and

Qn = (I1 × I1) ∪ (I2 × I2) ∪ . . . ∪ (In × In).

Then Qn is measurable and so is Q = ∩Qn, and hence also f .

Example 2.2. Consider the function

f(x, y) =
x2 − y2

(x2 + y2)2
on (0, 1)× (0, 1).
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with the µ = ν = Lebesgue measure. Then∫ 1

0

∫ 1

0

f(x, y)dydx = π/2

but ∫ 1

0

∫ 1

0

f(x, y)dxdy = −π/2.

The problem here is that f /∈ L1{(0, 1)× (0, 1)} since∫ 1

0

|f(x, y)|dy ≥ 1/2x.

Let mk = Lebesgue measure in Rk and recall that mk is complete. That is,

if mk(E) = 0 then E is Lebesgue measurable. However, m1 ×m1 is not complete

since {x}×B, for any set B ⊂ R, has m1×m1– measure zero. Thus m2 6= m1×m1.

What is needed here is the notion of the completion of a measure. We leave the

proof of the first two Theorems as exercises.

Theorem 2.2. If (X,F , µ) is a measure space we let

F∗ = {E ⊂ X:∃ A and B ∈ F , A ⊂ E ⊂ B and µ(B\A) = 0}.

Then F∗ is a σ–algebra and the function µ∗ defined on F∗ by

µ∗(E) = µ(A)

is a measure. The measure space (X,m∗, µ∗) is complete. This new space is called

the completion of (X,F , µ).

Theorem 2.3. Let mn be the Lebesgue measure on Rn, n = r + s. Then mn =

(mr ×mj)∗, the completion of the product Lebesgue measures.

The next Theorem says that as far as Fubini’s theorem is concerned, we need

not worry about incomplete measure spaces.
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Theorem 2.4. Let (X,A, µ), (Y,B, ν) be two complete σ–finite measure spaces.

Theorems 2.1 remains valid if µ×ν is replaced by (µ×ν)∗ except that the functions

ϕ and ψ are defined only almost everywhere relative to the measures µ and ν,

respectively.

Proof. The proof of this theorem follows from the following two facts.

(i) Let (X,F , µ) be a measure space. Suppose f ∈ σ(F∗). Then there is a

g ∈ σ(F) such that f = g a.e. with respect to µ.

(ii) Let (X,A, µ) and (Y,B, ν) be two complete and σ–finite measure spaces.

Suppose f ∈ σ((A × B)∗) is such that f = 0 almost everywhere with

respect to µ×ν. Then for almost every x ∈ X with respect to µ, fx = 0

a.e. with respect to ν. In particular, fx ∈ σ(B) for almost every x ∈ X.

A similar statement holds with y replacing x.

Let us assume (i) and (ii) for the moment. Then if f ∈ σ((A × B)∗) is

nonnegative there is a g ∈ σ(A × B) such that f = g a.e. with respect to µ × ν.

Now, apply Theorem 2.1 to g and the rest follows from (ii).

It remains to prove (i) and (ii). For (i), suppose that f = χE where E ∈ A∗.

By definition A ⊂ E ⊂ B with µ(A\B) = 0 and A and B ∈ A. If we set g = χA

we have f = g a.e. with respect to µ and we have proved (i) for characteristic

function. We now extend this to simple functions and to nonnegative functions in

the usual way; details left to the reader. For (ii) let Ω = {(x, y) : f(x, y) 6= 0}.

Then Ω ∈ (A×B)∗ and (µ× ν)(Ω) = 0. By definition there is an Ω̃ ∈ A×B such

that Ω ⊂ Ω̃ and µ× ν(Ω̃) = 0. By Theorem 2.1,∫
X

ν(Ω̃x)dµ(x) = 0

and so ν(Ω̃x) = 0 for almost every x with respect to µ. Since Ωx ⊂ Ω̃x and the

space (Y,B, ν) is complete, we see that Ωx ∈ B for almost every x ∈ X with respect
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to the measure µ. Thus for almost every x ∈ X the projection function fx ∈ B

and fx(y) = 0 almost everywhere with respect to µ. This completes the proof of

(ii) and hence the theorem. �

Exercise 2.3. Let f be a nonnegative measurable function on (X,F , µ). Prove

that for any 0 < p <∞,∫
X

f(x)pdµ(x) = p

∫ ∞

0

λp−1µ{x ∈ X : f(x) > λ}dλ.

Exercise 2.4. Let (X,F , µ) be a measure space. Suppose f and g are two nonneg-

ative functions satisfying the following inequality: There exists a constant C such

that for all ε > 0 and λ > 0,

µ{x ∈ X : f(x) > 2λ, g(x) ≤ ελ} ≤ Cε2µ{x ∈ X : f(x) > λ}.

Prove that ∫
X

f(x)pdµ ≤ Cp

∫
X

g(x)pdµ

for any 0 < p < ∞ for which both integrals are finite where Cp is a constant

depending on C and p.

Exercise 2.5. For any α ∈ R define

sign(α) =


1, α > 0
0, α = 0

− 1, α < 0

Prove that

0 ≤ sign(α)
∫ y

0

sin(αx)
x

dx ≤
∫ π

0

sin(x)
x

dx (2.7)

for all y > 0 and that ∫ ∞

0

sin(αx)
x

dx =
π

2
sign(α) (2.8)

and ∫ ∞

0

1− cos(αx)
x2

dx =
π

2
|α|. (2.9)
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Exercise 2.6. Prove that

e−α =
2
π

∫ ∞

0

cosαs
1 + s2

ds (2.10)

for all α > 0. Use (2.10), the fact that

1
1 + s2

=
∫ ∞

0

e−(1+s2)tdt,

and Fubini’s theorem, to prove that

e−α =
1√
π

∫ ∞

0

e−t√
t
e−α

2/4tdt. (2.11)

Exercise 2.7. Let Sn−1 = {x ∈ Rn : |x| = 1} and for any Borel set E ∈ Sn−1

set Ẽ = {rθ : 0 < r < 1, θ ∈ A}. Define the measure σ on Sn−1 by σ(A) = n|Ẽ|.

Notice that with this definition the surface area ωn−1 of the sphere in Rn satisfies

ωn−1 = nγn = 2π
n
2 /Γ(n2 ) where γn is the volume of the unit ball in Rn. Prove

(integration in polar coordinates) that for all nonnegative Borel functions f on Rn,

∫
Rn

f(x)dx =
∫ ∞

0

rn−1

(∫
Sn−1

f(rθ)dσ(θ)
)
dr.

In particular, if f is a radial function, that is, f(x) = f(|x|), then

∫
Rn

f(x)dx =
2π

n
2

Γ(n2 )

∫ ∞

0

rn−1f(r)dr = nγn

∫ ∞

0

rn−1f(r)dr.

Exercise 2.8. Prove that for any x ∈ Rn and any 0 < p <∞

∫
Sn−1

|ξ · x|pdσ(ξ) = |x|p
∫
Sn−1

|ξ1|pdσ(ξ)

where ξ · x = ξ1x1 + · · ·+ ξnxn is the inner product in Rn.
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Exercise 2.9. Let e1 = (1, 0, . . . , 0) and for any ξ ∈ Sn−1 define θ, 0 ≤ θ ≤ π such

that e1 · ξ = cos θ. Prove, by first integrating over Lθ = {ξ ∈ Sn−1 : e1 · ξ = cos θ},

that for any 1 ≤ p <∞,∫
Sn−1

|ξ1|pdσ(ξ) = ωn−1

∫ π

0

| cos θ|p(sin θ)n−2dθ. (2.12)

Use (2.12) and the fact that for any r > 0 and s > 0,

2
∫ π

2

0

(cos θ)2r−1(sin θ)2s−1dθ =
Γ(s)Γ(r)
Γ(r + s)

([Ru1, p. 194]) to prove that for any 1 ≤ p <∞

∫
Sn−1

|ξ1|pdσ(ξ) =
2π

n−1
2 Γ(p+1

2 )
Γ(n+p

2 )
(2.13)
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IV

RANDOM VARABLES

§1 Some Basics.

From this point on, (Ω,F , µ) will denote a probability space. X : Ω → R is a

random variable if X is measurable relative to F . We will use the notation

E(X) =
∫

Ω

XdP.

E(X) is called the expected value of X, or expectation of X. We recall from Prob-

lem – that if X is a random variable, then µ(A) = µX(A) = P{X ∈ A}, A ∈ B(R),

is a probability measure on (R,B(R)). This measure is called the distribution mea-

sure of the random variable X. Two random variables X, Y are equally distributed

if µX = µX . This is often written as X d= Y or X ∼ Y .

If we take the set A = (−∞, x], for any x ∈ R, the n

µX(−∞, x] = P{X ≤ x} = FX(x)

defines a distribution function, as we saw in Chapter I. We list some additional

properties of this distribution function given the fact that µX(R) = 1 and since it

arises from the random variable X.

(i) FX(b) = FX(a) = µ(a, b].

(ii) lim
x→∞

FX(x) = 1, lim
x→−∞

FX(x) = 0.

(iii) With FX(x−) = lim
y↑x

FX(y), we see that FX(x−) = P (X < x).

(iv) P{X = x} = µX{x} = FX(x)− FX(x−).
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It follows from (iv) that F is continuous at x ∈ R if and only if x is not an

atom of the measure µ. That is, if and only if µX{x} = 0. As we saw in Chapter

I, distribution functions are in a one-to-one correspondence with the probability

measures in (R,B). Also, as we have just seen, every random variable gives rise to

a distribution function. The following theorem completes this circle.

Theorem 1.1. Suppose F is a distribution function. Then there is a probability

space (Ω,F , P ) and a random variable X defined on this space such that F = FX .

Proof. We take (Ω,F , µ) with Ω = (0, 1), F = Borel sets and P the Lebesgue

measure. For each ω ∈ Ω, define

X(ω) = sup{y : F (y) < ω}.

We claim this is the desired random variable. Suppose we can show that for each

x ∈ R,

{ω ∈ Ω : X(ω) ≤ x} = {ω ∈ Ω : ω ≤ F (x)}. (1.1)

Clearly then X is measurable and also P{X(ω) ≤ x} = F (x), proving that F =

FX . To prove (1.1) let ω0 ∈ {ω ∈ Ω : ω ≤ F (x)}. That is, ω0 ≤ F (x). Then

x /∈ {y : F (y) < ω0} and therefore X(ω0) ≤ x. Thus {ω ∈ Ω : ω ≤ F (x)} ⊂ {ω ∈

Ω : X(ω) ≤ x}.

On the other hand, suppose ω0 > F (x). Since F is right continuous, there

exists ε > 0 such that F (x + ε) < ω0. Hence X(ω) ≥ x + ε > x. This shows that

ω0 /∈ {ω ∈ Ω : X{ω} ≤ x} and concludes the proof. �

Theorem 1.2. Suppose X is a random variable and let G : R → R be Borel

measurable. Suppose in addition that G is nonnegative or that E|G(X)| < ∞.

Then ∫
Ω

G(X(ω))d(ω) = E(G(X)) =
∫

R
G(y)dµX(y). (1.2)
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Proof. Let B ⊂ B(R). Then

E(1B(X(ω)) = P∗{X ∈ B}

= µX(B) =
∫
B

dµX

=
∫

R
1B(y)dµX(y).

Thus the result holds for indicator functions. By linearity, it holds for simple

functions. Now , suppose G is nonnegative. Let ϕn be a sequence of nonnegative

simple functions converging pointwise up to G. By the Monotone Convergence

Theorem,

E(G(X(ω)) =
∫

R
G(x)dµX(x).

If E|G(X)| <∞ write

G(X(ω)) = G+(X(ω))−G−(X(ω)).

Apply the result for nonnegative G to G+ and G− and subtract the two using the

fact that E(G(X)) <∞. �

More generally let X1, X2, . . . , Xn be n-random variables and define their

join distribution by

µn(A) = P{(X1, X2, . . . , Xn) ∈ A}, A ∈ B(Rn).

µn is then a Borel probability measure on (Rn,B). As before, if G : Rn → R is

Borel measurable nonnegative or E(G(X1, X2, . . . , Xn)) <∞, then

E(G(X1(ω), X2(ω), . . . , Xn(ω))) =
∫

Rn

G(x1, x2, . . . , xn)dµn(x1, . . . , xn).

The quantity EXp, for 1 ≤ p <∞ is called the p–th moment of the random

variable X. The case and the variance is defined by var(X) = E|X −m|2 Note

that by expanding this quantity we can write

var(X) = EX2 − 2(EX)2 + (EX)2

= EX2 − (EX)2
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If we take the function G(x) = xp then we can write the p–th moments in terms

of the distribution as

EXp =
∫

R
xpdµX

and with G(x) = (x = m)2 we can write the variance as

var(X) =
∫

R
(x−m)2dµ

=
∫

R
x2dµX −m2.

Now, recall that if f is a nonnegative measurable function on (Ω,F , P ) then

µ(A) =
∫
A

fdP

defines a new measure on (Ω,F) and∫
Ω

g dµ =
∫

Ω

gfdP. (1.3)

In particular, suppose f is a nonnegative borel measurable function in R with∫
R
f(x)dx = 1

where here and for the rest of these notes we will simply write dx in place of dm

when m is the Lebesgue measure. Then

F (x) =
∫ x

−∞
f(t)dt

is a distribution function. Hence if µ(A) =
∫
A

f dt, A ∈ B(R) then µ is a probability

measure and since

µ(a, b] =
∫ b

a

f(t)dt = F (b)− F (a),
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for all interval (a, b] we see that µ ∼ F (by the construction in Chapter I). Let X

be a random variable with this distribution function. Then by (1.3) and Theorem

1.2,

E(g(X)) =
∫

R
g(x)dµ(x) =

∫
R
g(x)f(x)dx. (1.4)

Distributions arising from such f ′s are called absolutely continuous distributions.

We shall now give several classical examples of such distributions. The function f

is called the density of the random variable associated with the distribution.

Example 1.1. The Uniform distribution on (0, 1).

f(x) =
{

1 x ∈ (0, 1)
0 x /∈ (0, 1)

Then

F (x) =


0 x ≤ 0
x 0 ≤ x ≤ 1
1 x ≥ 1

.

If we take a random variable with this distribution we find that the variance

var(X) = 1
12 and that the mean m = 1

2 .

Example 1.2. The exponential distribution of parameter λ. Let λ > 0 and set

f(x) =
{
λe−λx, x ≥ 0
0 else

If X is a random variable with associated to this density, we write X ∼

exp(λ).

EXk = λ

∫ ∞

0

xke−λxdx =
k!
λk
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Example 1.3. The Cauchy distribution of parameter a. Set

f(x) =
1
π

a

a2 + x2

We leave it to the reader to verify that if the random variable X has this

distribution then E|X| = ∞.

Example 1.3. The normal distribution. Set

f(x) =
1√
2π

e−
x2
2 .

The corresponding random variable is the normal distribution. We write X ∼

N(0, 1) By symmetry,

E(X) =
1√
2π

∫
R
xe−

x2
2 dx = 0.

To compute the variance let us recall first that for any α > 0,

Γ(α) =
∫ ∞

0

tα−1e−tdt.

We note that∫
R
x2e−

x2
2 dx = 2

∫ ∞

0

x2e−
x2
2 dx = 2

√
2
∫ ∞

0

u
1
2 e−udx

= 2
√

2Γ(
3
2
) = 2

√
1Γ(

1
2

+ 1) =
k
√

2
k

Γ(
1
2
) =

√
2π

and hence var(X) = 1. If we take σ > 0 and µ ∈ R, and set

f(x) =
1√

(2πσ2)
e
−(x−µ)2

2σ2

we get the normal distribution with mean µ and variance σ and writeX ∼ N(µ, σ).

For this we have Ex = µ and var(X) = σ2.
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Example 1.4. The gamma distribution arises from

f(x) =
{ 1

Γ(α)λ
αxα−1e−λx x ≥ 0

0, x < 0.

We write X ∼ Γ(α, λ) when the random variable X has this density.

Random variables which take only discrete values are appropriately called

“discrete random variables.” Here are some examples.

Example 1.5. X is a Bernoulli random variable with parameter p, 0 < p < 1, if

X takes only two values one with probability p and the other with probability 1−p.

P (X = 1) = p and P (X = 0) = 1− p

For this random variable we have

EX = p · 1 + (1− p) · 0 = p,

EX2 = 12 · p = p

and

var(X) = p− p2 = p(1− p).

Example 1.6. We say X has Poisson distribution of parameter λ if

P{X = k} = e−λ
λk

k!
k = 0, 1, 2, . . . .

For this random variable,

EX =
∞∑
k=0

k
e−λλk

k!
= λe−λ

∞∑
k=1

λk−1

(k − 1)!
= λ

and

Var(X) = EX2 − λ2 =
∞∑
k=0

k2e−λλk

k!
− λ2 = λ.
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Example 1.7. The geometric distribution of parameter p. For 0 < p < 1 define

P{X = k} = p(1− p)k−1, for k = 1, 2, . . .

The random variable represents the number of independent trial needed to

observe an event with probability p. By the geometric series,
∞∑
k=1

(1− p)k =
1
p

and we leave it to the reader to verify that

EN =
1
p

and

var(N) =
1− p

p2
.

§2 Independence.

Definition 2.1.

(i) The collection F1,F2, . . . ,Fn of σ–algebras is said to be independent if when-

ever A1 ∈ Fj , A2 ∈ F2, . . . , An ∈ Fn, then

P
(
∩nj=1Aj

)
=

n∏
j=1

P (Aj).

(ii) A collection {Xj : 1 ≤ j ≤ n} of random variables is said to be (totally)

independent if for any {Bj : 1 ≤ j ≤ n} of Borel sets in R,

P{X1 ∈ B1, X1 ∈ B2, . . . Xn ∈ Bn} = P{
n
∩
j=1

(Xj ∈ Bj)} =
n∏
j=1

P{Xj ∈ Bj}.

(iii) The collection of measurable subsets A1, A2, . . . , An in a σ–algebra F is in-

dependent if for any subset I ⊂ {1, 2, . . . , n} we have

P

⋂
j∈I

(Aj)

 =
∏
j∈I

P{Aj}
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Whenever we have a sequence {X1, . . . , Xn} of independent random variables

with the same distribution, we say that the random variables are identically dis-

tributed and write this as i.i.d. We note that (iii) is equivalent to asking that the

random variables 1A1 , 1A2 , . . . , 1A3 are independent. Indeed, for one direction we

take Bj = {1} for j ∈ I and Bj = R for j /∈ I. For the other direction the reader

is asked to do

Problem 2.1. Let A1, A2, . . . , An be independent. Proof that Ac1, A
c
2, . . . A

c
n and

1A1 , 1A2 , . . . , 1An
are independent.

Problem 2.2. Let X and Y be two random variable and set F1 = σ(X) and

F2 = σ(Y ). (Recall that the sigma algebra generated by the random X, denoted

σ(X), is the sigma algebra generated by the sets X−1{B} where B ranges over

all Borel sets in R.) Prove that X,Y are independent if and only if F1,F2 are

independent.

Suppose {X1, X2, . . . , Xn} are independent and set

µn(B) = P{X1, . . . , Xn) ∈ B} B ∈ B(Rn),

as in §1. Then with B = B1 × · · · ×Bn we see that

µn(B1 × · · · ×Bn) =
n∏
i=1

µj(Bj)

and hence

µn = µ1 × · · · × µn

where the right hand side is the product measure constructed from µ1, . . . , µn as

in Chapter III. As we did earlier. Thus for this probability measure on (Rn,B),

the corresponding n-dimensional distribution is

F (x) =
n∏
j=1

FXj
(xj),

where x = (x1, x2, . . . , xn)).
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Definition 2.2. SupposeA ⊂ F .A is a π-system if it is closed under intersections:

A, B ∈ A ⇒ A ∩B ∈ A. The subcollection L ⊂ F is a λ-system if (i) Ω ∈ L, (ii)

A,B ∈ L and A ⊂ B ⇒ B\A ∈ L and (iii) An ∈ L and An ↑ A⇒ A ∈ L.

Theorem 2.1. Suppose A is a π-system and L is a λ-system and A ⊂ L. Then

σ(A) ⊂ L.

Theorem 2.2. Let µ and ν be two probability measures on (Ω,F). Suppose they

agree on the π-system A and that there is a sequence of sets An ∈ A with An ↑ Ω.

Then ν = µ on σ(A)

Theorem 2.3. Suppose A1,A2, . . . ,An are independent and π-systems. Then

σ(A2), σ(A2), . . . , σ(An) are independent.

Corollary 2.1. The random variables X1, X2, . . . , Xn are independent if and only

if for all x = {x1, . . . , xn}, xi ∈ (−∞,∞].

F (x) =
n∏
j=1

FXj
(xi), (2.1)

where F is the distribution function of the measure µn.

Proof. We have already seen that if the random variables are independent then

the distribution function F satisfies 2.1. For the other direction let x ∈ Rn and set

Ai be the sets of the form {Xi ≤ xi}. Then

{Xi ≤ xi} ∩ {Xi ≤ yi} = {Xi ≤ xi ∧ yi} ∈ Ai.

Therefore the collection Ai is a π-system. σ(Ai) = σ(X). �

Corollary 2.2. µn = µ1 × · · · × µn.
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Corollary 2.3. Let X1, . . . , Xn with Xi ≥ 0 or E|Xi| <∞ be independent. Then

E

 n∏
j=1

Xi

 =
n∏
i=1

E(Xi).

Proof. Applying Fubini’s Theorem with f(x1, . . . xn) = x1 · · ·xn we have∫
Rn

(x1 · · ·xn)d(µ1 × · · · × µn) =
∫

R
x1dµ1(a)· · ·

∫
Rn

xndµn(a).

�

It follows as in the proof of Corollary 1.3 that if X1, . . . , Xn are independent

and g ≥ 0 or if E|
∏n
j=1 g(Xi)| <∞, then

E

(
n∏
i=1

g(Xi)

)
=

n∏
i=1

E(g(Xi)).

We warn the reader not to make any inferences in the opposite direction. It may

happen that E(XY ) = (E(X)E(Y ) and yet X and Y may not be independent.

Take the two random variables X and Y with joint distributions given by

X\Y 1 0 −1
1 0 a 0
0 b c b
−1 0 a 0

with 2a + 2b + c = 1, a, b, c > 0. Then XY = 0 and E(X)E(Y ) = 0. Also by

symmetry, EX = EY = 0. However, the random variables are not independent.

Why? Well, observe that P (X = 1, Y = 1) = 0 and that P (X = 1) = P (X =

1, Y = 1) = ab 6= 0.

Definition 2.2. If F and G are two distribution functions we define their convo-

lution by

F ∗G(z) =
∫

R
F (z − y)dµ(y)
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where µ is the probability measure associated with G. The right hand side is often

also written as ∫
R
F (z − y)dG(y).

In this notes we will use both notations.

Theorem 2.4. If X and Y are independent with X ∼ FX , Y ∼ GY , then X+Y ∼

F ∗G.

Proof. Let Let us fix z ∈ R. Define

h(x, y) = 1(x+y≤z)(x, y)

Then

FX+Y (z) = P{X + Y ≤ z}

= E(h(X,Y ))

=
∫

R2
h(x, y)d(µX × µY )(x, y)

=
∫

R

(∫
R
h(x, y)dµX(x)

)
dµY (y)

=
∫

R

(∫
R

1−∞,z−y)(x) dµX(x)
)
dµY (y)

=
∫

R
µX(−∞, z − y)dµY (y) =

∫
R
F (z − y)dG(y).

�

Corollary 2.4. Suppose X has a density f and Y ∼ G, and X and Y are inde-

pendent. Then X + Y has density

h(x) =
∫

R
f(x− y)dG(y).

If both X and Y have densities with g denoting the density of Y . Then

h(x) =
∫
f(x− y)g(y)dy.
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Proof.

FX+Y (z) =
∫

R
F (z − y)dG(y)

=
∫

R

∫ z−y

−∞
f(x)dxdG(y)

=
∫

R

∫ z

−∞
f(u− y)dudG(y)

=
∫ z

−∞

∫
R
f(u− y)dG(y)du

=
∫ z

−∞

{∫
R
f(u− y)g(y)dy

}
du,

which completes the proof. �

Problem 2.1. Let X ∼ Γ(α, λ) and Y ∼ Γ(β, λ). Prove that X+Y ∼ Γ(α+β, λ).

§3 Construction of independent random variables.

In the previous section we have given various properties of independent ran-

dom variables. However, we have not yet discussed their existence. If we are given

a finite sequence F1, . . . Fn of distribution functions, it is easy to construct inde-

pendent random variables with this distributions. To do this, let Ω = Rn and

F = B(Rn). Let P be the measure on this space such that

P ((a1, b1]× · · · × (an, bn]) =
n∏
j=1

(Fj(bj)− Fj(aj)).

Define the random variables Xj : Ω → R by Xj(ω) = ωj , where ω = (ω1, . . . , ωn).

Then for any xj ∈ R,

P (Xj ≤ xj) = P (R× · · · × (−∞, xj ]× R× · · · × R) = Fj(xj).

Thus Xj ∼ Fj . Clearly, these random variables are independent by Corollary 2.1.

It is, however, extremely important to know that we can do this for infinitely many

distributions.
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Theorem 3.1. Let {Fj} be a finite or infinite sequence of distribution functions.

Then there exists a probability space (Ω,F , P ) and a sequence of independent ran-

dom variables Xj on this space with Xj ∼ Fj.

Let N = {1, 2, . . . } and let RN be the space of infinite sequences of real

numbers. That is, RN = {ω = (ω1, ω2, . . . ) : ωi ∈ R}. Let B(RN) be the σ-

algebra on RN generated by the finite dimensional sets. That is, sets of the form

{ω ∈ RN : ωi ∈ Bi, 1 ≤ i ≤ n}, Bi ∈ B(R).

Theorem 3.2 (Kolmogovov’s Extension Theorem). Suppose we are given

probability measures µn on (Rn,B(Rn)) which are consistent. That is,

µn+1(a1, b1]× · · · × (an, bn]× R) = µn(a1, b1]× · · · × (an, bn].

Then there exists a probability measure P on (RN,B(RN )) such that

P{ω : ωi ∈ (ai, bi], 1 ≤ i ≤ n} = µn((a1, b1]× · · · × (an, bn]).

The Means above µn are consistent. Now, define

Xj : RN → R

by

Xj(ω) = ωj .

Then {Xj} are independent under the extension measure and Xj ∼ Fj .

A different way of constructing independent random variables is the following,

at least Bernoulli random variables, is as follows. Consider Ω = (0, 1] and recall

that for x ∈ (0, 1) we can write

x =
∞∑
n=1

εn
2n

where εn is either 0 or 1. (This representation in actually unique except for x the

dyadic nationals.
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Problem 3.1. Define Xn(x) = εn. Prove that the sequence {Xn} of random

variables is independent.

Problem 3.2. Let {An} be a sequence of independent sets. Prove that

P{
∞⋂
j=1

Aj} =
∞∏
j=1

P{Aj}

and

P{
∞⋃
j=1

Aj} = 1−
∞∏
j=1

(1− P{Aj})

Problem 3.3. Let {X1, . . . , Xn} be independent random variables with Xj ∼ Fj.

Fin the distribution of the random variables max1≤j≤nXj and min1≤j≤nXj.

Problem 3.4. Let {Xn} be independent random variables and {fn} be Borel mea-

surable. Prove that the sequence of random variables {fn(Xn)} is independent.

Problem 3.5. Suppose X and Y are independent random variables and that X+

Y ∈ Lp(P ) for some 0 < p <∞. Prove that both X and Y must also be in Lp(P ).

Problem 3.6. The covariance of two random variables X and Y is defined by

Cov(X,Y ) = E[(X − EX)(Y − EY )]

= E(XY )− E(X)E(Y ).

Prove that

var(X1 +X2 + · · ·+Xn) =
n∑
j=1

var(Xj) +
n∑

i,j=1,i 6=j

Cov(Xi, Xj)

and conclude that if the random variables are independent then

var(X1 +X2 + · · ·+Xn) =
n∑
j=1

var(Xj)
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V

THE CLASSICAL LIMIT THEOREMS

§1 Bernoulli Trials.

Consider the sequence of independent random variables which arise from

tossing a fair coin.

Xi =
{

1 with probability p
0 with probability 1− p

If we use 1 to denote success (=heads) and 0 to denote failure (=tails) and Sn, for

the number of successes in n -trials, we can write

Sn =
n∑
j=1

Xj .

We can compute and find that the probability of exactly j successes in n

trials is

P{Sn = j} =
(
n

j

)
P{any specific sequence of n trials with exactly j heads}

=
(
n

j

)
pj(1− p)n−j

=
(
n

j

)
pj(1− p)n−j

=
n!

j!(n− j)!
pj(1− p)n−j .

This is called Bernoulli’s formula. Let us take p = 1/2 which represents a fair

coin. Then Sn

n denotes the relative frequency of heads in n trials, or, the average

number of successes in n trials. We should expect, in the long run, for this to be

1/2. The precise statement of this is
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Theorem 1.1 (Bernoulli’s “Law of averages,” or ‘Weak low of large num-

bers”). As n–increases, the probability that the average number of successes de-

viates from 1
2 by more than any preassigned number tends to zero. That is,

P{|Sn
n
− 1

2
| > ε} → 0, as n→∞.

Let x ∈ [0, 1] and consider its dyadic representation. That is, write

x =
∞∑
n=1

εn
2n

with εn = 0 or 1. The number x is a normal number if each digit occurs the “right”

proportion of times, namely 1
2 .

Theorem 1.2 (Borel 1909). Except for a set of Lebesgue measure zero, all

numbers in [0, 1] are normal numbers. That is, Xn(x) = εn and Sn is the partial

sum of these random variables, we have Sn(x)
n → 1

2 a.s. as n→∞.

The rest of this chapter is devoted to proving various generalizations of these

results.

§2 L2 and Weak Laws.

First, to conform to the language of probability we shall say that a sequence of

random variables Xn converges almost surely, and write this as a.s., if it converges

a.e. as defined in the Chapter II. If the convergence is in measure we shall say that

Xn → X in probability. That is, Xn → X if for all ε > 0,

P{|Xn −X| > ε} → 0 as n→∞.

We recall that Xn → X in Lp then Xn → X in probability and that there is a

subsequence Xnk
→ X a.s. In addition, recall that by Problem 3.8 in Chapter II,

Xn → Y a.s. iff for any ε > 0,

lim
m→∞

P{|Yn − Y | ≤ ε for all n ≥ m} = 1 (2.1)
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or

lim
m→∞

P{|Xn −X| > ε for all n ≥ m} = 0. (2.2)

The proofs of these results are based on a convenient characterization of a.s. con-

vergence. Set

Am =
∞⋂
n=m

{|Xn −X| ≤ ε}

= {|Xn −X| ≤ ε for all n ≥ m}

so that

Acm = {|Xn −X| > ε for some n ≥ m}.

Therefore,

{|Xn −X| > ε i.o.} =
∞⋂
m=1

∞⋃
n=m

{|Xn −X| > ε}

=
∞⋂
m=1

Acm.

However, since Xn → X a.s. if and only if |Xn−X| < ε, eventually almost surely,

we see that Xn → X a.s. if and only if

P{|Xn −X| > ε i.o.} = lim
m→∞

P{Acm} = 0. (2.3)

Now, (2.1) and (2.2) follow easily from this. Suppose there is a measurable

set N with P (N) = 0 such that for all ω ∈ Ω0 = Ω\N, Xn(ω0) → X(ω0).

Set

Am(ε) =
∞⋂
n=m

{|Xn −X| ≤ ε} (2.3.)

Am(ε) ⊂ Am+1(ε). Now, for each ω0 ∈ Ω0 there exists an M(ω0, ε) such that for

all n ≥M(ω0, ε), |Xn −X| ≤ ε. Therefore, ω ∈ AM(ω0,ε). Thus

Ω0 ⊂
∞⋃
m=1

Am(ε)
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and therefore

1 = P (Ω0) = lim
m→∞

P{Am(ε)},

which proves that (2.1) holds. Conversely, suppose (2.1) holds for all ε > 0 and

the Am(ε) are as in (2.3) and A(ε) =
⋃∞
m=1Am(ε). Then

P{A(ε)} = P{
∞⋃
m=1

Am(ε)} = 1.

Let ω0 ∈ A(ε). Then for ω0 ∈ A(ε) there exists m = m(ω0, ε) such that |Xm−X| ≤

ε Let ε = {1/n}. Set

A =
∞⋂
n=1

A(
1
n

).

Then

P (A) = lim
n→∞

P (A(
1
n

)) = 1

and therefore if ω0 ∈ A we have ω0 ∈ A(1/n) for all n. Therefore |Xn(ω0) −

X(ω0)| < 1/n which is the same as Xn(ω0) → X(ω0)

Theorem 2.1 (L2–weak law). Let {Xj} be a sequence of uncorrelated random

variables. That is, suppose EXiXj = EXiEXj. Assume that EXi = µ and that

var (Xi) ≤ C for all i, where C is a constant. Let Sn =
n∑
i=1

Xi. Then Sn

n → µ as

n→∞ in L2(P ) and in probability.

Corollary 2.1. Suppose Xi are i.i.d with EXi = µ, var (Xi) <∞. Then
Sn
n
→ µ

in L2 and in probability.

Proof. We begin by recalling from Problem that ifXi are uncorrelated and E(X2
i ) <

∞ then var(X1 + . . .+Xn) = var(X1) + . . .+ var(Xn) and that

var(cX) = c2var(X) for any constant c. We need to verify that

E

∣∣∣∣Snn − µ

∣∣∣∣2 → 0.
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Observe that E
(
Sn
n

)
= µ and therefore,

E

∣∣∣∣Snn − µ

∣∣∣∣2 = var
(
Sn
n

)
=

1
n2

var (Sn)

=
1
n2

n∑
i=1

var (Xi)

≤ Cn

n2

and this last term goes to zero as n goes to infinity. This proves the L2. Since

convergence in Lp implies convergence in probability for any 0 < p < ∞, the

result follows. �

The assumption in Theorem Here is a standard application of the above

weak–law.

Theorem 2.2 (The Weierstrass approximation Theorem). Let f be a con-

tinuous function on [0, 1]. Then there exists a sequence pn of polynomials such that

pn → f uniformly on [0, 1].

Proof. Without loss of generality we may assume that f(0) = f(1) = 0 for if this

is not the case apply the result to g(x) = f(x)− f(0)− x(f(1)− f(0)). Put

pn(x) =
n∑
j=0

(
n

j

)
xj(1− x)n−jf(j/n)

recalling that (
n

j

)
=

n!
j!(n− j)!

.

The functions pn(x) are clearly polynomials. These are called the Bernstein poly-

nomials of degree n associated with f .
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Let X1, X2, . . . i.i.d according to the distribution: P (Xi = 1) = x, 0 < x < 1.

P (Xi = 0) = 1− x so that E(Xi) = x and var(Xi) = x(1− x). The if Sn denotes

their partial sums we have from the above calculation that

P{Sn = j} =
(
n

j

)
xj(1− x)n−j .

Thus

E(f(Sn/n)) =
n∑
j=0

(
n

j

)
xj(1− x)n−jf(j/n) = pn(x)

as n→∞. Also, Sn/n→ x in probability. By Chebyshev’s’s inequality,

P

{∣∣∣∣Snn − x

∣∣∣∣ > δ

}
≤ 1
δ2

var
(
Sn
n

)
=

1
δ2

1
n2

var(Sn)

=
x(1− x)
nδ2

≤ 1
4nδ2

for all x ∈ [0, 1] since x(1 − x) ≤ 1
4 . Set M = ‖f‖∞ and let ε > 0. There exists a

δ > 0 such that |f(x)− f(y)| < ε when |x− y| < δ. Thus

|pn(x)− f(x)| =
∣∣∣∣Ef(Snn

)
− f(x)

∣∣∣∣
=
∣∣∣∣E(f(Snn

)
− f(x)

)∣∣∣∣
≤ E

∣∣∣∣f(Snn
)
− f(x)

∣∣∣∣
=
∫
{|Sn

n −x|<δ}

∣∣∣∣f(Snn
)
− f(x)

∣∣∣∣dP
+
∫
{|Sn

n −x|≥δ

∣∣∣∣f(Snn
)
− f(x)

∣∣∣∣dP
< ε+ 2MP

{∣∣∣∣Snn − x

∣∣∣∣ ≥ δ

}
.

Now, the right hand side can be made smaller than 2ε by taking n large enough

and independent of x. This proves the result. �
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The assumption that the variances of the random variables are uniformly

bounded can be considerably weaken.

Theorem 2.3. Let Xi be i.i.d. and assume

λP{|Xi| > λ} → 0 (1.3)

as λ→∞. Let Sn =
∑n
j=1Xj and µn = E(X11(|X1|≤n)). Then

Sn
n
− µn → 0

in probability.

Remark 2.1. The condition (1.3) is necessary to have a sequence of numbers an

such that Sn

n − an → 0 in probability. For this, we refer the reader to Feller, Vol

II (1971).

Before proving the theorem we have a

Corollary 2.2. Let Xi be i.i.d. with E|X1| <∞. Let µ = EXi. Then Sn

n → µ in

probability.

Proof of Corollary. First, by the Monotone Convergence Theorem and Cheby-

shev’s’s inequality, λP{|Xi| > λ} = λP{|X1| > λ} → 0 as λ → ∞ and µn →

E(X) = µ. Hence,

P

{∣∣∣∣(Snn − µ

)∣∣∣∣ > ε

}
= P

{∣∣∣∣Snn − µ+ µn − µn

∣∣∣∣ > ε

}
≤ P

{∣∣∣∣Snn − µn

∣∣∣∣ > ε/2
}

+ P{µn − µ| > ε/2}

and these two terms go to zero as n→∞. �
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Lemma 2.1 ( triangular arrays). Let Xn,k, 1 ≤ k ≤ n, n = 1, 2, . . . be a

triangular array of random variables and assume that for each n, Xn,k, 1 ≤ k ≤ n,

are independent. Let bn > 0, bn →∞ as n→∞ and define the truncated random

variables by Xn,k = Xn,k1|Xn,k|≤bn). Suppose that

(i)
n∑
n=1

P{|Xn,k| > bn) → 0, as n→∞.

(ii)
1
b2n

n∑
k=1

EX
2

n,k → 0 as n→∞.

Put an =
n∑
k=1

EXn,k and set Sn = Xn,1 +Xn,2 + . . .+Xn,n. Then

Sn − an
bn

→ 0

in probability.

Proof. Let Sn = Xn,1 + . . .+Xn,n. Then

P

{
|Sn − an|

bn
> ε

}
= P

{∣∣∣∣Sn − an
bn

∣∣∣∣ > ε, Sn = Sn, Sn 6= Sn

}
≤ P{Sn 6= Sn}+ P

{
|Sn − an|

bn
> ε

}
.

However,

P{Sn 6= S̃n} ≤ P

{ n⋃
k=1

{Xn,k 6= Xn,k}
}

≤
n∑
k=1

P{Xn,k 6= Xn,k}

=
n∑
k=1

P{|Xn,k| > bn}

and this last term goes to zero by (i).
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Since an = ESn, we have

P

{
|Sn − an|

bn
> ε

}
≤ 1
ε2b2n

E|Sn − an|2

=
1

ε2b2n

n∑
k=1

var(Xn,k)

≤ 1
ε2b2n

n∑
k=1

EX
2

n,k

and this goes to zero by (ii).

Proof of Theorem 2.3. We apply the Lemma with Xn,k = Xk and bn = n. We first

need to check that this sequence satisfies (i) and (ii). For (i) we have

n∑
k=1

P{|Xn,k| > n} = nP{|X1| > n},

which goes to zero as n → ∞ by our assumption. For (ii) we see that that since

the random variables are i.i.d we have

1
n2

n∑
k=1

EX
2

n,1 =
1
n
EX

2

n,1.

Let us now recall that by Problem 2.3 in Chapter III, for any nonnegative

random variable Y and any 0 < p <∞,

EY p = p

∫ ∞

0

λp−1P{Y > λ}dλ

Thus,

E|X2

n,1| = 2
∫ ∞

0

λP{Xn,1| > λ}dλ = 2
∫ n

0

P{|Xn,1| > λ}dλ.

We claim that as n→∞,

1
n

∫ n

0

λP{|X1| > λ}dλ→ 0.

For this, let

g(λ) = λP{|X1| > λ}.
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Then 0 ≤ g(λ) ≤ λ and g(λ) → 0. Set M = sup
λ>0

|g(λ)| < ∞ and let ε > 0. Fix k0

so large that g(λ) < ε for all λ > k0. Then∫ n

0

λP{|X1| > λ}dx = M +
∫ n

k0

λP{|x1| > λ}dλ

< M + ε(n− k0).

Therefore
1
n

∫ n

0

λP{|x1| > λ} < M

n
+ ε

(
n− k0

n

)
.

The last quantity goes to ε as n→∞ and this proves the claim. �

§3 Borel–Cantelli Lemmas.

Before we stay our Borel–Cantelli lemmas for independent events, we recall

a few already proven facts. If An ⊂ Ω, then

{An, i.o.} = limAn =
∞⋂
m=1

∞⋃
n=m

An

and

{An, eventually} = limAn =
∞⋃
m=1

∞⋂
n=m

An

Notice that

lim1An = 1{limAn}

and

lim1An
(ω) = 1{limAn}

It follows from Fatou’s Lemma

P (limAn) ≤ limP{An}

and that

limP{An} ≤ P{limAn}.

Also recall Corollary 2.2 of Chapter II.
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First Borel–Cantelli Lemma. If
∞∑
n=1

p(An) <∞ then P{An, i.o.} = 0.

Question: Is it possible to have a converse ? That is, is it true that P{An, i.o.} = 0

implies that
∑∞
n=1 P{An} = ∞? The answer is no, at least not in general.

Example 3.1. Let Ω = (0, 1) with the Lebesgue measure on its Borel sets. Let

an = 1/n and set An = (0, 1/n). Clearly then
∑
P (An) = ∞. But, P{An i.o.} =

P{∅} = 0.

Theorem 3.1 (The second Borel–Cantelli Lemma). Let {An} be a sequence

of independent sets with the property that
∑
P (An) = ∞ Then P{An i.o.} = 1.

Proof. We use the elementary inequality (1 − x) ≤ e−x valid for 0 ≤ x ≤ 1. Let

Fix N . By independence,

P

{
N⋂

n=m

Acn

}
=

N∏
n=m

P{Acn}

=
N∏

n=m

{1− P{An}}

≤
N∏

n=m

e−P{An}

= exp
−{

NP
n=m

P{An}}

and this quantity converges to 0 as N →∞ Therefore,

P

{ ∞⋃
n=m

An

}
= 1

which implies that P{An i.o.} = 1 and completes the proof. �

§4 Applications of the Borel–Cantelli Lemmas.

In Chapter II, §3, we had several applications of the First Borel–Cantelli

Lemma. In the next section we will have several more applications of this and of
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the Second Borel–Cantelli. Before that, we give a simple application to a fairly

weak version of the strong law of large numbers.

Theorem 4.1. Let {Xi} be i.i.d. with EX1 = µ and EX4
1 = C∞. Then

Sn
n
→ µ

a.s.

Proof. By considering X ′
i = Xi − µ we may assume that µ = 0. Then

E(S4
n) = E(

n∑
i=1

Xi)4

= E
∑

1≤i,j,k,l≤n

XiXjXkXl

=
∑

1≤i,j,k,l≤n

E(XiXjXkXl)

Since the random variables have zero expectation and they are independent, the

only terms in this sum which are not zero are those where all the indices are equal

and those where to pair of indices are equal. That is, terms of the form EX4
j and

EX2
iX

2
j = (EX2

i )
2. There are n of the first type and 3n(n−1) of the second type.

Thus,

E(S4
n) = nE(X1) + 3n(n− 1)(EX2

1 )2

≤ Cn2.

By Chebyshev’s inequality with p = 4,

P{|Sn| > nε} ≤ Cn2

n4ε4
=

C

n2ε4

and therefore,
∞∑
n=1

P{|Sn
n
| > ε} <∞

and the First Borel–Cantelli gives

P

{∣∣∣∣Snn
∣∣∣∣ > ε i.o.} = 0
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which proves the result. �

The following is an applications of the Second Borel–Cantelli Lemma.

Theorem 4.2. If X1, X2, . . . , Xn are i.i.d. with E|X1| = ∞. Then P{|Xn| ≥

n i.o.} = 1 and P{lim Sn

n exists ∈ (−∞,∞)} = 0.

Thus E|X1| < ∞ is necessary for the strong law of large numbers. It is also

sufficient.

Proof. We first note that

∞∑
n=1

P{|X1| ≥ n} ≤ E|X1| ≤ 1 +
∞∑
n=1

P{|X1| > n}

which follows from the fact that

E|X1| =
∫ ∞

0

P{|X1| > X}dx

and

∞∑
n=0

∫ n+1

n

P{|X1| > x}dx ≤
∫ ∞

0

P{|X1| > X}dx

≤ 1 +
∞∑
n=1

P{|X1| > n}

Thus,
∞∑
n=1

P{|Xn| ≥ n} = ∞

and therefore by the Second Borel–Cantelli Lemma,

P{|Xn| > n i.o.} = 1.

Next, set

A =
{

lim
n→∞

Sn
n

exits ∈ (−∞,∞)
}
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Clearly for ω ∈ A,

lim
n→∞

∣∣∣∣Sn(ω)
n

− Sn+1

n+ 1
(ω)
∣∣∣∣ = 0

and

lim
n→∞

Sn(ω)
n(n+ 1)

= 0.

Hence there is an N such that for all n > N ,

lim
n→∞

∣∣∣∣ Sn(ω)
n(n+ 1)

∣∣∣∣ < 1
2
.

Thus for ω ∈ A ∩ {ω: |Xn| ≥ n i.o.},∣∣∣∣ Sn(ω)
n(n+ 1)

− Xn+1(ω)
n+ 1

∣∣∣∣ > 1
2
,

infinitely often. However, since

Sn
n
− Sn+1

n+ 1
=

Sn
n(n+ 1)

− Xn+1

n+ 1

and the left hand side goes to zero as observe above, we see that A ∩ {ω: |Xn| ≥

n i.o.} = ∅ and since P{|Xn| > 1 i.o.} = 1 we conclude that P{A} = 0, which

completes the proof. �

The following results is stronger than the Second–Borel Cantelli but it follows

from it.

Theorem 4.3. Suppose the sequence of events Aj are pairwise independent and
∞∑
j=1

P (Aj) = ∞. Then

lim
n→∞

( ∑n
j=1 1Aj∑n

j=1 P (Aj)

)
= 1. a.s.

In particular,

lim
n→∞

n∑
j=1

1Aj
(ω) = ∞ a.s
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which means that

P{An i.o.} = 1.

Proof. Let Xj = 1Aj and consider their partial sums, Sn =
n∑
j=1

Xj . Since these

random variables are pairwise independent we have as before, var(Sn) = var(X1)+

. . .+ var(Xn). Also, var(Xj) = E(Xj−EXj |2 ≤ E(Xj)2 = E(Xj) = P{Aj}. Thus

var(Sn) ≤ ESn. Let ε > 0.

P

{∣∣∣∣ SnESn
− 1
∣∣∣∣ > ε

}
= P

{∣∣∣∣Sn − ESn| > εESn

}
≤ 1
ε2(ESn)2

var(Sn)

=
1

ε2ESn

and this last goes to ∞ as n → ∞. From this we conclude that
Sn
ESn

→ 1 in

probability. However, we have claimed a.s.

Let

nk = inf{n ≥ 1:ESn ≥ k2}.

and set Tk = Snk
. Since EXn ≤ 1 for all n we see that

k2 ≤ ETk ≤ E(Tk−1) + 1 ≤ k2 + 1

for all k. Replacing n with nk in the above argument for Sn we get

P{|Tk − ETk| > εETk} ≤
1

ε2ETk

≤ 1
ε2k2

Thus
∞∑
k=1

P

{∣∣∣∣ TkETk
− 1
∣∣∣∣ > δ

}
<∞
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and the first Borel–Cantelli gives

P

{∣∣∣∣ TkETk
− 1
∣∣∣∣ > ε i.o

}
= 0

That is,
Tk
ETk

→ 1, a.s.

Let Ω0 with P (Ω0) = 1 be such that

Tk(ω)
ETk

→ 1.

for every ω ∈ Ω0. Let n be any integer with nk ≤ n < nk+1. Then

Tk(ω)
ETk+1

≤ Sn(ω)
E(Sn)

≤ Tk+1(ω)
ETk

.

We will be done if we can show that

lim
n→∞

Tk(ω)
ETk+1

→ 1 and lim
n→∞

Tk+1(ω)
ETk

= 1.

Now, clearly we also have

ETk
ETk+1

· Tk(ω)
ETk

≤ Sn(ω)
ESn

≤ Tk+1(ω)
ETk+1

· ETk+1

ETk

and since

k2 ≤ ETk ≤ ETk+1 ≤ (k + 1)2 + 1

we see that 1 ≤ ETk+1
ETk

and that ETk+1
ETk

→ 1 and similarly 1 ≥ ETk

ETk+1
and that

ETk

ETk+1
→ 1, proving the result. �

§5. Convergence of Random Series, Strong Law of Large Numbers.

Definition 5.1. Let {Xn} be a sequence of random variables. Define the σ–

algebras F ′
n = σ(Xn, Xn+1, . . . ) and I =

⋂
n≥1

F ′
n. F ′

n is often called the “future”

σ–algebra and I the remote (or tail) σ–algebra.
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Example 5.1.

(i) If Bn ∈ B(R), then {Xn ∈ Bn i.o.} ∈ I. and if we take Xn = 1An we see that

Then {An i.o.} ∈ I.

(ii) If Sn = X1+. . .+Xn, then clearly, {limn→∞ Sn exists} ∈ I and {limSn/cn >

λ} ∈ I, if cn →∞. However, {limSn > 0} 6∈ I

Theorem 5.1 (Kolmogorov 0 − 1 Law). If X1, X2 . . . are independent and

A ∈ I, then P (A) = 0 or 1.

Proof. We shall show that A is “independent of itself” and hence P (A) = P (A ∩

A) = P (A)P (A) which implies that P (A) = 0 or 1. First, sinceX1, . . . are indepen-

dent if A ∈ σ(X1, . . . , Xn) and B ∈ σ(Xn+1, . . . ) then A and B are independent.

Thus if, A ∈ σ(X1, . . . , Xn) and B ∈ I, then A and B are independent. Thus⋃
n

σ(X1, . . . , Xn) is independent of I. Since they are both π–systems (clearly

if A,B ∈
⋃
n

σ(X1, . . . , Xn) then A ∈ σ(X1 . . . , Xn) and B ∈ σ(X1, . . . , Xm) for

some n and m and so A∩B ∈ σ(X1, . . . , Xmax(n,m))),
⋃
n
σ(X1, . . . , Xn) is indepen-

dent of I, by Theorem 2.3, Chapter IV. Since A ∈ I implies A ∈ σ(X1, X2, . . . ),

we are done. �

Corollary. Let An be independent. Then P{An i.o.} = 0 or 1. In the same way,

if X − n are independent then P{limSn exists} = 0 or1.

Or next task is to investigate when the above probabilities are indeed one.

Recall that Chebyshev’s inequality gives, for mean zero random variables which

are independent, that

P{|Sn| > λ} ≤ 1
λ2

var(Sn).

The following results is stronger and more useful as we shall see soon.
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Theorem 5.2 ( Kolmogorov’s inequality). Suppose {Xn} be independent,

EXn = 0 and var(Xn) <∞ for all n. Then for any λ > 0,

P{ max
1≤k≤n

|Sk| ≥ λ} ≤ 1
λ2
E|Sn|2

=
1
λ2

var(Sn).

Proof. Set

Ak = {ω ⊂ Ω: |Sk(ω)| ≥ λ, |Sj(ω)| < λ for all j < k}

Note that these sets are disjoint and

ES2
n ≥

n∑
k=1

∫
Ak

S2
ndP =

=
n∑
k=1

∫
Ak

S2
k + 2SkSn − 2Sk + (Sn − Sk)2dP

≥
n∑
k=1

∫
Ak

S2
kdP + 2

n∑
k=1

∫
Ω

Sk1Ak
(Sn − Sk)dP (5.1)

Now,

Sk1Ak
∈ σ(X1, . . . , Xk)

and

Sn − Sk ∈ σ(Xk+1 . . . Sn)

and hence they are independent. Since E(Sn − Sk) = 0, we have E(Sk1Ak
(Sn −

Sk)) = 0 and therefore the second term in (5.1) is zero and we see that

ESn
2 ≥

n∑
k=1

∫
Ak

|S2
k|dp

≥ λ2
∞∑
k=1

P (Ak)

= λ2P ( max
1≤k≤n

|Sk| > λ

}
which proves the theorem. �
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Theorem 5.3. If Xj are independent, EXj = 0 and
∞∑
n=1

var(Xn) < ∞, then

∞∑
n=1

Xn converges a.s.

Proof. By Theorem 5.2, for N > M we have

P

{
max

M≤n≤N
|Sn − SM | > ε

}
≤ 1
ε2

var(SN − SM )

=
1
ε2

N∑
n=M+1

var(Xn).

Letting N → ∞ gives P{max
m≥M

|Sn − SM | > ε} ≤ 1
ε2

∞∑
n=M+1

ε(Xn) and this last

quantity goes to zero as M →∞ since the sum converges. Thus if

ΛM = sup
n,m≥M

|Sm − Sn|

then

P{ΛM > 2ε} ≤ P{max
m≤M

|Sm − SM | > ε} → 0

as M →∞ and hence ΛM → 0 a.s. as M →∞. Thus for almost every ω, {Sm(ω)}

is a Cauchy sequence and hence it converges. �

Example 5.2. Let X1, X2, . . . be i.i.d. N(0, 1). Then for every t,

Bt(ω) =
∞∑
n=1

Xn
sin(nπt)

n

converges a.s. (This is a series representation of Brownian motion.)

Theorem 5.4 (Kolmogorov’s Three Series Theorem). Let {Xj} be inde-

pendent random variables. Let A > 0 and set Yj = Xj1(|Xj |≤A). Then
∞∑
n=1

Xn

converges a.s. if and only if the following three conditions hold:

(i)
∞∑
n=1

P (|Xn| > A) <∞,
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(ii)
∞∑
n=1

EYn converges,

(iii)
∞∑
n=1

var(Yn) <∞.

Proof. Assume (i)–(iii). Let µn = EYn. By (iii) and Theorem 5.3,
∑

(Yn−µn) con-

verges a.e. This and (ii) show that
∞∑
n=1

Yn converges a.s. However, (i) is equivalent

to
∞∑
n=1

P (Xn 6= Yn) <∞ and by the Borel–Cantelli Lemma,

P (Xn 6= Yn i.o.} = 0.

Therefore, P (Xn = Yn eventually} = 1. Thus if
∑∞
n=1 Yn converges, so does∑∞

n=1Xn.

We will prove the necessity later as an application of the central limit theo-

rem. �

For the proof of the strong law of large numbers, we need

Lemma 5.1 (Kronecker’s Lemma). Suppose that an is a sequence of positive

real numbers converging up to ∞ and suppose
∞∑
n=1

xn
an

converges. Then

1
an

n∑
m=1

xm → 0.

Proof. Let bn =
n∑
j=1

xj
aj

. Then bn → b∞, by assumption. Set a0 = 0, b0 = 0. Then



101

xn = an(bn − bn−1), n = 1, 2, . . . and

1
an

n∑
j=1

xj =
1
an

n∑
j=1

aj(bj − bj−1)

=
1
an

bnan − b0a0 −
n−1∑
j=0

bj(aj+1 − aj)


= bn −

1
an

n−1∑
j=0

bj(aj+1 − aj)

The last equality is by summation by parts. To see this, precede by induction

observing first that

n∑
j=1

aj(bj − bj−1) =
n−1∑
j=1

aj(bj − bj−1) + an(bn − bn−1)

= bn−1an−1 − b0a0 −
n−2∑
j=0

bj(aj+1 − aj) + anbn − anbn−1

= anbn − b0a0 −
n−2∑
j=0

bj(aj+1 − aj)− bn−1(an − an−1)

= anbn − b0a0 −
n−1∑
j=0

bj(aj+1 − aj)

Now, recall a bn → b∞. We claim that
1
an

n−1∑
j=0

bj(aj+1 − aj) → b∞. Since bn → b∞,

given ε > 0 ∃ N such that for all j > N , |bj − b∞| < ε. Since

1
an

n−1∑
j=0

(aj+1 − aj) = 1



102

Jensen’s inequality gives

| 1
an

n−1∑
j=0

bj(aj+1 − aj)− b∞| ≤
∣∣∣∣ 1
an

n−1∑
j=1

(b∞ − bj)(aj+1 − aj)
∣∣∣∣

≤ 1
an

N∑
j=1

|(b∞ − bj)(aj+1 − aj)|

+
1
an

n−1∑
j=N+1

|b∞ − bj ||aj+1 − aj |

≤ 1
an

N∑
j=1

|bN − bj ||aj+1 − aj |+ ε
1
an

n∑
j=N+1

|aj+1 − aj |

≤ M

an
+ ε.

Letting first n→∞ and then ε→ 0 completes the proof. �

Theorem 5.5 (The strong law of large numbers). Suppose {Xj} are i.i.d., E|X1| <

∞ and set EX1 = µ. Then
Sn
n
→ µ a.s.

Proof. Let Yk = Xk1(|Xk|≤k) Then

∞∑
n=1

P{Xk 6= Yk} =
∑

P (|Xk| > k}

≤
∫ ∞

0

P (|X1| > λ}dλ

= E|X| <∞.

Therefore by the First Borel–Cantelli Lemma, P{Xk 6= Yk i.o.} = 0 or put in

other words, P{Xk 6= Yk eventually} = 1. Thus if we set Tn = Y1 + . . . + Yn. It



103

suffices to prove
Tn
n
→ µ a.s. Now set Zk = Yk − EYk. Then E(Zk) = 0 and

∞∑
k=1

var(Zn)
k2

≤
∞∑
k=1

E(Y 2
k )

k2

=
∞∑
k=1

1
k2

∫ ∞

0

2λP{|Yk| > λ}dλ

=
∞∑
k=1

1
k2

∫ k

0

2λP{|X1| > λ}dλ

= 2
∫ ∞

0

∞∑
k=1

λ

k2
1{λ≤k}(λ)P{|X1| > λ}dλ

= 2
∫ ∞

0

λ

(∑
k>λ

1
k2

)
P{|X1| > λ}dλ.

≤ CE|X1|,

where we used the fact that ∑
k>λ

1
k2

≤ C

λ

for some constant C which follows from the integral test. By Theorem 5.3,
∞∑
k=1

Zk
k

converges a.s. and the Kronecker’s Lemma gives that

1
n

n∑
k=1

Zk → 0 a.s.

which is the same as
1
n

n∑
k=1

(Yk − EYk) → 0 a.s.

or
Tn
n
− 1
n

n∑
k=1

EYk → 0 a.s.

We would be done if we can show that

1
n

n∑
k=1

EYk → µ. (5.2)
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We know EYk → µ as k →∞. That is, there exists an N such that for all k > N ,

|EYk − µ| < ε. With this N fixed we have for all n ≥ N ,∣∣∣∣ 1n
n∑
k=1

EYk − µ

∣∣∣∣ = ∣∣∣∣ 1n
n∑
k=1

(EYk − µ)
∣∣∣∣

≤ 1
n

N∑
k=1

E|Yk − µ|+ 1
n

n∑
k=N

E|Yk − µ|

≤ 1
n

N∑
k=1

E|Yk − µ|+ ε.

Let n→∞ to complete the proof. �

§6. Variants of the Strong Law of Large Numbers.

Let us assume E(Xi) = 0 then under the assumptions of the strong law of

large numbers we have
Sn
n
→ 0 a.s. The question we address now is: Can we have

a better rate of convergence? The answer is yes under the right assumptions and

we begin with

Theorem 6.1. Let X1, X2, . . . be i.i.d., EXi = 0 and EX2
1 ≤ σ2 <∞. Then for

any ε ≥ 0

lim
n→∞

Sn
n1/2(log n)1/2+ε

= 0,

a.s.

We will show later that in fact,

lim
Sn√

2σ2n log log n
= 1,

a.s. This last is the celebrated law of the iterated logarithm of Kinchine.

Proof. Set an =
√
n(log n)

1
2+ε, n ≥ 2. a1 > 0

∞∑
n=1

var(Xn/an) = σ

(
1
a2
1

+
∞∑
n=2

1
n(log n)1+2ε

)
<∞.
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Then
∞∑
n=1

Xn

an
converges a.s. and hence

1
an

n∑
k=1

Xk → 0 a.s. �

What if E|X1|2 = ∞ But E|X1|p <∞ for some 1 < p < 2? For this we have

Theorem 6.2 (Marcinkiewidz and Zygmund). Xj i.i.d., EX1 = 0 and

E|X1|p <∞ for some 1 < p < 2. Then

lim
n→∞

Sn
n1/p

= 0,

a.s.

Proof. Let

Yk = Xk1(|Xn|≤k1/p)

and set

Tn =
n∑
k=1

Yk.

It is enough to prove, as above, that Tn

n1/p→0
, a.s. To see this, observe that

∑
P{Yk 6= Xk} =

∞∑
k=1

P{|Xk|p > k}

≤ E(|X1|p) <∞

and therefore by the first Borel–Cantelli Lemma, P{Yk 6= Xk i.o.} = 0 which is

the same as P{Yk = Xk, eventually} = 1

Next, estimating by the integral we have

∑
k>λp

1
k2/p

≤ C

∫ ∞

λp

dx

x2/p

=
1

(1− 2/p)
x2−2/p

∣∣∣∣∞
λp

= λp−2
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and hence
∞∑
k=1

var(Yk/k1/p) ≤
∞∑
k=1

EY 2
k

k2/p

= 2
∞∑
k=1

1
k2/p

∫ ∞

0

λP{|Yk| > λ}dλ

= 2
∞∑
k=1

1
k2/p

∫ k1/p

0

λP{|X1| > λ}dλ

= 2
∞∑
k=1

1
k2/p

∫ ∞

0

1(0,k1/p)(λ)λP{|X1| > λ}dλ

= 2
∫ ∞

0

λP{|X1| > λ}

(∑
k>λp

1
k2/p

)
dλ

≤ 2
∫ ∞

0

λp−1P{|X1| > λ}dλ = CpE|X1|p <∞.

Thus, and Kronecker implies, with µk = E(Yk), that

1
n1/p

n∑
k=1

(Yk − µk) → 0, a.s.

If we are bale to show that
1

n1/p

n∑
k=1

µk → 0, we will be done. Observe that 0 =

E(X1) = E(X1(|X|≥k1/p)) + µk so that |µk| ≤ |E(X1(|X|≥k1/p)| and therefore∣∣∣∣ 1
n1/p

n∑
k=1

µk

∣∣∣∣ ≤ 1
n1/p

n∑
k=1

∫ ∞

k1/p

P{|X1| > λ}dλ

≤ 1
pn1/p

n∑
k=1

1
k1−1/p

∫ ∞

k1/p

pλp−1P{|X1| > λ}dλ

=
1

pn1/p

n∑
k=1

1
k1−1/p

E{|X1|p; |X1| > k1/p}.

Since X ∈ Lp, given ε > 0 there is an N such that E(|X1|p|X1| > k1/p) < ε if

k > N . Also,
n∑
k=1

1
k1−1/p

≤ C

n∫
1

x1/p−1dx ≤ Cn1/p.

The Theorem follows from these. �
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Theorem 6.3. Let X1, X2, . . . be i.i.d. with EX+
j = ∞ and EX−

j <∞. Then

lim
n→∞

Sn
n

= ∞, a.s.

Proof. Let M > 0 and XM
j = Xi ∧M , the maximum of Xj and M . Then XM

i

are i.i.d. and E|XM
i | <∞. (Here we have used the fact that EX−

j <∞.) Setting

SMn = XM
1 = XM

1 + . . .+XM
n we see that

SMn
n

→ EXM
1 a.s. Now, since Xi ≥ XM

i

we have

lim
Sn
n
≥ lim
n→∞

SMn
n

= EXM
1 , a.s.

However, by the monotone convergence theorem, E(XM
1 )+ ↑ E(X+

1 ) = ∞, hence

EXM
1 = E(XM

1 )+ − E(XM
1 )− ↑ +∞.

Therefore,

lim
Sn
n

= ∞, a.s.

and the result is proved. �

§7. Two Applications.

We begin with an example from Renewal Theory. Suppose X1, X2, . . . be

are i.i.d. and 0 < Xi < ∞, a.s. Let Tn = X1 + . . . + Xn and think of Tn

as the time of the nth occurrence of an event. For example, Xi could be the

lifetime of ith lightbulb in a room with infinitely many lightbulbs. Then Tn =

is the time the nth lightbulb burns out. Let Nt = sup{n:Tn ≤ t} which in this

example is the number of lightbulbs that have burnt out by time t.

Theorem 7.1. Let Xj be i.i.d. and set EX1 = µ which may or may not be finite.

Then Nt

t → 1/µ, a.s. as t→∞ where this is 0 if µ = ∞. Also, E(N(t))/t→ 1/µ

Continuing with our lightbulbs example, note that if the mean lifetime is

large then the number of lightbulbs burnt by time t is very small.
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Proof. We know
Tn
n
→ µ a.s. Note that for every ω ∈ Ω, Nt(ω) is and integer and

T (Nt) ≤ t < T (Nt + 1).

Thus,
T (Nt)
Nt

≤ t

Nt
≤ T (Nt + 1)

Nt + 1
· Nt + 1

Nt
.

Now, since Tn < ∞ for all n, we have Nt ↑ ∞ a.s. By the law of large numbers

there is an Ω0 ⊂ Ω such that P (Ω0) = 1 and such that for ω ∈ Ω0,

TNt(ω)(ω)
Nt(ω)

→ µ and
Nt(ω) + 1
Nt(ω)

→ 1.

Thus t/Nt(ω) → µ a.s. and we are done. �

Let X1, X2, . . . be i.i.d. with distribution F . For x ∈ R set

Fn(x, ω) =
1
n

n∑
n=1

1(Xk≤x)(ω).

This is the observed frequency of values ≤ x. Now, fix ω ∈ Ω and set ak = Xk(ω).

Then Fn(x, ω) is the distribution with jump of size 1
n at the points ak. This is

called the imperial distribution based on n samples of F . On the other hand, let

us fix x. Then Fn(x, ·) is a random variable. What kind of a random variable is

it? Define

ρk(ω) = 1(Xk≤x)(ω) =
{

1, Xk(ω) ≤ x

0, Xk(ω) > x

Notice that in fact the ρk are independent Bernoullians with p = F (x) and Eρk =

F (x). Writing

Fn(x, ω) =
1
n

n∑
k=1

ρk

we see that in fact Fn(x, ·) = Sn

n and the Strong Law of Large numbers shows

that for every x ∈ R, Fn(x, ω) → F (x) a.s. Of course, the exceptional set may

depend on x. That is, what we have proved here is that given x ∈ R there is a set
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Nx ⊂ Ω such that P (Nx) = 0 and such that Fn(x, ω) → F (x) for ω ∈ Nx. If we

set N = ∪x∈QNx where we use Q to denote the rational numbers, then this set

also has probability zero and off this set we have Fn(x, ω) → F (x) for all ω ∈ N

and all x ∈ Q. This and the fact that the discontinuities of distribution functions

are at most countable turns out to be enough to prove

Theorem 7.2 ( Glivenko–Cantelli Theorem). Let

Dn(ω) = sup
x∈R

|Fn(x, ω)− F (x)|.

Then Dn → 0 a.s.
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VI

THE CENTRAL LIMIT THEOREM

§1 Convergence in Distribution.

If Xn “tends” to a limit, what can you say about the sequence Fn of d.f. or

the sequence {µn} of measures?

Example 1.1. Suppose X has distribution F and define the sequence of random

variables Xn = X+1/n. Clearly, Xn → X a.s. and in several other ways. Fn(x) =

P (Xn ≤ x) = P (X ≤ x− 1/n) = F (x− 1/n). Therefore,

lim
n→∞

Fn(x) = F (x−).

Hence we do not have convergence of Fn to F . Even worse, set Xn = X + Cn

where Cn =
{ 1

n even
−1/n odd

. Thenthe limit may not even exist.

Definition 1.1. The sequence {Fn} of d.f. converges weakly to the d.f. F if

Fn(x) → F (x) for every point of continuity of F . We write Fn ⇒ F . In all

our discussions we assume F is a d.f. but it could just as well be a (sub. d.f.).

The sequence of random variables Xn converges weakly to X if their distri-

butions functions Fn(x) = P (Xn ≤ x) converge weakly to F (x) = P (X ≤ x). We

will also use Xn ⇒ X.

Example 1.2.

(1) The Glivenko–Cantelli Theorem
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(2) Xi = i.i.d. ±1, probability 1/2. If Sn = X1 + . . .+Xn then

Fn(y) = P

(
Sn√
n
≤ y

)
→ 1√

2π

∫ y

−∞
e−x

2/2dx.

This last example can be written as Sn

n ⇒ N(0, 1) and is called the the De

Moivre–Laplace Central limit Theorem. Our goal in this chapter is to obtain a very

general version of this result. We begin with a detailed study of convergence in

distribution.

Theorem 1.1 (Skorhod’s Theorem). IF Fn ⇒ F , then there exists random

variables Yn, Y with Yn → Y a.s. and Yn ∼ Fn, Y ∼ F .

Proof. We construct the random variables on the canonical space. That is, let

Ω = (0, 1), F the Borel sets and P the Lebesgue measure. As in Chapter IV,

Theorem 1.1,

Yn(ω) = inf{x:ω ≤ Fn(x)}, Y (ω) = inf{x:ω ≤ F (x)}.

are random variables satisfying Yn ∼ Fn and Y ∼ F

The idea is that if Fn → F then F−1
n → F−1, but of course, the problem is

that this does not happen for every point and that the random variables are not

exactly inverses of the distribution functions. Thus, we need to proceed with some

care. In fact, what we shall show is that Yn(ω) → Y (ω) except for a countable

set. Let 0 < ω < 1. Given ε > 0 chose and x for which Y (ω) − ε < x < Y (ω)

and F (x−) = F (x), (that is for which F is continuous at x). Then by definition

F (x) < ω. Since Fn(x) → F (x) we have that for all n > N , Fn(x) < ω. Hence,

again by definition, Y (ω)− ε < x < Yn(ω), for all such n. Therefore,

lim Yn(ω) ≥ Y (ω).

It remains to show that

lim Yn(x) ≤ Y (x).
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Now, if ω < ω′ and ε > 0, choose y for which Y (ω′) < y < Y (ω′) + ε and F is

continuous at y. Now,

ω < ω′ ≤ F (Y (ω′)) ≤ F (y).

Again, since Fn(y) → F (y) we see that for all n > N , ω ≤ Fn(y) and hence

Yn(ω) ≤ y < Y (ω′) + ε which implies lim Yn(ω) ≤ Y (ω′). If Y is continuous at ω

we must have

lim Yn(ω) ≤ Y (ω).

�

The following corollaries follow immediately from Theorem 1.1 and the results

in Chapter II.

Corollary 1.1 (Fatou’s in Distribution). Suppose Xn ⇒ X and g ≥ 0 and

continuous. Then E(g(X)) ≤ limE(g(Xn)).

Corollary 1.2 (Dominated Convergence in Distribution). If Xn ⇒ X, g

is continuous and and E|(g(Xn)| < C, then

E(g(Xn)) → E(g(X)).

The following is a useful characterization of convergence in distribution.

Theorem 1.2. Xn ⇒ X if and only if for every bounded continuous function g

we have E(g(Xn)) → E(g(X)).

Proof. If Xn ⇒ X then Corollary 2.1 implies the convergence of the expectations.

Conversely, let

gx,ε(y) =


1 y ≤ x

0 y ≥ x+ ε

linear x ≤ y ≤ x+ ε
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It follows from this that

P (Xn ≤ x) ≤ E(gx,ε(Xn))

and therefore,

limP (Xn ≤ x) ≤ limE(gx,ε(Xn))

= E(gx,ε(X))

≤ P (X ≤ x+ ε).

Now, let ε→ 0 to conclude that

limP (Xn ≤ x) ≤ P (X ≤ x).

In the same way,

P (X ≤ x− ε) ≤ E(gx−ε,ε(X))

= lim
n→∞

E(gx−ε,ε(Xn))

≤ lim
n→∞

P (Xn ≤ x).

Now, let ε→ 0. If F continuous at x, we obtain the result. �

Corollary 1.3. Suppose Xn → X in probability. Then Xn ⇒ X.

Lemma 1.1. Suppose Xn → 0 in probability and |Xn| ≤ Y with E(Y ) < ∞.

Then E|Xn| → 0.

Proof. Fix ε > 0. Then P{|Xn| > ε} → 0, as n→∞. Hence by Proposition 2.6 in

Chapter II, ∫
{|Xn|>ε}

|Y | dP → 0, as n→∞.



114

Since

E|Xn| =
∫
{|Xn|<ε}

|Xn|dP +
∫
{|Xn|>ε}

|Xn|dP

< ε+
∫
{|Xn|>ε}

|Y | dP,

the result follows. �

Proof of Corollary 1.3. If Xn → X in probability and g is bounded and continuous

then g(Xn) → g(X) in probability (why ?) and hence E(g(Xn)) → E(g(X)),

proving Xn ⇒ X.

An alternative proof is as follows. Set an = E(G(Xn)) and a = E(X). Let

ank
be a subsequence. Since Xnk

converges to X in probability also, we have a

subsequence Xnkj
which converges almost everywhere and hence by the dominated

convergence theorem we have ankj
→ a and hence the sequence an also converges

to a, proving the result. �

Theorem 1.3 (Continuous mapping Theorem). Let g be a measurable func-

tion in R and let Dg = {x: g is discontinuous at x}. If Xn ⇒ X and P{X ∈

Dg} = µ(Dg) = 0, then g(Xn) ⇒ g(X)

Proof. Let Xn ∼ Yn, X ∼ Y and Yn → Y a.s. Let f be continuous and bounded.

Then Df◦g ⊂ Dg. So,

P{Y∞ ∈ Df◦g} = 0.

Thus,

f(g(Yn)) → f(g(Y ))

a.s. and the dominated convergence theorem implies that E(f(g(Yn))) → E(f(g(Y ))

and this proves the result.

Next result gives a number of useful equivalent definitions.
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Theorem 1.4. The following are equivalent:

(i) Xn ⇒ X.

(ii) For all open sets G ⊂ R, limP (Xn ∈ G) ≥ P (X ∈ G) or what is the

same, limµn(G) ≥ µ(G), where Xn ∼ µn and X ∼ µ.

(iii) For all closed sets K ⊂ R , limP (Xn ∈ K) ≤ P (X ∈ K).

(iv) For all sets A ⊂ R with P (X ∈ ∂A) = 0 we have lim
n→∞

P (Xn ∈ A) =

P (X ∈ A).

We recall that for any set A, ∂A = A\A0 where A is the closure of the set

and A0 is its interior. It can very well be that we have strict inequality in (ii) and

(iii). Consider for example, Xn = 1/n so that P (Xn = 1/n) = 1. Take G = (0, 1).

Then P (Xn ∈ G) = 1. But 1/n→ 0 ∈ ∂G, so,

P (X ∈ G) = 0.

Also, the last property can be used to define weak convergence of probability

measures. That is, let µn and µ be probability measures on (R,B). We shall say

that µn converges to µ weakly if µn(A) → µ(A) for all borel sets A in R with the

property that µ(∂A) = 0.

Proof. We shall prove that (i) ⇒ (ii) and that (ii)⇔ (iii). Then that (ii) and (iii)

⇒ (iv), and finally that (iv) ⇒ (i).

Proof. Assume (i). Let Yn ∼ Xn, Y ∼ X, Yn → Y a.s. Since G is open,

lim1(Yn∈G)(ω) ≥ 1(Y ∈G)(ω)

Therefore Fatou’s Lemma implies

P (Y ∈ G) ≤ limP (Yn ∈ G),
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proving (ii). Next, (ii) ⇒ (iii). Let K be closed. Then Kc is open. Put

P (Xn ∈ K) = 1− P (Xn ∈ Kc)

P (X ∈ K) = 1− P (X ∈ Kc).

The equivalence of (ii) and (iii) follows from this.

Now, (ii) and (iii) ⇒ (iv). Let K = A, G = A0 and ∂A = A\A0. Now,

G = K\∂A and under our assumption that P (X ∈ ∂A) = 0,

P (X ∈ K) = P (X ∈ A) = P (X ∈ G).

Therefore, (ii) and (iii) ⇒

lim P (Xn ∈ A) ≤ lim P (Xn ∈ K)

≤ P (X ∈ K)

= P (X ∈ A)

lim P (Xn ∈ A) ≥ lim P (Xn ∈ G)

and this gives

P (X∞ ∈ G) = P (X∞ ∈ A).

To prove that (iv) implies (i), take A = (−∞, x]. Then ∂A = {x} and this

completes the proof. �

Next, recall that any bounded sequence of real numbers has the property that

it contains a subsequence which converges. Suppose we have a sequence of prob-

ability measures µn. Is it possible to pull a subsequence µuk
so that it converges

weakly to a probability measure µ? Or, is it true that given distribution functions

Fn there is a subsequence {Fnk
} such that Fnk

converges weakly to a distribution

function F? The answer is no, in general.
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Example 1.3. Take Fn(x) = 1
31(x≥n)(x) + 1

31(x≥−n)(x) + 1
3G(x) where G is a

distribution function. Then

lim
n→∞

Fn(x) = F (x) = 1/3 + 1/3G(x)

lim
x↑∞

f(x) = 2/3 < 1

lim
x↓−∞

F (x) = 1/3 6= 0.

Lemma 1.1. Let f be an increasing function on the rationals Q and define f̃ on

R by

f̃(x) = inf
x<t∈Q

f(t) = inf{f(t):x < t ∈ Q}

= lim
tn↓x

f(tn)

Then f̃ is increasing and right continuous.

Proof. The function f̃ is clearly increasing. Let x0 ∈ R and fix ε > 0. We shall

show that there is an x > x0 such that

0 ≤ f̃(x)− f̃(x0) < ε.

By the definition, there exists t0 ∈ Q such that t0 > x0 and

f(t0)− ε < f̃(x0) < f(t0).

Hence

|f(t0)− f̃(x)| < ε.

Thus if t ∈ Q is such that x0 < t < t0, we have

0 ≤ f(t)− f̃(x0) ≤ f(t0)− f̃(x0) < ε.

That is, for all x0 < t < t0, we have

f(t) < f̃(x0) + ε

and therefore if x0 < x < t0 we see that

0 ≤ f̃(x)− f̃(x0) < ε,

proving the right continuity of f̃ . �
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Theorem 1.5 (Helly’s Selection Theorem). Let {Fn} be a sequence of of

distribution functions. There exists a subsequence {Fnk
} and a right continuous

nondecreasing function function F such that Fnk
(x) → F (x) for all points x of

continuity of F .

Proof. Let q1, q2, . . . be an enumeration of the rational. The sequence {Fn(q1)}

has values in [0, 1]. Hence, there exists a subsequence Fn1(q1) → G(q1). Similarly

for Fn1(q2) and so on. schematically we see that

q1:Fn1 , . . .→ G(q1)

q2:Fn2 , . . .→ G(q2).
...

qk:Fnk
(qk) . . .→ G(qk)

...

Now, let {Fnn
} be the diagonal subsequence. Let qj be any rational. Then

Fnn
(qj) → G(qj).

So, we have a nondecreasing function G defined on all the rationals. Set

F (x) = inf{G(q): q ∈ Q: q > x}

= lim
qn↓x

G(qn)

By the Lemma 1.1 F is right continuous and nondecreasing. Next, let us show

that Fnk
(x) → F (x) for all points of continuity of F . Let x be such a point and

pick r1, r2, s ∈ Q with r1 < r2 < x < s so that

F (x)− ε < F (r1) ≤ F (r2)

≤ F (x) ≤ F (s)

< F (x) + ε.
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Now, since Fnk
(r2) → F (r2) ≥ F (r1) and Fnk

(s) → F (s) we have for nk large

enough,

F (x)− ε < Fnk
(r2) ≤ Fnk

(x) ≤ Fnk
(s) < F (x) + ε

and this shows that Fnk
(x) → F (x), as claimed. �

When can we guarantee that the above function is indeed a distribution?

Theorem 1.6. Every weak subsequential limit µ of {µn} is a probability measures

if and only if for every ε > 0 there exists a bounded interval Iε = (a, b] such that

inf
n
µn(Iε) > 1− ε. (*)

In terms of the distribution functions this is equivalent to the statement that

for all ε > 0, there exists an Mε > 0 such that supn{1−Fn(Mε)+Fn(−Mε)} < ε.

A sequence of probability measures satisfying (∗) is said to be tight. Notice that

if µn is unit mass at n then clearly µn is not tight. “The mass of µn scapes to

infinity.” The tightness condition prevents this from happening.

Proof. Let µnk
⇒ µ. Let J ⊃ Iε and µ(∂J) = 0. Then

µ(R) ≥ µ(J) = lim
n→∞

µnk
(J)

≥ limµnk
(Iε)

> 1− ε.

Therefore, µ(R) = 1 and µ is a probability measure.

Conversely, suppose (∗) fails. Then we can find an ε > 0 and a sequence nk

such that

µnk
(I) ≤ 1− ε,
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for all nk and all bounded intervals I. Let µnkj
→ µ weakly. Let J be a continuity

interval for µ. Then

µ(J) = lim
j→∞

µnkj
(J) ≤ limµnkj

(J)

≤ 1− ε.

Therefore, µ(R) ≤ 1− ε and µ is not a probability measure. �

§2 Characteristic Functions.

Let µ be a probability measure on R and define its Fourier transform by

µ̂(t) =
∫
R

eitxdµ(x). Notice that the Fourier transform is a a complex valued

function satisfying |µ̂(t)| ≤ µ(R) = 1 for all t ∈ R. If X be a random variable its

characteristic function is defined by

ϕX(t) = E(eitX) = E(cos(tX)) + iE(sin(tX)).

Notice that if µis the distribution measure of X then

ϕX(t) =
∫

R
eitxdµ(x) = µ̂(t).

and again |ϕX(t)| ≤ 1. Note that if X ∼ Y then ϕX(t) = ϕY (t) and if X and Y

are independent then

ϕX+Y (t) = E(eitXeitY ) = ϕX(t)ϕY (t).

In particular, if X1, X2, . . . , Xn are are i.i.d., then

ϕXn(t) = (ϕX1(t))
n.

Notice also that if (a+ ib) = a − ib then ϕX(t) = ϕX(−t). The function ϕ is

uniformly continuous. To see the this observe that

|ϕ(t+ h)− ϕ(t)| = |E|ei(t+h)X − eitX)|

≤ E|eihX − 1|
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and use the continuity of the exponential to conclude the uniform continuity of

ϕX . Next, suppose a and b are constants. Then

ϕaX+b(t) = eitbϕX(at).

In particular,

ϕ−X(t) = ϕX(−t) = ϕX(t).

If −X ∼ X then ϕX(t) = ϕX(t) andϕX is real. We now proceed to present some

examples which will be useful later.

Examples 2.1.

(i) (Point mass at a) Suppose X ∼ F = δa. Then

ϕ(t) = E(eitX) = eita

(ii) (Coin flips) P (X = 1) = P (X = −1) = 1/2. Then

ϕ(t) = E(eitX) =
1
2
eit +

1
2
e−it =

1
2
(eit + e−it) = cos(t).

(iii) (Bernoulli ) P (X = 1) = p, P (X = 0) = 1− p. Then

ϕ(t) = E(eitX) = peit + (1− p)

= 1 + p(eit − 1)

(iv) (Poisson distribution) P (X = k) = e−λ λ
k

k! , k = 0, 1, 2, 3 . . .

ϕ(t) =
∞∑
k=0

eitk
e−λλk

k!
= e−λ

∞∑
k=0

(λeit)
k!

k

= e−λeλe
it

= eλ(eit−1)
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(v) (Exponential) Let X be exponential with density e−y. Integration by parts

gives

ϕ(t) =
1

(1− it)
.

(vi) (Normal) X ∼ N(0, 1).

ϕ(t) = e−t
2/2.

Proof of (vi). Writing eitx = cos(tx) + i sin(tx) we obtain

ϕ(t) =
1√
2π

∫
R
eitxe−x

2/2dx =
1√
2π

∫
R

cos txe−x
2/2dx

ϕ′(t) =
1√
2π

∫
R
−x sin(tx)e−x

2/2dx

= − 1√
2π

∫
R

sin(tx)xe−x
2/2dx

= − 1√
2π

∫
R
t cos(tx)e−x

2/2dx

= −tϕ(t).

This gives ϕ′(t)
ϕ(t) = −t which, together with the initial condition ϕ(0) = 1, immedi-

ately yields ϕ(t) = e−t
2/2 as desired. �

Theorem 2.1 (The Fourier Inversion Formula). Let µ be a probability mea-

sure and let ϕ(t) =
∫

R e
itxdµ(x). Then if x1 < x2

µ(x1, x2) +
1
2
µ(x1) +

1
2
µ(x2) = lim

T→0

1
2π

∫ T

−T

e−itx1 − e−itx2

it
ϕ(t)dt.

Remark. The existence of the limit is part of the conclusion. Also, we do not mean

that the integral converges absolutely. For example, if µ = δ0 then ϕ(t) = 1. If

x1 = −1 and x2 = 1, then we have the integral of
2 sin t
t

which does not converse

absolutely.
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Recall that

sign(α) =


1 α > 0
0 α = 0
−1 α < 0

Lemma 2.1. For all y > 0,

0 ≤ sign(α)
∫ y

0

sin(αx)
x

dx ≤
∫ π

0

sinx
x

dx, (2.1)∫ ∞

0

sin(αx)
x

dx = π/2 sign(α), (2.2)∫ ∞

0

1− cosαx
x2

dx =
π

2
|α|. (2.3)

Proof. Let αx = u. It suffices to prove (2.1)–(2.3) for α = 1. For (2.1), write

[0,∞) = [0, π] ∪ [π, 2π], . . . and choose n so that nπ < y ≤ (n+ 1)π. Then∫ y

0

sinx
x

dx =
n∑
k=0

(∫ (k+1)π

kπ

sinx
x

dx

)
+
∫ y

nπ

sinx
x

dx

=
∫ π

0

sinx
x

dx+
∫ 2π

π

sinx
x

dx+
∫ 3π

2π

sinx
x

dx+ . . .+
∫ y

nπ

sinx
x

dx

=
∫ π

0

sinx
x

dx+ (−1)a1 + (−1)2a2 + . . .+ (−1)n−1an−1 + (−1)n
∫ y

nπ

sinx
x

dx

where |aj+1| < |aj |. If n is odd then n− 1 is even and

y∫
nπ

sinx
x

dx < 0. Comparing

terms we are done. If n is even, the result follows by replacing y with (n+1)π and

using the same argument.

For (2.2) and (2.3) apply Fubini’s Theorem to obtain∫ ∞

0

sinx
x

dx =
∫ ∞

0

sinx
∫ ∞

0

e−uxdudx

=
∫ ∞

0

(∫ ∞

0

e−ux sinxdx
)
du

=
∫ ∞

0

(
du

1 + u2

)
= π/2.
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and ∫ ∞

0

1− cosx
x2

dx =
∫ ∞

0

1
x2

∫ x

0

sinududx

=
∫ ∞

0

sinu
∫ ∞

u

dx

x2
du

=
∫ ∞

0

sinu
u

du

= π/2.

This completed the proof. �

Proof of Theorem 2.1. We begin by observing that∣∣∣∣eit(x−x1) − eit(x−x2)

it

∣∣∣∣ = ∣∣∣∣ ∫ x2

x1

e−itudu

∣∣∣∣ ≤ |x1 − x2|

and hence for any T > 0,∫
R1

∫ T

−T
|x2 − x2|dtdµ(x) ≤ 2T |x1 − x2| <∞.

From this, the definition of ϕ and Fubini’s Theorem, we obtain

1
2π

∫ T

−T

e−i+x1 − e−itx2

it
ϕ(t)dt =

∫ ∞

−∞

∫ T

−T

e−itx1 − e−itx2

2πit
eitxdtdµ(x)

=
∫ ∞

−∞

[∫ T

−T

eit(x−x1) − eit(x−x2)

2πit
dt

]
dµ(x)

=
∫ ∞

−∞
F (T, x, x1, x2)dµ(x) (2.4)

Now,

F (T, x, x1, x2) =
1

2πi

∫ T

−T

cos(t(x− x1))
t

dt+
i

2πi

∫ T

−T

sin(t(x− x1))
t

dt

− 1
2πi

∫ T

−T

cos(t(x− x2))
t

dt− i

2πi

∫ T

−T

sin(t(x− x2))
t

dt

=
1
π

∫ T

0

sin(t(x− x1))
t

dt− 1
π

∫ T

0

sin(t(x− x2))
t

dt,
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using the fact that
sin(t(x− xi))

t
is even and

cos(t(x− xi)
t

odd.

By (2.1) and (2.2),

|F (T, x, x1, x2)| ≤
2
π

∫ π

0

sin t
t
dt.

and

lim
T→∞

F (T, x, x1, x2) =



− 1
2 − (− 1

2 ) = 0, if x < x1

0− (− 1
2 ) = 1

2 , if x = x1

1
2 − (− 1

2 ) = 1, if x1 < x < x2

1
2 − 0 = 1

2 if x = x2

1
2 −

1
2 = 0, if x > x2

Therefore by the dominated convergence theorem we see that the right hand side

of (2.4) is

∫
(−∞,x1)

0 · dµ+
∫
{x1}

1
2
dµ+

∫
(x1,x2)

1 · dµ+
∫

1
2
dµ+

∫
(x2,∞)

0 · dµ

= µ(x1, x2) +
1
2
µ{x1}+

1
2
µ{x2},

proving the Theorem. �

Corollary 2.1. If two probability measures have the same characteristic function

then they are equal.

This follows from the following

Lemma 2.1. Suppose The two probability measures µ1 and µ2 agree on all inter-

vals with endpoints in a given dense sets, then they agree on all of B(R).

This follows from our construction, (see also Chung, page 28).

Proof Corollary 2.1. Since the atoms of both measures are countable, the two

measures agree, the union of their atoms is also countable and hence we may

apply the Lemma. �
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Corollary 2.2. Suppose X is a random variable with distribution function F

and characteristic function satisfying
∫
R

|ϕX |dt < ∞. Then F is continuously

differentiable and

F ′(x) =
1
2π

∫
R
e−ityϕX(y)dy.

Proof. Let x1 = x− h, x2 = x, h > 0. Since µ(x1, x2) = F (x2−)−F (x1) we have

F (x2−)− F (x1) +
1
2
(F (x1)− F (x1−)) +

1
2
(F (x2)− F (x2−))

= µ(x1, x2) +
1
2
µ{x1}+

1
2
µ{x2}

=
1
2π

∫ ∞

−∞

(
e−it(x−h) − e−itx

it

)
ϕX(t)dt.

Since ∣∣∣∣e−it(x−h) − e−itx

it

∣∣∣∣ = ∣∣∣∣ ∫ x

x−h
e−itydy

∣∣∣∣ ≤ h

we see that

lim
h→∞

(µ(x1, x2) +
1
2
µ(x1)) +

1
2
µ{x2} ≤

≤ lim
h→0

h

2π

∫
R
|ϕX(t)| = 0.

Hence, µ{x} = 0 for any x ∈ R, proving the continuity of F . Now,

F (x+ h)− F (x)
h

= µ(x, x+ h)

=
1
2π

∫
R

(
e−it − e−it(x+h)

hit

)
ϕX(t)dt

=
1
2π

∫
R
− (e−it(x+h) − e−itx)

hit
ϕX(t)dt.

Let h→ 0 to arrive at

F ′(x) =
1
2π

∫
R
e−itxϕX(t)dt.
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Note that the continuity of F ′ follows from this, he continuity of the exponential

and the dominated convergence theorem. �

Writing

F (x) =
∫ x

−∞
F ′(t)dt =

∫ x

−∞
f(t)dt

we see that it has a density

f =
1
2π

∫
R
e−itxϕX(t)dt.

and hence also

ϕ(t) =
∫

R
eitxf(x)dx.

§3 Weak convergence and characteristic functions.

Theorem 3.1. Let {µn} be a sequence of probability measures with characteristic

functions ϕn. (i) If µn converges weakly to a probability measure µ with charac-

teristic function ϕ, then ϕn(t) → ϕ(t) for all t ∈ R. (ii) If ϕn(t) → ϕ̃(t) for all

t ∈ R where ϕ̃ is a continuous function at 0, then the sequence of measures {µn}

is tight and converges weakly to a measure µ and ϕ̃ is the characteristic function

of µ. In particular, if ϕn(t) converges to a characteristic function ϕ then µn ⇒ µ.

Example 3.1. Let µn ∼ N(0, n). Then ϕn(t) = e−
nt2
2 . (By scaling if X ∼

N(µ, σ2) then ϕX(t) = eiµt−σ
2t2/2.) Clearly ϕn → 0 for all t 6= 0 and ϕn(0) = 1

for all n. Thus ϕn(t) converges for ever t but the limit is not continuous at 0. Also

with

µn(−∞, x] =
1√
2πn

∫ x

−∞
e−t

2/2ndt

a simple change of variables (r = t√
n
) gives

µn = (−∞, x] =
1√
2π

∫ x√
n

−∞
e
−t2
2 dt→ 1/2

and hence no weak convergence.
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Proof of (i). This is the easy part. Note that g(x) = eitx is bounded and continu-

ous. Since µn ⇒ µ we get that E(g(Xn)) → E(y(X∞)) and this gives ϕn(t) → ϕ(t)

for every t ∈ R.

For the proof of (ii) we need the following Lemma.

Lemma 3.1 (Estimate of µ in terms of ϕ). For all A > 0 we have

µ[−2A, 2A] ≥ A

∣∣∣∣ ∫ A−1

−A−1
ϕ(t)dt

∣∣∣∣− 1. (3.1)

This, of course can also be written as

1−A

∣∣∣∣ ∫ A−1

−A−1
ϕ(t)|dt| ≥ −µ[−2A, 2A], (3,2)

or

P{|X| > 2A} ≤ 2−A

∣∣∣∣ ∫ A−1

−A−1
ϕ(t)dt

∣∣∣∣. (3.3)

Proof of (ii). Let δ > 0.

∣∣∣∣ 1
2δ

∫ δ

−δ
ϕ(t)dt

∣∣∣∣ ≤ ∣∣∣∣ 1
2δ

∫ δ

−δ
ϕn(t)dt

∣∣∣∣
+

1
2δ

∫ δ

−δ
|ϕn(t)− ϕ(t)|dt.

Since ϕn(t) → ϕ(t) for all t, we have for each fixed δ > 0 (by the dominated

convergence theorem)

lim
n→∞

1
2δ

δ∫
−δ

|ϕn(t)− ϕ(t)|dt→ 0.

Since ϕ is continuous at 0, lim
δ→0

1
2δ

∫ δ

δ

|ϕ(t)|dt = |ϕ(0)| = 1. Thus for all ε > 0

there exists a δ = δ(ε) > 0 and n0 = n0(ε) such that for all n ≥ n0,

1− ε/2 <
∣∣∣∣ 1
2δ

∫ δ

−δ
ϕn(t)dt

∣∣∣∣+ ε/2,
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or
1
δ

∣∣∣∣ ∫ δ

−δ
ϕn(t)dt

∣∣∣∣ > 2(1− ε).

Applying the Lemma with A = 1
δ gives

µn[−2δ−1, 2δ−1] > δ

∣∣∣∣ ∫ δ

−δ
ϕ(t)dt

∣∣∣∣ > 2(1− ε)− 1 = 1− 2ε,

for all n ≥ n0. Thus the sequence {µn} is tight. Let µnk
⇒ ν. Then ν a probability

measure. Let ψ be the characteristic function of ν. Then since µnk
⇒ ν the first

part implies that ϕnk
(t) → ψ(t) for all t. Therefore, ψ(t) = ϕ̃(t) and hence ϕ̃(t) is

a characteristic function and any weakly convergent subsequence musty converge

to a measure whose characteristic function is ϕ̃. This completes the proof. �

Proof of Lemma 3.1. For any T > 0∫ T

−T
(1− eitx)dt = 2T −

∫ T

−T
(cos tx+ i sin tx)dt

= 2T − 2 sin(Tx)
x

.

Therefore,

1
T

∫
Rn

∫ T

−T
(1− eitx)dtdµ(x) = 2−

∫
R

2 sin(Tx)
Tx

dµ(x)

or

2− 1
T

∫ T

−T
ϕ(t)dt = 2−

∫
R

2 sin(πx)
Tx

dµ(x).

That is, for all T > 0,

1
2T

∫ T

−T
ϕ(t)dt =

∫
R

sin(Tx)
Tx

dµ(x).

Now, for any |x| > 2A, ∣∣∣∣ sin(Tx)
Tx

∣∣∣∣ ≤ 1
|Tx|

≤ 1
(2TA)
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and also clearly, ∣∣∣∣ sinTxTx

∣∣∣∣ < 1, for all x.

Thus for any A > 0 and any T > 0,

|
∫

R

sin(Tx)
Tx

dµ(x)| =
∣∣∣∣ ∫ 2A

−2A

sin(Tx)
Tx

µ(dx) +
∫
|x|>2A

sin(Tx)
Tx

dµ(x)
∣∣∣∣

≤ µ[−2A, 2A] +
1

2TA
[1− µ[−2A, 2A]]

=
[
1− 1

2TA

]
µ[−2A, 2A] +

1
2TA

.

Now, take T = A−1 to conclude that

A

2

∣∣∣∣ ∫ A−1

−A−1
ϕ(t)dt

∣∣∣∣ ≤ ∣∣∣∣ ∫
R

sinTx
Tx

dµ

∣∣∣∣
=

1
2
µ[−2A, 2A] + 1/2

which completes the proof. �

Corollary. µ{x: |x| > 2/T} ≤ 1
T

∫ T
−T (1 − ϕ(t))dt, or in terms of the random

variable,

P{|X| > 2/T} ≤ 1
T

∫ T

−T
(1− ϕ(t))dt,

or

P{|X| > T} ≤ T/2
∫ T−1

−T−1
(1− ϕ(t))dt.

§4 Moments and Characteristic Functions.

Theorem 4.1. Suppose X is a random variable with E|X|n <∞ for some positive

integer n. Then its characteristic function ϕ has bounded continuous derivatives

of any order less than or equal to n and

ϕ(k)(t) =

∞∫
−∞

(ix)keitxdµ(x),
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for any k ≤ n.

Proof. Let µ be the distribution measure of X. Suppose n = 1. Since
∫
R

|x|dµ(x) <

∞ the dominated convergence theorem implies that

ϕ′(t) = lim
h→0

ϕ(t+ h)− ϕ(t)
h

= lim
n→0

∫
R

(
ei(t+h)x − eitx

h

)
dµ

=
∫

R
(ix)eitxdµ(x).

We now continue by induction to complete the proof. �

Corollary 4.1. Suppose E|X|n <∞, n an integer. Then its characteristic func-

tion ϕ has the following Taylor expansion in a neighborhood of t = 0.

ϕ(t) =
n∑

m=0

im
tmE(X)m

m!
+ o(tn).

We recall here that g(t) = o(tm) as t→ 0 means g(t)/tm → 0 as t→ 0.

Proof. By calculus, if ϕ has n continuous derivatives at 0 then

ϕ(t) =
n∑

m=0

ϕ(m)(0)
m!

tm + o(tn).

In the present case, ϕ(m)(0) = imE(Xm) by the above theorem.

Theorem 4.2. For any random variable X and any n ≥ 1∣∣∣∣EeitX −
n∑

m=0

E(itX)m

m!

∣∣∣∣ ≤ E

∣∣∣∣eitX −
n∑

m=0

(itX)m

m!

∣∣∣∣
≤ E

(
min

(
|tX|n+1

(n+ 1)!
,
2|tX|n

n!

))
.

This follows directly from
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Lemma 4.2. For any real x and any n ≥ 1,∣∣∣∣eix − n∑
m=0

(ix)m

m!

∣∣∣∣ ≤ min
(
|x|n+1

(n+ 1)!
,

2|X|n

n!

)
.

We note that this is just the Taylor expansion for eix with some information

on the error.

Proof. For all n ≥ 0 (by integration by parts),∫ x

0

(x− s)neisds =
xn+1

(n+ 1)
+

i

(n+ 1)

∫ x

0

(x− s)n+1eisds.

For n = 0 this is the same as

1
i
(eix − 1) =

∫ x

0

eisds = x+ i

∫ x

0

(x− s)eisds

or

eix = 1 + ix+ i2
∫ x

0

(x− s)eisds.

For n = 1,

eix = 1 + ix+
i2x2

2
+
i3

2

∫ x

0

(x− s)2eisds

and continuing we get for any n,

eix −
n∑

m=0

(ix)m

m!
=
in+1

n!

∫ x

0

(x− s)neisds.

So, need to estimate the right hand side.∣∣∣∣ in+1

n!

∫ x

0

(x− s)neisds
∣∣∣∣ ≤ 1

n!

∣∣∣∣ ∫ x

0

(x− s)ndx
∣∣∣∣ = |x|n+1

(n+ 1)!
.

This is good for |x| small. Next,

i

n

∫ x

0

(x− s)neisds = −x
n

n
+
∫ x

0

(x− s)n−1eisds.
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Since
xn

n
=

x∫
0

(x− s)n−1ds

we set
i

n

∫ x

0

(x− s)neisds =
∫ x

0

(x− s)n−1(eis − 1)ds

or
in+1

n!

∫ x

0

(x− s)neisds =
in

(n− 1)!

∫ x

0

(x− s)n−1(eis − 1)ds.

This gives ∣∣∣∣ in+1

n!

∫ x

0

(x− s)neisds
∣∣∣∣ ≤ 2

(n− 1)!

∫ |x|

0

(x− s)n−1ds

≤ 2
n!
|x|n,

and this completes the proof. �

Corollary 1. If EX = µ and E|X|2 = σ2 <∞, then ϕ(t) = 1+itµ− t2σ2

2 +o(t)2,

as t→ 0.

Proof. Applying Theorem 4.1 with n = 2 gives∣∣∣∣ϕ(t)−
(

1 + itµ− t2σ2

2

) ∣∣∣∣ ≤ t2E

(
|t||X|3

3!
∧ 2|X|2

2!

)
and the expectation goes to zero as t → 0 by the dominated convergence theo-

rem. �

§5. The Central Limit Theorem.

We shall first look at the i.i.d. case.

Theorem 5.1. {Xi} i.i.d. with EXi = µ, var(Xi) = σ2 < ∞. Set Sn = X1 +

. . .+Xn. Then
Sn − nµ

σ
√
n

⇒ N(0, 1).
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Equivalently, for any real number x,

P{Sn − µ

σ
√
n

≤ x} → 1√
2π

∫ x

−∞
e−y

2/2dt.

Proof. By looking at X ′
i = Xi − µ, we may assume µ = 0. By above

ϕX1(t) = 1− t2σ2

2
+ g(t)

with g(t)
t2 → 0 as t→ 0. By i.i.d.,

ϕSn
(t) =

(
1− t2σ2

2
+ g(t)

)n
or

ϕ Sn
σ
√

n
(t) = ϕSn

(σ
√
nt) =

(
1− t2

2n
+ g

(
t

σ
√
n

))n
.

Since
g(t)
t2

→ 0 as t→ 0, we have (for fixed t) that

g
(

t
σ
√
n

)
(1/

√
n)2

=
g
(

t
σ
√
n

)
1
n

→ 0,

as n→∞. This can be written as

ng

(
t

σ
√
n

)
→ 0 as n→∞.

Next, set Cn = − t
2

2
+ ng

(
t

σ
√
n

)
and C = −t2/2. Apply Lemma 5.1 bellow to

get

ϕ Sn
σ
√

n
(t) =

(
1− t2

2n
+ g(t/σ

√
n)
)n

→ e−t
2/2

and complete the proof. �
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Lemma 5.1. If Cn are complex numbers with Cn → C ∈ C. Then
(

1 +
Cn
n

)n
→

eC .

Proof. First we claim that if z1, z2, . . . , zn and ω1, . . . , ωn are complex numbers

with |zj | and |ωj | ≤ η for all j, then∣∣∣∣ n∏
m=1

zm −
n∏

m=1

ωm

∣∣∣∣ ≤ ηn−1
n∑

m=1

|zm − ωm|. (5.1)

If n = 1 the result is clearly true for n = 1; with equality, in fact. Assume it for

n− 1 to get ∣∣∣∣ n∏
m=1

zm −
n∏

m=1

ωm

∣∣∣∣ ≤ ∣∣∣∣zn n−1∏
m=2

zm − ωn

n−1∏
m=1

ωm

∣∣∣∣∣∣∣∣zn n−1∏
m=1

zm − zn

n−1∏
m=1

ωm + zn

n−1∏
m=1

ωm − ωn

n−1∏
m=1

ωm

∣∣∣∣
≤ η

∣∣∣∣ n−1∏
m=1

zm −
n−1∏
m=1

ωm

∣∣∣∣+ ∣∣∣∣ n−1∏
m=1

ωm

∣∣∣∣|zn − ωm|

≤ ηηn−2
n−1∑
m=1

|zm − ωm|+ ηn−1|zn − ωm|

= ηn−1
n∑

m=1

|zm − ωm|.

Next, if b ∈ C and |b| ≤ 1 then

|eb − (1 + b)| ≤ |b|2. (5.2)

For this, write eb = 1 + b+ b2

2 + b3

3! + . . . . Then

|eb − (1 + b)| ≤ |b|2

2

(
1 +

2|b|
3!

+
2|b|2

4!
+ . . .

)
≤ |b|2

2

(
1 +

1
2

+
1
22

+
1
23

+ . . .

)
= |b|2,

which establishes (5.2).
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With both (5.1) and (5.2) established we let ε > 0 and choose γ > |C|. Take

n large enough so that |Cn| < γ and γ2e2γ/n < ε and
∣∣∣∣Cnn

∣∣∣∣ ≤ 1. Set zi = (1+ Cn

n )

and ωi = (eCn/n) for all i = 1, 2, . . . , n. Then

|zi| =
∣∣∣∣1 +

Cn
n

∣∣∣∣ ≤ (1 +
γ

n

)
and |ωi| ≤ eγ/n

hence for both zi and |ωi| we have the bound eγ/n
(
1 + γ

n

)
. By (5.1) we have

∣∣∣∣ (1 +
Cn
n

)n
− eCn

∣∣∣∣ ≤ e
γ
n (n−1)

(
1 +

γ

n

)n−1 n∑
m=1

∣∣∣∣eCn
n −

(
1 +

Cn
n

) ∣∣∣∣
≤ e

γ
n (n−1)

(
1 +

γ

n

)n−1

n

∣∣∣∣eCn
n −

(
1 +

Cn
n

) ∣∣∣∣
Setting b = Cn/n and using (5.2) we see that this quantity is dominated by

≤ e
γ
n (n−1)

(
1 +

γ

n

)n−1

n

∣∣∣∣Cnn
∣∣∣∣2

≤
γ2e

γ
n (n−1)

(
1 + γ

n

)n−1

n

≤ γ2e
γ
n (n−1)eγ

n
≤ γ2e2γ

n
< ε,

which proves the lemma �

Example 5.1. Let Xi be i.i.d. Bernoullians 1 and 0 with probability 1/2. Let

Sn = X1 + . . .+Xn = total number of heads after n–tones.

EXi = 1/2, var(Xi) = EX2
i − (E(X))2 = 1/2− (

1
4
) = 1/4

and hence
Sn − µn
σ
√
n

=
Sn − n

2√
n/4

⇒ χ = N(0, 1).

From a table of the normal distribution we find that

P (χ > 2) ≈ 1− .9773 = 0.227.
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Symmetry:

P (|χ| < 2) = 1− 2(0.227) = .9546.

Hence for n large we should have

0.95 ≈ P

(∣∣∣∣Sn − n
2√

n2/4

∣∣∣∣ < 2

)

= P

{
−2
2
√
n ≤ Sn −

n

2
<

2
2
√
n

}
= P

{n
2
−
√
n < Sn ≤

√
n+ n/2

}
.

If n = 250, 000,

n

2
−
√
n = 125, 000− 500

n

2
+
√
n = 125, 000 + 5000.

That is, with probability 0.95, after 250,000 tosses you will get between 124,500

and 125,500 heads.

Examples 5.2. A Roulette wheel has slots 1–38 (18 red and 18 black) and two

slots 0 and 00 that are painted green. Players can bet $1 on each of the red and

black slots. The player wins $1 if the ball falls on his/her slot. Let X1, . . . , Xn be

i.i.d. with Xi = {±1} and P (Xi = 1) = 18
38 , P (Xi = −1) = 20

38 . Sn = X1 + · · ·+Xn

is the total fortune of the player after n games. Suppose we want to know P (Sn ≥ 0)

after large numbers tries. Since

E(Xi) =
18
38

− 20
38

=
−2
38

= − 1
19

var(Xi) = EX2 − (E(x))2 = 1−
(

1
19

)2

= 0.9972

we have

P (Sn ≥ 0) = P

(
Sn − nµ

σ
√
n

≥ −nµ
σ
√
n

)
.
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Take n such that
−
√
n
(−1

19

)
(.9972)

= 2.

This gives
√
n = 2(19)(0.9972) or n ≈ 3 61.4 = 1444. Hence

P (S1444 ≥ 0) = P

(
Sn − nµ

σ
√
n

≥ 2
)

≈ P (χ ≥ 2)

= 1− 0.9772

= 0.0228

Also,

E(S1444) = −1444
19

= −4.19

= −76.

Thus, after n = 1444 the Casino would have won $76 of your hard earned dollars,

in the average, but there is a probability .0225 that you will be ahead. So, you

decide if you want to play!

Lemma 5.2. Let Cn,m be nonnegative numbers with the property that max
1≤m≤n

Cn,m →

0 and
n∑

m=1

Cn,m → λ. Then

n∏
m=1

(1− Cn,m) → e−λ.

Proof. Recall that

lim
a↓0

log

(
1

1−a

)
a

= 1.

Therefore, given ε > 0 there exists δ > 0 such that 0 < a < δ implies

(1− ε)a ≤ log
(

1
1− a

)
≤ (1 + ε)a.
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If n is large enough, Cm,n ≤ δ and

(1− ε)Cm,n ≤ log
(

1
1− Cm,n

)
≤ (1 + ε)Cm,n.

Thus
n∑

m=1

log
(

1
1− Cm,n

)
→ λ

and this is the same as
n∑

m=1

log(1− Cm,n) → −λ

or

log

(
n∏

m=1

(1− Cm,n)

)
→ −λ.

This implies the result. �

Theorem 5.2 (The Lindeberg–Feller Theorem). For each n, let Xn,m, 1 ≤

m ≤ n, be independent r.v.’s with EXn,m = 0. Suppose

(i)
n∑

m=1

EX2
n,m → σ2, σ ∈ (0,∞).

(ii) For all ε > 0, lim
n→∞

n∑
m=1

E(|Xn,m|2; |Xn,m| > ε) = 0.

Then, Sn = Xn,1 +Xn,2 + . . .+Xn,m ⇒ N(0, σ2).

Example 5.3. Let Y1, Y2, . . . be i.i.d., EYi = 0, E(Y 2
i ) = σ2. Let Xn,m =

Ym/n
1/2. Then Xn,1 +Xn,2 + . . .+Xn,m = Sn√

n
. Clearly,

n∑
m=1

E(Y 2
m)
n

=
σ2

n

n∑
m=1

1 = σ2.

Also, for all ε > 0,

n∑
m=1

E(|Xn,m|2; |Xn,m| > ε) = nE

(
|Y1|2

n
;
|Y1|
n1/2

> ε

)
= E(|Y1|2; |Y1| > εn1/2)



140

and this goes to 0 as n→∞ since E|Y1|2 <∞.

Proof. Let ϕn,m(t) = E(eitXn,m), σ2
n,m = E(X2

n,m). It is enough to show that

n∏
m=1

ϕn,m(t) → e−t
2σ2/2.

Let ε > 0 and set zn,m = ϕn,m(t), ωn,m = (1− t2σ2
n,m/2). We have

|zn,m − ωn,m| ≤ E

(
|tXn,m|3

3!
∧ 2|tXn,m|2

2!

)
≤ E

[
|tXn,m|

3!

3

∧ 2|tXn,m|2

2!
; |Xn,m| ≤ ε

)
+ E

(
|tXn,m|3

3!
∧ 2t2|Xn,m|2

2!
; |Xn,m| > ε

)
≤ E

(
|tXn,m|3

3!
; |Xn,m| ≤ ε

)
+ E

(
|tXn,m|2; |Xn,m| > ε

)
≤ εt3

6
E|Xn,m|2 + t2E(|Xn,m|2; |Xn,m| > ε)

Summing from 1 to n and letting n→∞ gives (using (i) and (ii))

lim
n→∞

n∑
m=1

|zn,m − ωn,m| ≤
εt3σ2

6
.

Let ε→ 0 to conclude that

lim
n→∞

n∑
m=1

|zn,m − ωn,m| → 0.

Hence with η = 1 (5.1) gives∣∣∣∣ n∏
m=1

ϕn,m(t)−
n∏

m=1

(
1−

t2σ2
n,m

2

)∣∣∣∣→ 0,

as n→∞. Now,

σ2
n,m ≤ ε2 + E(|Xn,m|2; |Xn,m| > ε)
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and therefore,

max
1≤m≤n

σ2
n,m ≤ ε2 +

n∑
m=1

E(|Xn,m|2; |Xn,m| > ε).

The second term goes to 0 as n→∞. That is, max
1≤m≤n

σ2
n,m → 0. Set Cn,m = t2σ2

n,m

2 .

Then
n∑

m=1

Cn.m → t2

2
σ

and Lemma 5.2 shows that

n∏
m=1

(
1− t2σn,m

2

)
→ e−

t2σ2
2 ,

completing the proof of the Theorem. �

We shall now return to the Kolmogorov three series theorem and prove the

necessity of the condition. This was not done when we first stated the result earlier.

For the sake of completeness we state it in full again.

The Kolmogorov’s Three Series Theorem. Let X1, X2, . . . be independent

random variables. Let A > 0 and Ym = Xm1(|Xm|≤A). Then
∞∑
n=1

Xn converges a.s.

if and only if the following three hold:

(i)
∞∑
n=1

P (|Xn| > A) <∞,

(ii)
∞∑
n=1

EYn converges and

(iii)
∞∑
n=1

var(Yn) <∞.

Proof. We have shown that if (i), (ii), (iii) are true then
∞∑
n=1

Xn converges a.s. We

now show that if
∞∑
n=1

Xn converges then (i)–(iii) hold. We begin by proving (i).
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Suppose this is false. That is, suppose

∞∑
m=1

P (|Xn| > A) = ∞.

Then the Borel–Cantelli lemma implies that

P (|Xn| > A i.o.) > 0.

Thus, lim
n∑

m=1
Xm cannot exist. Hence if the series converges we must have (i).

Next, suppose (i) holds but
∞∑
n=1

var(Yn) = ∞. Let

Cn =
n∑

m=1

var(Ym) and Xn,m =
(Ym − EYm

C
1/2
n

.

Then

EXn,m = 0 and
n∑

m=1

EX2
n,m = 1.

Let ε > 0 and choose n so large that
2A

C
1/2
n

< ε. Then

n∑
m=1

E(|Xn,m|2; |Xn,m| > ε) ≤
n∑

m=1

E

(
|Xn,m|2; |Xn,m| >

2A

C
1/2
n

)

≤
n∑

m=1

E

(
|Xn,m|2;

2A

C
1/2
n

<
|Yn|+ E|Ym|

C
1/2
n

)
.

But
|Yn|+ E|Ym|

C
1/2
n

≤ 2A

C
1/2
n

.

So, the above sum is zero. Let

Sn = Xn,1 +Xn,2 + . . . Xn,m =
1

C
1/2
n

n∑
m=1

(Ym − EYm).

By Theorem 5.2,

Sn ⇒ N(0, 1).
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Now, if lim
n→∞

n∑
m=1

Xm exists then lim
n→∞

n∑
m=1

Ym exists also. (This follows from (i).)

Let

Tn =
n∑

m=1

Ym

C
1/2
n

=
1

C
1/2
n

n∑
m=1

Ym

and observe that Tn ⇒ 0. Therefore, (Sn − Tn) ⇒ χ where χ ∼ N(0, 1). (This

follows from the fact that limn→∞E(g(Sn−Tn)) = limn→∞E(g(Sn)) = E(g(χ)).)

But

Sn − Tn = − 1

C
1/2
n

n∑
m=1

E(Ym)

which is nonrandom. This gives a contradiction and shows that (i) and (iii) hold.

Now,
∞∑
n=1

var(Yn) < ∞ implies
∞∑
m=1

(Ym − EYm) converges, by the corollary

to Kolmogorov maximal inequality. Thus if
n∑

m=1

Xn converges so does
∑
Ym and

hence also
∑
EYm. �

§6. The Polya distribution.

We begin with some discussion on the Polya distribution. Consider the density

function given by

f(x) = (1− |x|)1x∈(−1,1)

= (1− |x|)+.

Its characteristic function is given by

ϕ(t) =
2(1− cos t)

t2

and therefore for all y ∈ R,

(1− |y|)+ =
2
2π

∫
R
e−ity

(1− cos t)
t2

dt

=
1
π

∫
R

(
1− cos t

t2

)
e−itydt.
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Take y = −y this gives

(1− |y|)+ =
1
π

∫
R

(1− cos t)
t2

eitydt.

So, if f1(x) =
1− cosx
πx2

which has
∫
R

f1(x)dx = 1, and we take X ∼ F where F has

density f1 we see that (1−|t|)+ is its characteristic function This is called the Polya

distribution. More generally, If fa(x) = 1−cos ax
πax2 , then then we get the characteristic

function ϕa(t) =
(

1−
∣∣∣∣ ta ∣∣∣∣)+

, just by changing variables. The following fact will be

useful below. If F1, . . . , Fn have characteristic functions ϕ1, . . . , ϕn, respectively,

and λi ≥ 0 with
∑
λi = 1. Then the characteristic function of

n∑
i=1

λiFi is
n∑
i=1

λiϕi.

Theorem 6.1 (The Polya Criterion). Let ϕ(t) be a real and nonnegative

function with ϕ(0) = 1, ϕ(t) = ϕ(−t), decreasing and convex on (0,∞) with

lim
t↓0

ϕ(t) = 1, lim
t↑∞

ϕ(t) = 0. There is a probability measure ν on (0,∞) so that

ϕ(t) =
∫ ∞

0

(
1−

∣∣∣∣ ts
∣∣∣∣)+

dν(s)

and ϕ(t) is a characteristic function.

Example 6.1. ϕ(t) = e−|t|
α

for any 0 < α ≤ 2. If α = 2, we have the normal

density. If α = 1, we have the Cauchy density. Let us in show here that exp(−|t|α)

is a characteristic function for any 0 < α < 1. With a more delicate argument, one

can do the case 1 < α < 2. We only need to verify that the function is convex.

Differentiating twice this reduces to proving that

αt2α−2 − α2tα−2 + αtα−2 > 0.

This is true if α2tα − α2 + α > 0 which is the same as α2tα − α2 + α > 0 which

follows from αtα + α(1− α) > 0 since 0 < α ≤ 1.



145

§7. Rates of Convergence; Berry–Esseen Estimates.

Theorem 7.1. Let Xi be i.i.d., E|Xi|2 = σ2, EXi = 0 and E|Xi|3 = ρ < ∞. If

Fn is the distribution of
Sn
σ
√
n

and Φ(x) is the normal distribution, we have

sup
x∈R

|Fn(x)− Φ(x)| ≤ cρ

σ3
√
n
,

where c is an absolute constant. In fact, we may take c = 3.

More is actually true:

Fn(x) = φ(x) +
H1(x)√

n
+
H2(x)
n

+ . . .+
H3(x)
n3/2

+ . . .

where Hi(x) are explicit functions involving Hermit polynomials. We shall not

prove this, however.

Lemma 7.1. Let F be a distribution function and G a real–valued function with

the following conditions:

(i) lim
x→−∞

G(x) = 0, lim
x→+∞

G(x) = 1,

(ii) G has bounded derivative with sup
x∈R

|G′(x)| ≤M . Set A =
1

2M
sup
x∈R

|F (x)−G(x)|.

There is a number α such that for all T > 0,

2MTA

{
3
∫ TA

0

1− cosx
x2

dx− π

}

≤
∣∣∣∣ ∫ ∞

−∞

1− cosTx
x2

{F (x+ α)−G(x+ α)}dx
∣∣∣∣.

Proof. Observe that A <∞, sinceG is bounded and we may obviously assume that

it is positive. Since F (t)−G(t) → 0 at t → ±∞, there is a sequence xn → b ∈ R

such that

F (xn)−G(xn) →


2MA

or

−2MA

.
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Since F (b) ≥ F (b−) it follows that either
F (b)−G(b) = 2MA

or

F (b−)−G(b) = −2MA.

Assume F (b−)−G(b) = −2MA, the other case being similar.

Put

α = b−A < b, since

A = (b− α).

If |x| < A we have

G(b)−G(x+ α) = G′(ξ)(b− α− x)

= G′(ξ)(A− x)

Since |G′(ξ)| ≤M we get

G(x+ a) = G(b) + (x−A)G′(ξ)

≥ G(b) + (x−A)M.

So that

F (x+ a)−G(x+ a) ≤ F (b−)− [G(b) + (x−∆)M ]

= −2MA− xM +AM

= −M(x+A)

for all x ∈ [−A,A]. Therefore for all T > 0,

∫ A

−A

1− cosTx
x2

{F (x+ α)−G(x+ α)}dx ≤ −M
∫ A

−A

1− cosTx
x2

(x+A)dx

= −2MA

∫ A

0

(
1− cosTx

x2

)
dx
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Also,∣∣∣∣{ ∫ −A

−∞
+
∫ ∞

A

}
1− cosTx

x2
{F (x+ α)−G(x+ α)}dx

∣∣∣∣ ≤ 2MA

{∫ −A

−∞
+
∫ ∞

A

}
1 + cosTx

x2
dx

= 4MA

∫ ∞

A

1− cosTx
x2

dx.

Adding these two estimates gives∫ ∞

−∞

(
1− cosTx

x2

)
{F (x+ α)−G(x+ α)}dx

≤ 2MA

{
−
∫ A

0

+2
∫ ∞

A

}{
1− cosTx

x2

}
dx

= 2MA

{
− 3

∫ A

0

+2
∫ ∞

0

}{
1− cosTx

x2

}
dx

= 2MA

{
− 3

∫ A

0

1− cosTx
x2

dx+ 2
∫ ∞

0

1− cosTx
x2

dx

}
= 2MA

{
− 3

∫ A

0

1− cosTx
x2

dx+ 2
(
πT

2

)}
= 2MTA

{
− 3

∫ TA

0

1− cosx
x2

dx+ π

}
< 0,

proving the result. �

Lemma 7.2. Suppose in addition that G is of bounded variation in (−∞,∞) (for

example if G has a density) and that
∞∫

−∞

|F (x)−G(x)|dx <∞.

Let f(t) and g(t) be the characteristic functions of F and G, respectively. Then

A ≤ 1
2πM

∫ T

−T

|f(t)− g(t)|
t

dt+
12
Tπ

,

for any T > 0.

Proof. Since F and G are of bounded variation,

f(t)− g(t) = −it
∫ ∞

−∞
{F (x)−G(x)}eitxdx.
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Therefore,

f(t)− g(t)
−it

e−itα =
∫ ∞

−∞
(F (x)−G(x))e−itα+itxdx

=
∫ ∞

−∞
F (x+ α)−G(x+ α)eitxdx.

It follows from our assumptions that the right hand side is uniformly bounded in

α. Multiply the left hand side by (T − |t|) and integrating gives∫ T

−T

{
f(t)− g(t)

−it

}
e−itα(T − |t|)dt

=
∫ T

−T

∫ ∞

−∞
{F (x+ α)−G(x+ α)}eitx(T − |t|)dxdt

=
∫ ∞

−∞
{F (x+ α)−G(x+ α)}

∫ T

−T
eitx(T − |t|)dtdx

=
∫ ∞

−∞
(F (x+ α)−G(x+ α))

∫ T

−T
eitx(T − |t|)dtdx.

= I

Writing
1− cosTx

x2
=

1
2

∫ T

−T
(T − |t|)eitxdt

we see that

I = 2
∫ ∞

−∞
(F (x+ α)−G(x+ α))

{
1− cosTx

x2

}
dx

which gives∣∣∣∣ ∫ ∞

−∞

{
F (x+ α)−G(x+ α)}

{
1− cosTx

x2

}
dx

∣∣∣∣
≤ 1

2

∣∣∣∣ ∫ T

−T

f(t)− g(t)
−it

e−ita(T − |t|)dt
∣∣∣∣

≤ T/2
∫ T

−T

∣∣∣∣f(t)− g(t)
t

∣∣∣∣dt
Therefore by Lemma 7.1,

2MA

{
3
∫ TA

0

1− cosx
x2

dx− π

}
≤ 1

2

∫ T

−T

∣∣∣∣f(t)− g(t)
t

∣∣∣∣ dt
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However,

3
∫ TA

0

1− cosx
x2

dx− π = 3
∫ ∞

0

1− cosx
x2

dx− 3
∫ ∞

TA

1− cosx
x2

dx− π

= 3
(π

2

)
− 3

∫ ∞

TA

1− cosx
x2

dx− π

≥ 3π
2
− 6

∫ ∞

TA

dx

x2
− π =

π

2
− 6
TA

Hence, ∫ T

−T

|f(t)− g(t)|
t

dt ≥ 2
(

2MA

(
π

2
− 6
TA

))
= 2MπA− 24M

T

or equivalently,

A ≤ 1
2M

∫ T

−T

∣∣∣∣f(t)− g(t)
t

∣∣∣∣ dt+
12
Tπ

,

which proves the theorem. �

Proof of Theorem 7.1. Without loss of generality, σ2 = 1. Then ρ ≥ 1. We will

apply the above lemmas with

F (x) = Fn(x) = P

(
Sn√
n
> x

)
and

G(x) = Φ(x) =
1√
2π

∫ x

−∞
e−y

2/2dy.

Clearly they satisfy the hypothesis of Lemma 7.1 and in fact we may take M = 2/5

since

sup
x∈R

|Φ′(x)| = 1√
2π

= .39894 < 2/5.

Also clearly G is of bounded variation. We need to show that∫
R

|Fn(x)− Φ(x)|dx <∞.
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To see this last fact, note that Clearly,∫ 1

−1

|Fn(x)− Φ(x)|dx <∞

and we need to verify that∫ −1

−∞
|Fn(x)− Φ(x)|dx+

∫ ∞

1

|F (x)− Φ(x)|dx <∞. (7.1)

For x > 0, P (|X| > x} ≤ 1
λ2E|X|2, by Chebyshev’s inequality. Therefore,

(1− Fn(x)) = P

(
Sn√
n
> x

)
≤ 1
x2
E

∣∣∣∣ Sn√n
∣∣∣∣2 < 1

x2

and if N denotes a normal random variable with mean zero and variance 1 we also

have

(1− Φ(x)) = P (N > x) ≤ 1
x2
E|N |2 =

1
x2
.

In particular: for x > 0, max ((1− Fn(x)), (1− Φ(x))) ≤ 1
x2 . If x < 0 then

Fn(x) = P

(
Sn√
n
< x

)
= P

(
− Sn√

n
> −x

)
≤ 1
x2
E

∣∣∣∣ Sn√n
∣∣∣∣2 =

1
x2

and

Φ(x) = P (N < x) ≤ 1
x2
.

Once again, we have max(Fn(x),Φ(x)) ≤ 1
x2 hence for all x 6= 0 we have

|F (x)− Φ(x)| ≤ 1
x2
.

Therefore, (7.1) holds and we have verified the hypothesis of both lemmas. We

obtain

|Fn(x)− Φ(x)| ≤ 1
π

∫ T

−T

|ϕn(t/
√
n)− e−t

2/2|
|t|

dt+
24M
πT

≤ 1
π

∫ T

−T

|ϕn(t/
√
n)− e−t

2/2|
|t|

dt+
48

5πT
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Assume n is large and take T = 4
√
n

3ρ . Then

48
5πT

=
48 · 3

5π4
√
n
ρ =

12 · 3
5π
√
n
ρ =

36ρ
5π
√
n
.

Next we claim

1
|t|
|ϕn(t/

√
n)− e−t

2/2| ≤ 1
T
e−t

2/4

{
2t2

9
+
|t|3

18

}
(7.2)

for −T ≤ t ≤ T , T = 4
√
n/3ρ and n ≥ 10. If this were the case then

πT |Fn(x)− Φ(x)| ≤
∫ T

−T
e−t

2/4

{
2t2

9
+
|t|3

18

}
dt+

48
5

=
∫ T

−T
e−t

2/4

{
2t2

9
+
|t|3

18

}
dt+

48
5

≤ 2
9

∫ ∞

−∞
e−t

2/4t2dt+
1
18

∫ ∞

−∞
e−t

2/4|t|3dt+ 9.6

= I + II + 9.6.

Since
2
9

∫ ∞

−∞
e−t

2/4t2dt =
8
9
√
π

and

1
18

∫ ∞

−∞
|t|3e−t

2/4dt =
1
18

{
2
∫ ∞

0

t3e−t
2/4dt

}
=

1
18

{
2
∫ ∞

0

t2 · te−t
2/4dt

}
=

1
18

+
{

2
∫ ∞

0

2t · 2e−t
2/4dt

}
=

1
18

{
8
∫ ∞

0

te−t
2/4dt

}
=
{
− 16e−t

2/4

∣∣∣∣∞
0

}
1
18

=
16
18

=
8
9
.
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Therefore,

πT |Fn(x)− Φ(x)| ≤
(

8
9
√
π +

8
9

+ 9.6
)
.

This gives,

|Fn(x)− Φ(x)| ≤ 1
πT

{
8
9
(1 +

√
π

)
+ 9.6

}
=

3ρ
4
√
n π

{
8
9
(1 +

√
π) + 9.6

}
<

3ρ√
n
.

For n ≤ 9, the result is clear since 1 ≤ ρ. It remains to prove (7.2). Recall that

that
∣∣∣∣ϕ(t)−

n∑
m=0

E(itX)m

m!

∣∣∣∣ ≤ E(min |tX|n+1

(n+1)!
2|tX|n
n!

)
. This gives

∣∣∣∣ϕ(t)− 1 +
t2

2

∣∣∣∣ ≤ ρ|t|3

6

and hence

|ϕ(t)| ≤ 1− t2/2 +
ρ|t|3

6
,

for t2 ≤ 2.

With T = 4
√
n

3ρ , if |t| ≤ T then ρ|t|√
n
≤ (4/3) < 2 and t/

√
n =

4
3ρ

< 2. Thus∣∣∣∣ϕ( t√
n

)∣∣∣∣ ≤ 1− t2

2n
+

ρ|t|3

6n3/2

= 1− t2

2n
+

ρ|t|
6
√
n

|t|2

n

≤ 1− t2

2n
+

4
18
t2

n

= 1− 5t2

18n

≤ e
−5t2
18n ,

given that 1− x ≤ e−x. Now, let z = ϕ(t/
√
n), w = e−t

2/2n and γ = e
−5t2
18n . Then

for n ≥ 10, γn−1 ≤ e−t
2/4 and the lemma above gives

|zn − wn| ≤ nγn−1|z − w|
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which implies that

|ϕ(t/
√
n)− e−t

2/2| ≤ ne
−5t2
18n (n−1)

∣∣∣∣ϕ(t/
√
n)− e−t

2/2n

∣∣∣∣
≤ ne−t

2/4

∣∣∣∣ϕ(t/
√
n)− 1 +

t2

2n
− e−t

2/2n + 1− t2

2n

∣∣∣∣
≤ ne−t

2/4

∣∣∣∣ϕ(t/
√
n)− 1 +

t2

2n

∣∣∣∣+ ne−t
2/4

∣∣∣∣1− t2

2n
− e−t

2/2n

∣∣∣∣
≤ ne−t

2/4 ρ|t|3

6n3/2
+ ne−t

2/4 t4

2 · 4n2
,

using the fact that |e−x − (1− x)| ≤ x2

2 , for 0 < x < 1. We get

1
|t|

∣∣∣∣ϕ(t/
√
n)− e−t

2/2

∣∣∣∣ ≤ ρt2e−t
2/4

6
√
n

+
e−t

2/4|t|3

8n

= e−t
2/4

{
ρt2

6
√
n

+
|t|3

8n

}
≤ 1
T
e−t

2/4

{
2t2

9
+
|t|3

18

}
,

using ρ/
√
n = 4

3T and
1
n

=
1√
n

1√
n
≤ 4

3
T

1
3
, ρ > 1 and n ≥ 10.This completed

the proof of (7.2) and the proof of the theorem. �

Let us now take a look at the following question. Suppose F has density f .

Is it true that the density of
Sn√
n

tends to the density of the normal? This is not

always true. as shown in Feller, volume 2, page 489. However, it is true if add some

other conditions. We state the theorem without proof.

Theorem. Let Xi be i.i.d., EXi = 0 and EX2
i = 1. If ϕ ∈ L1, then

Sn√
n

has a

density fn which converges uniformly to
1√
2π

e−x
2/2 = η(x).

§8. Limit Theorems in Rd.

Recall that Rd = {(x1, . . . , xd):xi ∈ R}. For any two vectors x, y ∈ Rd we

will write x ≤ y if xi ≤ yi for all i = 1, . . . , d and write x → ∞ if xi → ∞ for all
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i. Let X = (x1, . . . , xd) be a random vector and defined its distribution function

by F (x) = P (X ≤ x). F has the following properties:

(i) If x ≤ y then F (x) ≤ F (y).

(ii) lim
x→∞

F (x) = 1, lim
xi→−∞

F (x) = 0.

(iii) F is right continuous. That is, lim
y↓x

F (x) = F (x).

The distribution measure is given by µ(A) = P (X ∈ A), for all A ∈ B(Rd).

However, unlike the situation of the real line, a function satisfying (i) ↔ (ii) may

not be the distribution function of a random vector. Example: we must have:

P (X ∈ (a1, b1]× (a2, b2]) = F (b1, b2)− F (a1, b2)

P (a < X1 ≤ b1, a2 ≤ X2 ≤ b2)− F (b1, a2) + F (a1, a2).

Need: measure of each vect. ≥ 0,

Example 8.1.

F (x1, x2) =


1, x1, x1 ≥ 1
2/3, x1 ≥ 1, 0 ≤ x2 ≤ 1
2/3, x2 ≥ 1, 0 ≤ x1 < 1
0, else

If 0 < a1, a2 < 1 ≤ b1, b2 <∞, then

F (b1, b2)− F (a1, b2)− F (b1, a2) + F (a1, a2) = 1− 2/3− 2/3 + 0

= −1/3.
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Hence the measure has

µ(0, 1) = µ(1, 0) = 2/3, µ(1, 1) = −1/3

which is a signed measure (not a probability measure).

If F is the distribution function of (X1, . . . , Xn), then Fi(x) = P (Xi ≤ x),

x ∈ R is called the marginal distributions of F . We also see that

Fi(x) = lim
m→∞

F (m, . . . ,m, xi, . . . ,m)

As in the real line, F has a density if there is a nonnegative function f with∫
Rn

f(y)dy =
∫

R
· · ·
∫

R
f(y1, y2, . . . , yn)dy1 . . . dyn = 1

and

F (x1, x2, . . . , xd) =
∫ x1

−∞
. . .

∫ xd

−∞
f(y)dy1 . . . dy2.

Definition 8.1. If Fn and F are distribution functions in Rd, we say Fn converges

weakly to F , and write Fn ⇒ F , if lim
n→∞

Fn(x) = F (x) for all points of continuity

of F . As before, we also write Xn ⇒ X, µn ⇒ µ.

As in the real line, recall that A in the closure of A and Ao is its interior and

∂A = A− Ao is its boundary. The following two results are exactly as in the real

case. We leave the proofs to the reader.

Theorem (Skorohod) 8.1. Suppose Xn ⇒ X. Then there exists a sequence of

random vectors Yn and a random vector Y with Yn ∼ Xn and Y ∼ X such that

Yn → Y a.e.

Theorem 8.2. The following statements are equivalent to Xn ⇒ X.

(i) Ef(Xn) → E(f(X)) for all bounded continuous functions f .
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(iii) For all closed sets K, limP (Xn ∈ K) ≤ P (X ∈ K).

(iv) For all open sets G, limP (Xn ∈ G) ≥ P (X ∈ G).

(v) For all Borel sets A with (P (X ∈ ∂A) = 0,

lim
n→∞

P (Xn ∈ A) = P (X∞ ∈ A).

(vi) Let f : Rd → R be bounded and measurable. Let Df be the discontinuity

points of f . If P (X ∈ Df ) = 0, then E(f(Xn)) → E(f(X∞)).

Proof. Xn ⇒ X∞ ⇒ (i) trivial. (i) ⇒ (ii) trivial. (i) ⇒ (ii). Let d(x,K) = inf{|x−

y|: y ∈ K}. Set

ϕj(t) =


1 t ≤ 0
1− jt 0 ≤ t ≤ j−1

0 −1 ≤ t

and let fj(x) = ϕj(dist (x,K)). The functions fj are continuous and bounded by

1 and fj(x) ↓ IK(x), since K is closed. Therefore,

lim sup
n→∞

µn(K) ≤ lim
n→∞

E(fj(Xn))

= E(fj(X))

and this last quantity ↓ P (X ∈ K) as j ↑ ∞.

That (iii) ⇒ (iv) follows by taking complements. For (v) implies convergence

in distribution, assume F is continuous at x = (x1, . . . , xd), and set A = (−∞, x] =

(−∞, x1]× . . . (−∞, xd]. We have µ(∂A) = 0. So, Fn(x) = F (xn ∈ A) → P (X∞ ∈

A) = F (x). �

As in the real case, we say that a sequence of measurers µn is tight if given

ε ≥ 0 exists an Mε > 0 such that

inf
n
µn([−Mε,Mε]d) ≥ 1− ε.
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We remark here that Theorem 1.6 above holds also in the setting of Rd.

The characteristic function of the random vector X = (X1, . . . , Xd) is defined as

ϕ(t) = E(eit·X) where t ·X = t1X1 + . . .+ tdXd.

Theorem 8.3 (The inversion formula in Rd). Let A = [a1, b1]× . . .× [ad, bd]

with µ(∂A) = 0. Then

µ(A) = lim
T→∞

1
(2π)d

∫ T

−T
. . .

∫ T

−T
ψ1(t1)ϕ(t) . . . ψd(td)ϕ(t)dt1, . . . , dt2

= lim
T→∞

1
(2π)d

∫
[−T,T ]d

d∏
j=1

ψj(tj)ϕ(t)dt,

where

ψj(s) =
(
eisaj − e−sbj

is

)
,

for s ∈ R.

Proof. Applying Fubini’s Theorem we have∫
[−T,T ]d

d∏
j=1

ψj(tj)
∫

Rd

eit·xdµ(x)

=
∫

[−T,T ]d

d∏
j=1

ψj(tj)
∫

Rd

eit1·x1+...+itd·Xddµ(x)dt

=
∫

Rd

∫
[−T,T ]d

d∏
j=1

ψj(tj)eit·Xdtdµ(x)

=
∫

Rd

∫
[−T,T ]d

d∏
j=1

ψj(tj)eitjXjdtdµ(x)

=
∫

Rd

[ d∏
j=1

∫
[−T,T ]

ψj(tj)eitjXjdtj

]
dµ(x)

→
∫

Rd

d∏
j=1

[
π(1(aj ,bj)(xj) + 1[aj ,bj ](xj)

]
dµ(x)

and this proves the result.
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Theorem (Continuity Theorem) 8.4. Let Xn and X be random vectors with

characteristic functions ϕn and ϕ, respectively. Then Xn ⇒ X if and only if

ϕn(t) → ϕ(t).

Proof. As before, one direction is trivial. Let f(x) = eitx. This is bounded and

continuous. Xn ⇒ X implies ϕn(x) = E(f(Xn)) → ϕ(t).

For the other direction we need to show tightness. Fix θ ∈ Rd. Then for

∀ s ∈ R ϕn(sθ) → ϕ(sθ). Let X̃n = θ ·Xn. Then ϕX̃(s) = ϕX(θs) and

ϕX̃n
(s) → ϕX̃(s).

Therefore the distribution of X̃n is tight by what we did earlier. Thus the random

variables ej ·Xn are tight. Let ε > 0. There exists a constant positive constant Mi

such that

lim
n
P (ej ·Xi ∈ [Mi,Mi]) ≥ 1− ε.

Now take M = max1≤j≤dMj . Then

P (Xn ∈ [M,M ]d) ≥ 1− ε

and the result follows.

Remark. As before, if ϕn(t) → ϕ(t) and ϕ is continuous at 0, then ϕ(t) is the

characteristic function of a random vector X and Xn ⇒ X.

Also, it follows from the above argument that If θ ·Xn ⇒ θ ·X for all θ ∈ Rd

then Xn ⇒ X. This is often called the Cramér–Wold devise.

Next let X = (X1, . . . , Xd) be independent Xi ∼ N(0, 1). Then X has den-

sity 1
(2π)d/2 e

−|x|2/2 where |x|2 =
∑d
i=1 |xi|2. This is called the standard normal

distribution in Rd and its characteristic function is

ϕX(t) = E

( d∏
j=1

eitjXj

)
= e−|t|

2/2.
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Let A = (aij) be a d × d matrix. and set Y = AX where X is standard normal.

The covariance matrix of this new random vector is

Γij = E(YiYj)

= E

( d∑
l=1

ailXl ·
d∑

m=1

ajmXm

)

=
d∑
l=1

d∑
m=1

ailajmE(XlXm)

=
d∑
l=1

ailajl.

Thus Γ = (Γij) = AAT . and the matrix γ is symmetric; ΓT = Γ. Also the quadratic

form of Γ is positive semidefinite. That is,

∑
ij

Γijtitj = 〈Γt, t〉 = 〈AT t, AT t〉

= |AT t|2 ≥ 0.

ϕY (t) = E(eit·AX)

= E(eiA
T t·X)

= e−
|AT t|2

2

= e
−

P
ij

Γijtitj
.

So, the random vector Y = AX has a multivariate normal distribution with co-

variance matrix Γ.

Conversely, let Γ be a symmetric and nonnegative definite d×d matrix. Then

there exists an orthogonal matrix O such that

OTΓO = D
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where D is diagonal. Let D0 =
√
D and A = OD0.

Then AAT = OD0(DT
0 O

T ) = ODOT = Γ. So, if we let Y = AX, X normal, then

Y is multivariate normal with covariance matrix Γ. If Γ is non–singular, so is A

and Y has a density.

Theorem 8.5. Let X1, X2, . . . be i.i.d. random vectors, EXn = µ and covariance

matrix

Γij = E(X1,j − µj)(X1,i − µi)).

If Sn = X1 + . . .+Xn then
Sn − nµ√

n
⇒ χ

where χ is a multivariate normal with covariance matrix Γ = (Γij).

Proof. By settingX ′
n = Xn−µ we may assume µ = 0. Let t ∈ Rd. Then X̃n = t·Xn

are i.i.d. random variables with E(X̃n) = 0 and

E|X̃n|2 = E

( d∑
i=1

ti(Xn)i

)2

=
∑
ij

titjΓij .

So, with S̃n =
n∑
j=1

(t ·Xj) we have

ϕS̃n
(1) = E(eiS̃n) → e

−
P
ij

Γijtitj/2

This is equivalent to

ϕSn
(t) = E(eit·Sn) → e

−
P
ij

Γijtitj/2

. �

Theorem. Let Xi be i.i.d. E|Xi|2 = σ2, EXi = 0 and E|Xi|3 = ρ <∞. Then if

Fn is the distribution of
Sn
σ
√
n

and Φ(x) is the normal we have

sup
x∈R

|Fn(x)− Φ(x)| ≤ cρ

σ3
√
n

(may take c = 3).
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?? is actually true:

Fn(x) = φ(x) +
H1(x)√

n
+
H2(x)
n

+ . . .+
H3(x)
n3/2

+ . . .

where Hi(x) are explicit functions involving Hermid polynomials.

Lemma 1. Let F be a d.f., G a real–valued function with the following conditions:

(i) lim
x→−∞

G(x) = 0, lim
x→+∞

G(x) = 1,

(ii) G has bounded derivative with sup
x∈R

|G′(x)| ≤M . Set A =
1

2M
sup
x∈R

|F (x)−G(x)|.

There is a number a s.t. ∀ T > 0

2MT∆

{
3
∫ T∆

0

1− cosx
x2

dx− π

}

≤
∣∣∣∣ ∫ ∞

−∞

1− cosTx
x2

{F (x+ a)−G(x+ a)}dx
∣∣∣∣.

Proof. ∆ <∞ since G is bounded. Assume L.H.S. is > 0 so that ∆ > 0.
b<−a
a>0

a < b
−b<−a

.

Since F −G = 0 at ±∞, ∃ sequence xn → b ∈ R s.t.

F (xn)−G(xn) →


2M∆
or

−2M∆
.

So, either 
F (b)−G(b) = 2M∆
or

F (b−)−G(b) = −2M∆.

Assume F (b−)−G(b) = −2M∆.

Put

a = b−∆ < b, since

∆ = (b− a)
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if |x| < ∆ we have

G(b)−G(x+ a) = G′(ξ)(b− a− x)

= G′(ξ)(∆− x) |G′(ξ)| ≤M

or

G(x+ a) = G(b) + (x−∆)G′(ξ)

≥ G(b) + (x−∆)M.

So that

F (x+ a)−G(x+ a) ≤ F (b−)− [G(b) + (x−∆)M ]

= −2M∆− xM + ∆M

= −M(x+ ∆) ∀ x ∈ [−∆,∆]

∴ T to be chosen: we will consider

∞∫
−∞

=

∆∫
−∆

+rest

∫ ∆

−∆

1− cosTx
x2

{F (x+ a)−G(x+ a)}dx

≤ −M
∫ ∆

−∆

1− cosTx
x2

(x+ ∆)dx

= −2M∆
∫ ∆

0

(
1− cosTx

x2

)
dx

(1)

∣∣∣∣{ ∫ −∆

−∞
+
∫ ∞

∆

}
{F (x+ a)−G(x+ a)}dx

∣∣∣∣
≤ 2M∆

{∫ −∆

−∞
+
∫ ∞

∆

}
1 + cosTx

x2
dx = 4M∆

∫ ∞

∆

1− cosTx
x2

dx.

(2)
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Add: ∫ ∞

−∞

(
1− cosTx

x2

)
{F (x+ a)−G(x+ a)}dx

≤ 2M∆
{
−
∫ ∆

0

+2
∫ ∞

∆

}{
1− cosTx

x2

}
dx

= 2M∆
{
− 3

∫ ∆

0

+2
∫ ∞

0

}{
1− cosTx

x2

}
dx

= 2M∆
{
− 3

∫ ∆

0

1− cosTx
x2

dx+ 2
∫ ∞

0

1− cosTx
x2

dx

}
= 2M∆

{
− 3

∫ ∆

0

1− cosTx
x2

dx+ 2
(
πT

2

)}
= 2MT∆

{
− 3

∫ T∆

0

1− cosx
x2

dx+ π

}
< 0.

Lemma 2. Suppose in addition that

(iii) G is of bounded variation in (−∞,∞). (Assume G has a density).

(iv)

∞∫
−∞

|F (x)−G(x)|dx <∞.

Let

f(t) =
∫ ∞

−∞
eitxdF (x), g(t) =

∫ ∞

−∞
eitxdG(x).

Then

∆ ≤ 1
2πM

∫ T

−T

|f(t)− g(t)|
t

dt+
12
πT

.

Proof.

f(t)− g(t) = −it
∫ ∞

−∞
{F (x)−G(x)}eitxdx

and ∴

f(t)− g(t)
−it

e−ita =
∫ ∞

−∞
(F (x)−G(x))e−ita+itxdx

=
∫ ∞

−∞
F (x+ a)−G(x+ a)e+itxdx.



164

∴ By (iv), R.H.S. is bounded and L.H.S. is also. Multiply left hand side by (T−|t|)

and integrade∫ T

−T

{
f(t)− g(t)

−it

}
eita(T − |t|)dt

=
∫ T

−T

∫ ∞

−∞
{F (x+ a)−G(x+ a)}eitx(T − |t|)dxdt

=
∫ ∞

−∞
{F (x+ a)−G(x+ a)}

∫ T

−T
eitx(T − |t|)dtdx

=
∫ ∞

−∞
(F (x+ a)−G(x+ a))

∫ T

−T
eitx(T − |t|)dtdx

Now,

1− cosTx
x2

=
1
2

∫ T

−T
(T − |t|)eitxdt

above= 2
∫ ∞

−∞
(F (x+ a)−G(x+ a))

{
1− cosTx

x2

}
dx

or
∣∣∣∣ ∫ ∞

−∞

{
F (x+ a)−G(x+ a)}

{
1− cosTx

x2

}
dx

∣∣∣∣
≤ 1

2

∣∣∣∣ ∫ T

−T

f(t)− g(t)
−it

e−ita(T − |t|)dt
∣∣∣∣

≤ T/2
∫ T

−T

∣∣∣∣f(t)− g(t)
t

∣∣∣∣dt
∴ Lemma 1 ⇒

2M∆
{

3
∫ T∆

0

1− cosx
x2

dx− π

}
≤
∫ T

−T

|f(t)− g(t)|
t

dt

or now,

3
∫ T∆′

0

1− cosx
x2

dx− π = 3
∫ ∞

0

1− cosx
x2

dx− 3
∫ ∞

T∆

1− cosx
x2

dx− π

= 3
(π

2

)
− 3

∫ ∞

T∆

1− cosx
x2

dx− π

≥ 3π
2
− 6

∫ ∞

T∆

dx

x2
− π =

π

2
− 6
T∆
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or ∫ T

−T

|f(t)− g(t)|
t

dt ≥ 2
(

2M∆
(
π

2
− 6
T∆

))
= 2Mπ∆− 24M

T

or

∆ ≤ 1
2MT

∫ T

−T

|f(t)− g(t)|
|t|

dt+
12
π

We have now bound the difference between the d.f. satisfying certain conditions

by the average difference of.

Now we apply this to our functions: Assume w log σ2 = 1, ρ ≥ 1.

F (x) = Fn(x) = P

(
Sn√
n
> x

)
, Xii.i.d.

G(x) = φ(x) = P (N > x) =
1√
2π

∫ x

−∞
e−y

2/2dy.

Clearly Fn and Φ satisfy (i).

sup
x∈

|Φ′(x)| = 1√
2π
e−x

2/2 =
1√
2π

= .39894 < 2/5 = M.

(iii) Satisfy:

(iv)
∫
R

|Fn(x)− Φ(x)|dx <∞.

Clearly,
∫ 1

−1
|Fn(x)− φ(x)|dx <∞.

Need: ∫ −1

−∞
|Fn(x)− Φ(x)|dx+

∫ ∞

1

|F (x)− Φ(x)|dx <∞.

Assume w log σ2 = 1. For x > 0. P (|X| > x) = 1
λ2F |x|2.

1− Fn(x) = P

(
Sn√
n
> x

)
≤ 1
|X|2

E

∣∣∣∣ Sn√n
∣∣∣∣2 < 1

|X|2

1− Φ(x) = P (N > x) ≤ 1
x2
E|N |2 =

1
|x|2

.
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In particular: for x > 0. max((1− Fn(x)), max 1− Φ(x)) ≤ 1
|x|2 .

If x < 0. Then

Fn(x) = P

(
Sn√
n
< x

)
= P

(
− Sn√

n
> −x

)
≤ 1
x2
E

∣∣∣∣ Sn√n
∣∣∣∣2 =

1
x2

Φ(x) = P (N < x) ≤ 1
x2

∴
x<0
max(Fn(x), Φ(x)) ≤ 1

x2

|F (x)− Φ(x)| ≤ 1
x2

if x < 0

{|F (x)− φ(x)| =

= |1− φ(x)− (1− F (x))| ≤ 1
x2
. x > 0

∴ (iv) hold.

|Fn(x)− Φ(x)| ≤ 1
π

∫ T

−T

|ϕn(t/
√
n)− e−t

2/2|
|t|

dt+
24M
πT

≤ 1
π

∫ T

−T

|ϕn(t/
√
n)− e−t

2/2

|t|
dt+

48
5πT

tells us what we must do. Take T = multiple of
√
n.

Assume n ≥ 10.

Take T = 4
√
n

3ρ : Then

48
5πT

=
48 · 3

5π4
√
n
ρ =

12 · 3
5π
√
n
ρ =

36ρ
5π
√
n
.

For second. Claim:

1
|t|
|ϕn(t/

√
n)− e−t

2/2| ≤

≤ 1
T
e−t

2/4

{
2t2

9
+
|t|3

18

}
,
−T ≤ t ≤ T

T = 4
√
n/3ρ

, n ≥ 10
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∴ πT |Fn(x)− Φ(x)| ≤
∫ T

−T
e−t

2/4

{
2t2

9
+
|t|3

18

}
dt

+
48
5
−

=
∫ T

−T
e−t

2/4

{
2t2

9
+
|t|3

18

}
dt+

9.6
48
5

≤ 2
9

∫ ∞

−∞
e−t

2/4t2dt+
1
18

∫ ∞

−∞
e−t

2/4|t|3dt+ 9.6

= I + II + 9.6.

Recall:
1√

2πσ2

∫
e−t

2/2σ2
t2dt = σ2.

Take σ2 = 2

2
9

∫ ∞

−∞
e−t

2/2σ2
t2dt =

2
9

√
2π · 2 · 2 =

2 · 2 · 2
9

√
π

=
8
9
√
π

1
18

{∫ ∞

−∞
|t|3e−t

2/2σ2
dt

}
=

1
18

{
2
∫ ∞

0

t3e−t
2/4dt =

1
18

{
2
∫ ∞

0

t2 · te−t
2/4dt

}
=

1
18

+
{

2
∫ ∞

0

2t · 2e−t
2/4dt

}
=

1
18

{
8
∫ ∞

0

te−t
2/4dt =

{
− 16e−t

2/4

∣∣∣∣∞
0

}
1
18

=
16
18

=
8
9

πT |Fn(x)− Φ(x)| ≤
(

8
9
√
π +

8
9

+ 9.6
)
.

or

|Fn(x)− Φ(x)| ≤ 1
πT

{
8
9
(1 +

√
π

)
+ 9.6

}
≤ 3ρ

4
√
n π

{
8
9
(1 +

√
π) + 9.6

}
=

ρ√
n

{︸︷︷︸} <
3ρ√
n
.
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For n ≤ 9, the result follows. 1 < ρ since σ2 = 1.

Proof of claim. Recall: σ2 = 1, |ϕ(t)−
n∑

m=0

E(itX)m

m!

∣∣∣∣ ≤ E(min
|t|X|nt

(n+ 1)!
2|tX|n

n!

)
.

(1)
∣∣∣∣ϕ(t)− 1 +

t2

2

∣∣∣∣ ≤ ρ|t|3

6
and

(2) |ϕ(t)| ≤ 1− t2/2 +
ρ|t|3

6
, for t2 ≤ 2.

So, if T =
4
√
n

3ρ
if |t| ≤ L⇒

(
ρ|t|√
n

)
≤ (4/3) =

16
9
< 2.

⇒ Also, t/
√
n =

4
3ρ

< 2. So,∣∣∣∣ϕ( t√
n

)∣∣∣∣ ≤ 1− t2

2n
+

ρ|t|3

6n3/2
= 1− t2

2n
+
ρ|t|√
n

|t|2

n

≤ 1− t2

2n
+

4
3
t2

n
= 1− 5t2

18n

≤ e
−5t2
18n , gives that 1− x ≤ e−x.

Now, let α = ϕ(t/
√
n), β = e−t

2/2n and γ = e
−5t2
18n . Then n ≥ 10 ⇒ γn−1 ≤ e−t

2/4.

|αn − βn| ≤ nγn−1|α− β| ⇔

|ϕ(t/
√
n)− e−t

2/2| ≤ ne
−5t2
18n (n−1)|ϕ(t/

√
n)− e−t

2/2n|

≤ ne−t
2/4|ϕ(t/

√
n)− 1 +

t2

2n
− e−t

2/2n−1−t2/2n|

≤ ne−t
2/4|ϕ(t/

√
n)− 1 +

t2

2n
|+ ne−t

2/4|1− t2

2n
− e−t

2/2n|

≤ ne−t
2/4 ρ|t|3

6n3/2
+ ne−t

2/4 t4

2 · 4n2

using |e−x − (1− x)| ≤ x2

2
for 0 < x < 1

or
1
|t|
|ϕ(t/

√
n)− e−t

2/2| ≤ ρt2e−t
2/4

6
√
n

+
e−t

2/4|t|3

8n

= e−t
2/4

{
ρt2

6
√
n

+
|t|3

8n

}
≤ 1
T
e−t

2/4

{
2t2

9
+
|t|3

18

}
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using ρ/
√
n = 4

3T and
1
n

=
1√
n

1√
n
≤ 4

3
T · 1

3
, ρ > 1 and n ≥ 10. Q.E.D.

Question: Suppose F has density f . Is it true that the density of
Sn√
n

tends to the

density of the normal? This is not always true. (Feller v. 2, p. 489). However, it is

true if more conditions.

Let Xi be i.i.d. EXi = 0, FX2
i = 1.

Theorem. If ϕ ∈ L1, then
Sn√
n

has a density fn which converges uniformly to

1√
2π

e−x
2/2 = η(x).

Proof.

fn(x) =
1
2π

∫
R
eitxϕn(t)dt

n(x) =
1
2π

∫
R
eitye−

1
2 t

2
dt

∴ |fn(x)− η(x)| ≤ 1
2π

∫ ∞

−∞
|ϕ(t/

√
n)n − e−1/2t2 |dt

under the assumption

|ϕ(t)| ≤ e−
1
4 t

2
for |t| < δ.

At 0, both sides are 0.

Both have ?? derivatives of social derivative of ϕ(t) at 0 is −1 smaller than

the second derivative of r.h.s.

Limit Theorems in Rd

Recall: Rd = {(x1, . . . , xd):xi ∈ R}.

If X = (x1, . . . , Xd) is a random vector, i.e. a r.v. X:ω → Rd. We defined its

distribution function by F (x) = P (X ≤ x), where X ≤ x⇔ Xi ≤ xi, i = 1, . . . , d.

F has the following properties:
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(i) x ≤ y ⇒ F (x) ≤ F (y).

(ii) lim
x→∞

F (x) = 1, lim
xi→−∞

F (x) = 0.

(iii) F is right cont. i.e. lim
y↓x

F (x) = F (x).

Xp →∞ we mean each coordinate goes to zero. You know what Xi → −∞.

There is also the distribution measure on (Rd,B(Rd)):µ(A) = P (X ∈ A).

If you have a function satisfying (i) ↔ (ii), this may not induce a measure. Exam-

ple: we must have:

P (X ∈ (a1, b1]× (a2, b2]) = F (b1, b2)− F (a1, b2)

P (a < X1 ≤ b1, a2 ≤ X2 ≤ b2)− F (b1, a2) + F (a1, a2).

Need: measure of each vect. ≥ 0,

Example. f(x1, x2) =



1 x1, x1 ≥ 1
2/3
2/3 x1 ≥ 1, 0 ≤ x2 ≤ 1
0 x2 ≥ 1, 0 ≤ x1 < 1

else

.

If 0 < a1, a2 < 1 ≤ b1, b2 <∞⇒

F (b1, b2)− F (a1, b2)− F (b1, a2) + F (a1, a2) = 1− 2/3− 2/3 + 0

= −1/3.
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The measure has:

µ(0, 1) = µ(1, 0) = 2/3, µ(1, 1) = −1/3

for each, need measure of ??

Other simple ??

Recall: If F is the dist. of (x1, . . . , Xn), then Fi(x) = P (Xi ≤ x), x real in the

marginal distributions of F

Fi(x) = lim
m→∞

F (m, . . . ,m, xi+1, . . .m)

F has a density if ∃ f ≥ 0 with
∫
Rd

0 = f and

F (x1, x2, xd) =
∫ x1

−∞
. . .

∫ xd

−∞
f(y)dy1 . . . dy2.

Def: If F Fn is a distribution function in Rd, we say Fn converges weakly to F , if

Fn ⇒ F , if lim
n→∞

Fn(x) = F (x) for all pts of continuity of F .

Xn ⇒ X, µn ⇒ µ.

Recall: A = set of limits of sequences in A, closure of A. Ao = Rd\(Rd|A) interior.

∂A = A−Ao. A Borel set A is a µ–continuity set if µ(∂A) = 0.

Theorem 1 Skorho. Xn ⇒ X∞ ⇒ ∃ r.v. Xn ∼ Xn, Y ∼ X∞ s.t. Yn → Y a.e.

Theorem 2. The following statements are equivalent to Xn ⇒ X∞.

(i) Ef(Xn) → E(f(X∞))∀ bounded cont. f .

(iii) ∀ closed sets k, limP (Xn ∈ k) ≤ P (X∞ ∈ k).

(iv) ∀ open sets G, limP (Xn ∈ G) ≥ P (X∞ ∈ G).

(v) ∀ continuity A, (P (X ∈ ∂A).

lim
n→∞

P (Xn ∈ A) = P (X∞ ∈ A).
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(vi) Let Dp = discontinuity sets of f . If P (X∞ ∈ Dp) = 0 ⇒ E(f(Xn)) →

E(f(X∞)), f bounded.

Proof. Xn ⇒ X∞ ⇒ (i) trivial. (i) ⇒ (ii) trivial. (i) ⇒ (ii). Let d(x, k) = inf{d(x−

y): y ∈ k}.

ϕj(t) =


1 t ≤ 0
1− jt 0 ≤ t ≤ j−1

0 −1 ≤ t

Let fj(x) = ϕj(dist (x, k)). fj is cont. and bounded by 1 and fj(x) ↓ Ik(x) since

k is closed.

∴ lim sup
n→∞

µn(k) = lim
n→∞

E(fj(Xn))

= E(fj(X∞)) ↓ P (X∞ ∈ k). Q.E.D.

(iii) ⇒ (iv): A open iff Ac closed and P (X ∈ A) + P (X ∈ Ac) = 1.

(v) ⇒ implies conv. in dis. If F is cont. at X, then with A = (−∞, x1] ×

. . . (−∞, xd], x = (x1, . . . , xn) we have µ(∂A) = 0. So, Fn(x) = F (xn ∈

A) → P (X∞ ∈ A) = F (x). Q.E.D.

As in 1–dim. µn is tight if ∃ given ε ≥ 0 s.t.

inf
n
µn([−M,M ]d) ≥ 1− ε.

Theorem. If µn is tight ⇒ ∃µnj
s.t. µnj

weak−→ µ.

Ch. f. Let X = (X1, . . . , Xd) be a r. vector. ϕ(t) = E(eit·X) is the Ch.f. t ·X =

t1X1 + . . .+ tdXd.

Inversion formula: Let A = [a1, b1]× . . .× [ad, bd] with µ(∂A) = 0. Then

µ(A) = lim
T→∞

1
(2π)d

∫ T

−T
. . .

∫ T

−T
ψ1(t1)ϕ(t) . . . ψd(td)ϕ(t)dt1, . . . , dt2
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where

ψj(s) =
(
eisaj − e−sbj

is

)
= lim
T→∞

1
(2π)d

∫
[−T,T ]d

d∏
j=1

ψj(tj)ϕ(t)dt

Proof. Apply Fubini’s Theorem:

A = [a1, b1]× . . .× [ad, bd] with µ(∂A) = 0. Then

∫
[−T,T ]d

d∏
j=1

ψj(tj)
∫

Rd

eit·xdµ(x)

=
∫

[−T,T ]d

d∏
j=1

ψj(tj)
∫

Rd

eit1·x1+...+itd·Xddµ(x)dt

=
∫

Rd

∫
[−T, T ]d

d∏
j=1

ψj(tj)eit·Xdtdµ(x)

=
∫

Rd

∫
[−T,T ]d

d∏
j=1

ψj(tj)eitjXjdtdµ(x)

=
∫

Rd

[ d∏
j=1

∫
[−T,T ]

ψj(tj)eitjXjdtj

]
dµ(x)

→
∫

Rd

d∏
j=1

[
π(1(aj ,bj)(xj) + 1[aj ,bj ](xj)

]
dµ(x)

results = µ(A).

Continuity Theorem. Let Xn, 1 ≤ n ≤ ∞ be random vectors with Ch. f.’s ϕn.

Then Xn ⇒ X∞ ⇔ ϕn(t) → ϕ∞(t).

Proof. f(x) = eitx is bounded and cont. to, Xn ⇒ x implies ϕn(x) = E(f(Xn)) →

ϕ∞(t).

Next, we show as earlier, that sequence is tight.
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Fix O ∈ Rd. Then for ∀ s ∈ R ϕn(sO) → ϕ∞(sO). Let X̃n = O ·Xn:

Then ϕX̃(s) = ϕX(Os). Then

ϕX̃n
(s) → ϕX̃(s).

∴ The dist. of X̃n is tight.

Thus, for each vector, ej ·Xn is tight.

So, given ε > 0, ∃Mi s.t.

lim
n
P (Xn

i ∈ [Mi,Mi]) > 1− ε.

Now, π[Mi,Mi] take M = largest of all.

P (Xn ∈ [M,M ]) ≥ 1− ε. Q.E.D.

Remark. As before, if ϕn(t) → ϕa(t) and ϕ∞ is cont. at 0, then ϕ∞(t) is the

Ch.f. of a r.vec. X∞ and Xn ⇒ X∞.

We also showed: Cramér–Wold device

If O ·Xn ⇒ O ·X∞∀ O ∈ Rd ⇒ Xn ⇒ X.

Proof the condition implies E(eiO·Xn) → E(eiO·Xn)∀ O ∈ Rd · ϕn(O) → ϕ(O)
Q.E.D.

.

Last time: (Continuity Theorem): Xn ⇒ X∞ iff ϕn(t) → ϕ∞(t).

We showed: O ·Xn ⇒ O ·X∞∀ O ∈ Rd.

Implies: Xn ⇒ X

This is called Cramér–Wold device.

Next let X = (X1, . . . , Xd) be independent Xi ∼ N(0, 1). Then Xi has

density
1√
2π

e−
|x|2
2π .
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∴ X has density

1
(2π)d/2

e−|x|
2/2,

x = (x1, . . . , xd), |x|2 =
d∑
i=1

|xi|2.

This is called the standard normal.

The Ch.f.

ϕ(t) = E

( d∏
j=1

eitjXj

)
= e−|t|

2/2.

Let A = (aij) be a d× d matrix. Let

Y = AX, X normal

Yj =
d∑
l=1

ajlXl

Let

Γij = E(YiYj)

= E

( d∑
l=1

ailXl ·
d∑

m=1

ajmXm

)

=
d∑
l=1

d∑
m=1

ailajmE(XlXm)

=
d∑
l=1

ailajl

Γ = (Γij) = AAT .

Recall: For any matrix, 〈Bx, x〉 = 〈x,B+x〉. So, Γ is symmetric. ΓT = Γ.

Also,

∑
ij

Γijtitj = 〈Γt, t〉 = 〈Att, Att〉

= |Att| ≥ 0.
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So, Γ is nonnegative definite.

E(eit·AX) = E(eitA
‡t·X)

= e−
|AT t|2

2

= e
−

P
ij

Γijtitj
.

So, the random vector Y = AX has a multivariate normal distribution with co-

variance matrix Γ.

Conversely: Let Γ be a symmetric and nonnegative definite d × d matrix.

Then ∃ O orthogonal s.t.

OTΓO = D −D diagonal.

Let D0 =
√
D and A = OD0.

Then AAT = OD0(DT
0 O

T ) = ODOT = Γ. So, if we let Y = AX, X normal, then

Y is multivariate normal with covariance matrix Γ.

If Γ is non–singular, so is A and Y has a density.

Theorem. Let X1, X2, . . . be i.i.d. random vectors, EXn = µ and covariance

matrix

Γij = E(X1,j − µj)(X1,i − µi)).

If Sn = X1 + . . . Xn then
Sn − nµ√

n
⇒ χ where

χ is a multivariate normal with covariance matrix Γ = (Γij).

Proof. Letting X ′
n = Xn−µ we may assume µ = 0. Let t ∈ Rd. Then X̃n = t ·Xn

are i.i.d. random variables with E(X̃n) = 0 and

E|X̃n|2 = E

( d∑
i=1

tiXni

)2

=
∑
ij

titjΓij .
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So, with S̃n =
n∑
j=1

(t ·Xj) we have

ϕS̃n
(1) = E(eiS̃n) → e

−
P
ij

Γijtitj/2

or

ϕSn
(t) = E(eit·Sn) → Q.E.D.
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Math/Stat 539. Ideas for some of the problems in final homework assignment. Fall

1996.

#1b) Approximate the integral by

1
n

n∑
k=1

(
Bk
n
− Bk−1

n

)
and . . .

E

(∫ 1

0

Btdt

)2

= E

(∫ 1

0

∫ 1

0

BsBtdsdt

)
= 2

∫ 1

0

∫ 1

s

E(BsBt)dtds

= 2
∫ 1

0

∫ 1

s

sdtds =
1
3
.

#2a) Use the estimate Cp =
2pC1e

c/ε2

εp(ec/ε2 − 2p)
from class and choose ε ∼ c/

√
p.

#2b) Use (a) and sum the series for the exponential.

#2c) Show φ(2λ) ≤ cφ(λ) for some constant c. Use formula E(φ(X)) =

∞∫
0

φ′(λ)P{X ≥ λ}dλ

and apply good–λ inequalities.

#3a) Use the “exponential” martingale and ...

#3b) Take b = 0 in #3a).

#4)(i) As in the proof of the reflection property. Let

Y 1
s (ω) =

{
1, s < t and u < ω(t− s) < v

0 else

and

Y 2
s (ω) =

{
1, s < t, 2a− v < ω(t− s) < 2a− u

0 else.

Then Ex(Y 1
s ) = Ex(Y 2

s ) (why?) and with τ = (inf{s:Bs = a}) ∧ t, we apply the

strong Markov property to get

Ex(Y 1
τ ◦ θτ |Fτ )

why
= Ex(Y 2

τ ◦ θτ |Fτ )
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and ... gives the result.

#4)(i) Let the interval (u, v) ↓ x to get

P0{Mt > a, Bt = x} = P0{Bt = 2a− x} =
1√
2πt

e−
(2a−x)2

2t

and differentiate with respect to a.

#5a) Follow Durrett, page 402, and apply the Markov property at the end.

#7)(i)

E(Xn+1|Fn) = eθSn−(n+1)ψ(θ)E(eθξn+1 |Fn)

= eθSn−nψ(θ)(ξn+1 independent of Fn).

(ii) Show ψ′(θ) = ϕ′(θ)/ϕ(θ) and(
ϕ′(θ)
ϕ(θ)

)
=
ϕ′′(θ)
ϕ(θ)

−
(
ϕ′(θ)
ϕ(θ)

)2

= E(Y 2
θ )− (E(Yθ))2 > 0

where Yθ has distribution
eθx

ϕ(θ)
(distribution of ξ1). (Why is true?)

(iii) √
Xθ
n = e

θ
2 Sn−n

2 ψ(θ)

= Xθ/2
n en{ψ( θ

2 )− 1
2ψ(θ)}

Strict convexity, ψ(0) = 0, and ... imply that

E
√
Xθ
n = en{ψ( θ

2 )− 1
2ψ(θ)} → 0

as n→∞. This implies Xθ
n → 0 in probability.



180

Chapter 7

1) Conditional Expectation.

(a) The Radon–Nikodym Theorem.

Durrett p. 476

Signed measures: If µ1 and µ2 are two measures, particularly prob. measures, we

could add them. i.e. µ = µ1 + µ2 is a measure.

But what about µ1 − µ2?

Definition 1.1. By a signed measure on a measurable space (Ω,F) we mean an

extended real valued function ν defined on F such that

(i) ν assumes at most one of the values +∞ or −∞.

(ii) ν
( ∞⋃
j=1

Ej

)
=

∞∑
j=1

ν(Ej), Ej ’s are disjoint in F . By (iii) we mean that

the series is absolutely convergent if ν
( ∞⋃
j=1

Ej

)
is finite and properly

divergent if ν
( ∞⋃
j=1

Ej

)
is infinite or − infinite.

Example. f ∈ L1[0, 1], then (if f ≥ 0, get a measure)

ν(E) =
∫
E

fdx

(Positive sets): A set A ∈ F is a positive set if ν(E) ≥ 0 for every mble subset

E ⊂ A.

(Negative sets): A set A ∈ F is negative if for every measurable subset E ⊂

A, ν(E) ≤ 0.

(Null): A set which is both positive and negative is a null set. Thus a set is null

iff every measurable subset has measure zero.
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Remark. Null sets are not the same as sets of measure zero.

Example. Take ν given above.

Our goal now is to prove that the space Ω can be written as the disjoint union

of a positive set and a negative set. This is called the Hahn–Decomposition.

Lemma 1.1. (i) Every mble subset of a positive set is positive.

(ii) If A1, A2, . . . are positive then A =
∞⋃
i=1

Ai is positive.

Proof. (i): Trivial.

Proof of (ii). : Let A =
∞⋃
n=1

Ai. Ai positive. Let E ⊂ A be mble. Write

 E =
∞⋃
n=1

Ei, Ei ∩ Ej = 0, i 6= j

Ej = E ∩Aj ∩Acj−1 ∩ . . . ∩Ac1 ⊂ Aj

(*)

⇒ ν(Ej) ≥ 0

ν(F ) = Σν(Ej) ≥ 0

We show (∗): Let x ∈ Ej ⇒ x ∈ E and x ∈ Ej but x 6∈ Aj−1, . . . A1. ∴ x 6∈ Ei
if j > i. If x ∈ E, let j = first j such that x ∈ Aj . Then x ∈ Ej , done. (Such a j

exists become E ⊂ A).

Lemma 1.2. Let E be measurable with 0 < ν(E) < ∞. Then there is mble set

A ⊂ E. A positive such that 0 < ν(A).

Proof. If E is positive we are done. Let n1 = smallest positive number such that

there is an E1 ⊂ E with

ν(E1) ≤ −1/n1.

Now, consider E|E1 ⊂ E.
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Again, if E|E1 is positive with ν(E|E1) > 0 we are done. If not n2 = smallest

integer such that

1) ∃E2 ⊂ E|E1 with ν(E2) < 1/n2.

Continue:

Let nk = smallest positive integer such that

∃Ek ⊂ E

∣∣∣∣ k−1⋃
j=1

Ej

with

ν(Ek) < − 1
nk
.

Let

A = E|
∞⋃
k=1

Ek.

Claim: A will do.

First: ν(A) > 0. Why?

E = A ∪
∞⋃
k=1

Ek are disjoint.

ν(E) = ν(A) +
∞∑
k=1

ν(Ek)

⇒ ν(A) > 0

since negative.

Now,

0 < ν(E) <∞⇒
∞∑
k=1

ν(Ek)

converges.

Problem 1: Prove that A is also positive.
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Absolutely. ∴
∞∑
k=1

1
nk

< −
∑

ν(Ek) <∞.

Suppose A is not positive. Then A has a subset A0 with A0) < −ε for some ε > 0.

Now, since Σ 1
nk

<∞, nk →∞.

Theorem 1.1 (Hahn–Decomposition). Let ν be a signed measure on (Ω,F).

There is a positive set A and a negative set B with A ∩B = φ, A ∪B = X.

Proof. Assume ν does not take +∞. Let λ = sup{ν(A):A ∈ positive sets}. φ ∈

Positive sets, sup ≥ 0. Let An ∈ p s.t.

λ = lim
n→∞

ν(An).

Set

A =
∞⋃
n=1

An.

A is positive. Also, λ ≥ ν(A). Since

A\An ⊂ A⇒ ν(A|An) ≥ 0

and

ν(A) = ν(An) + ν(A|An) ≥ ν(An).

Thus,

ν(A) ≥ λ⇒ 0 ≤ ν(A) = λ <∞.

∴ 0 ≤ ν(A).

Let B = Ac.

Claim B is negative.

Let E ⊂ B and E positive.

We show ν(E) = 0. This will do it.
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For suppose E ⊂ B, 0 < ν(E) <∞⇒ E has a positive subset of positive measure

by Lemma 1.2.

To show ν(E) = 0, observe E ∪A is positive

∴ λ ≥ ν(E ∪A) = ν(E) + ν(A)

= ν(E) + λ⇒ ν(E) = 0.

Q.E.D.

Problem 1.b: Give an example to show that the Hahn decomposition is not unique.

Remark 1.1. The Hahn decomposition give two measures ν+ and ν− defined by

ν+(E) = ν(A ∩ E)

ν−(E) = −ν(B ∩ E).

Notice that ν+(B) = 0 and ν−(A) = 0. Clearly ν(E) = ν+(E)− ν−(E).

Definition 1.2. Two measures ν1 and ν2 are mutually singular (ν1 ⊥ ν2) if

there are two measurable subsets A and B with A ∩ B = φ A ∪ B = Ω and

ν1(A) = ν2(B) = 0. Notice that ν+ ⊥ ν−.

Theorem 1.2 (Jordan Decomposition). Let ν be a signed measure. These are two

mutually singular measures ν+ and ν− such that

ν = ν+ − ν−.

This decomposition is unique.

Example. f ∈ L1[a, b]

ν(E) =
∫
E

fdx.

Then

ν+(E) =
∫
E

f+dx, ν−(E) = −
∫
E

f−dx.
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Definition 1.3. The measure ν is absolutely continuous with respect to µ, written

ν << µ, if µ(A) = 0 implies ν(A) = 0.

Example. Let f ≥ 0 be mble and set ν(A) =
∫
A

fdµ.

ν << µ.

Theorem 1.3 (Radon–Nikodym Theorem). Let (Ω,F , µ) be σ–finite measure

spaces. Assume ν << µ. Then there is a nonnegative measurable function f such

that

ν(E) =
∫
E

fdµ.

The function f is unique a.e. [µ]. We call f the Radon–Nikodym derivative of ν

with respect to µ and write

f =
dν

dµ
.

Remark 1.2. The space needs to be σ–finite.

Example. (Ω,F , µ) = ([0, 1], Borel, µ = counting). Then

m << µ, m = Lebesgue.

If

m(E) =
∫
E

fdµ

⇒ f(x) = 0 for all x ∈ [0, 1].

∴ m = 0, Contra.

3. Lemmas.
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Lemma 1.3. Suppose {Bα}α∈D is a collection of mble sets index by a countable

set of real numbers D. Suppose Bα ⊂ Bβ whenever α < β. Then there is a mble

function f such that f(x) ≤ α on Bα and f(x) ≥ α on Bcα.

Proof. For x ∈ Ω, set

f(x) = first α such that x ∈ Bα

= inf{α ∈ D:x ∈ Bα}.

inf{φ} = ∞.

• If x 6∈ Bα, x 6∈ Bβ for any β < α and so, f(x) ≥ α.

• If x ∈ Bα, then f(x) ≤ α provided we show f is mble. Q.E.D.

Claim: ∀λ real

{x: f(x) < λ} =
⋃
β<λ
β∈D

Bβ .

If f(x) < λ, then x ∈ Dβ save β < λ. If x ∈ Bβ , β < λ⇒ f(α) < λ. Q.E.D.

Lemma 1.4. Suppose {Bα}α∈D as in Lemma 1.3 but this time α < β implies

only µ{Dα\Bβ} = 0. Then there exists a mble function f on Ω such that f(x) ≤ α

a.e. on Bα and f(x) ≥ α a.e. on Bcα.

Lemma 1.5. Suppose D is dense. Then the function in Lemma 1.3 is unique and

the function in lemma 1.4 is unique µ a.e.

Proof of Theorem 1.3. Assume µ(Ω) = 1. Let

να = ν − αµ, α ∈ Q.

να is a signed measure. Let {Aα, Bα} be the Hahn–Decomp of να. Notice:

Ω = Bα, Bα = φ, if α ≤ 0. (1)

Bα|Bβ = Bα ∩ (X|Bβ) = Bα ∩Aβ . (2)
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Thus,

να(Bα|Bβ) ≤ 0 (1)

νβ(Bα|Bβ) ≥ 0 (2)

or

⇔ ν(Bα|Bβ)− αµ(Bα|Bβ) ≤ 0 (1)

ν(Bα|Bβ)− βµ(Bα|Bβ) ≥ 0. (2)

Thus,

βµ(Bα|Bβ) ≤ ν(Bα|Bβ) ≤ αµ(Bα|Bβ).

Thus, if α < β, we have

µ(Bα|Bβ) = 0.

Thus, ∃n mble f s.t. ∀ α ∈ Q, f ≥ α a.e. on Aα and f(x) ≤ α a.e. on Bα. Since

B0 = φ, f ≥ 0 a.e.

Let N be very large. Put

Ek = E ∩
(
Bk+1

N

∣∣∣∣Bk/N), k = 0, 1, 2, . . .

E∞ = Ω
∣∣∣∣ ∞⋃
k=0

Bk/N .

Then E0, E1, . . . , E∞ are disjoint and

E =
∞⋃
k=0

Ek ∪ E∞.

So,

ν(E) = ν(E∞) +
∞∑
k=0

ν(Ek)

on

Ek ⊂
Bk+1

N

∣∣∣∣Bk/N =
Bk+1

N
∩Ak/N .
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We have,

k/N ≤ f(x) ≤ k + 1
N

a.e.

and so,
k

N
µ(Ek) ≤

∫
Ek

f(x)dµ ≤ k + 1
N

µ(Ek). (1)

Also

Ek ⊂ Ak/N ⇒ k

N
µ(Ek) ≤ ν(Ek) (2)

and

Ek ⊂
Bk+1

N
⇒ ν(Ek) ≤

k + 1
N

µ(Ek). (3)

Thus:

ν(Ek)−
1
N
µ(Ek) ≤

k

N
µ(Ek) ≤

∫
Ek

f(x)dx

≤ k

N
µ(Ek) +

1
N
µ(Ek)

≤ ν(Ek) +
1
N
µ(Ek)

on

E∞, f ≡ ∞ a.e.

If µ(E∞) > 0, then ν(E∞) = 0 since (ν − αµ)(E∞) ≥ 0 ∀ α. If µ(E∞) = 0 ⇒

ν(E∞) = 0. So, either way:

ν(E∞) =
∫
E∞

fdµ.

Add:

ν(E)− 1
N
µ(E) ≤

∫
E

fdµ ≤ ν(E) +
1
N
µ(E)

Since N is arbitrary, we are done.

Uniqueness: If ν(E) =
∫
E

gdµ, ∀ E ∈ B

⇒ ν(E)− αµ(E) =
∫
E

(g − α)dµ ∀ α ∀ E ⊂ Aα.
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Since

0 ≤ ν(E)− αµ(E) =
∫
E

(g − α)dµ.

We have:

g − α ≥ 0[µ] a.e. on Aα

or

g ≥ α a.e. on Aα.

Similarly,

g ≤ α a.e. on Bα.

⇒

f = g a.e.

Suppose µ is σ–finite: ν << µ. Let Ωi be s.t. Ωi ∩Ωj = φ,
⋃

Ωi = Ω. µ(Ωi) <∞.

Put µi(E) = µ(E ∩ Ωi) and νi(E) = ν(E ∩ Ωi). Then νi << µi

∴ ∃fi ≥ 0 s.t.

νi(E) =
∫
E

fidµi

or

ν(E ∩ Ωi) =
∫
E∩Ωi

fidµ =
∫
E

dΩidµ.

⇒ result.

Theorem 1.4 (The Lebesgue decomposition for measures). Let (Ω,F) be a mea-

surable space and µ and ν σ–finite measures on F . Then ∃ν0 ⊥ µ and ν1 << µ

such that ν = ν0 + ν1. The measure ν0 and ν1 are unique.

(f ∈ BV ⇒ f = h+ g. h singular g a.c.).

Proof. Let λ = µ+ ν. λ is σ–finite.

λ(E) = 0 ⇒ µ(E) = ν(E) = 0.
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R.N. ⇒

µ(E) =
∫
E

fdλ

ν(E) =
∫
E

gdλ.

Let

A = {f > 0}, B = {f = 0}

Ω = A ∪B, A ∩B = φ, µ(B) = 0.

Let ν0(E) = ν(E ∩B). Then

ν0(A) = 0, so ν0 ⊥ µ

set

ν1(E) = ν(E ∩A) =
∫
E∩A

gdλ.

Clearly ν1 + ν0 = ν and it only remains to show that ν1 << µ. Assume µ(E) = 0.

Then ∫
E

fdλ = 0 ⇒ f ≡ 0 a.e. [λ]. (f ≥ 0)

on E.

Since f > 0 on E ∩A⇒ λ(E ∩A) = 0. Thus

ν1(E) =
∫
E∩A

gdλ = 0 Q.E.D.

uniqueness. Problem.

You know: P (A|B) =
P (A ∩B)
P (B)

, A, B. P and B indept. P (A|B) = P (A). Now

we work with probability measures. Let (Ω,F0, P ) be a prob space, F ⊂ F0 a

σ–algebra and X ∈ σ(F0) with E|X| <∞.



191

Definition 1.4. The conditional expectation of X given F , written as E(X|F),

is any random variable Y with the properties

(i) Y ∈ σ(F )

(ii) ∀A ∈ F , ∫
A

XdP =
∫
A

Y dP or E(X;A) = E(Y ;A).

Existence, uniqueness.

First, let us show that if Y has (i) and (ii), then E|Y | ≤ E|X|.

With A = {Y > 0} ∈ F , observe that∫
A

Y dp =
∫
A

Xdp ≤
∫
A

|X|dp

and ∫
Ac

−Y dp =
∫
Ac

−Xdp ≤
∫
Ac

|X|dp.

So,

E|Y | ≤ E|X|.

Uniqueness: If Y ′ also satisfies (i) and (ii), then∫
A

Y dp =
∫
A

Y ′dp ∀ A ∈ F

⇒
∫
A

ydp =
∫
A

Y ′dp ∀ A ∈ F or∫
A

(Y − Y ′)dp = 0 ∀ A ∈ F .

⇒ Y = Y a.e.

Existence:

Consider ν defined on (Ω,F) by

ν(A) =
∫
A

Xdp. A ∈ F .
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ν is a signed measure. ν << P .

∴ ∃ Y ∈ σ(F) s.t.

ν(A) =
∫
A

Y dp ∀ A ∈ F .

∴
∫
A

Y dp =
∫
A

xdp. ∀ A ∈ F .

Example 1. Let A,B be fixed sets in F0. Let

F = σ{B} = {φ,Ω, B,Bc}.

E(1A|F)?

This is a function so that thwn we integrate over sets in F , we get integral of 1A

over the sets.

i.e. ∫
B

E(1A|F)dP =
∫
B

1AdP

= P (A ∩B).

E(1A|F)P (B) = P (A ∩B)

or

E(1A|F)1B(B) = P (A ∩B)

or

P (A|B) = E(1A|F)1B =
P (A ∩B)
P (B)

.

In general. If X is a random variable and F = σ(Ω1,Ω2, . . . ) where Ωi are disjoint,

then

1Ωi
E(X|F) =

E(X; Ωi)
P (Ωi)

or

E(X|F) =
∞∑
i=1

E(X; Ωi)
P (Ωi)

1Ωi
(ω).
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Notice that if F{φ,Ω}.

Thus

E(X|F) = E(X).

Properties:

(1) If X ∈ F ⇒ E(X|F) = X. E(X) = E(E(X|F)).

(2) X is independent of F , i.e. (σ(X) ⊥ F)

P (X ∈ B) ∩A) = P (X ∈ B)P (A).

⇒ E(X|F) = E(X) (as in P (A|B) = P (A)).

Proof. To check this, (1) E(X) ∈ F .

(ii) Let A ∈ F . Thus ∫
A

EXdP = E(X)E(1A)

= E(X1A) =
∫
A

Xdp

∴ E(X|F) = EX.

Theorem 1.5. Suppose that X,Y and Xn are integrable.

(i) If X = a⇒ E(X|F) = a

(ii) For constants a and b, E(aX + bY ) = aE(X|F) + bE(Y |F).

(iii) If x ≤ Y ⇒ E(X|F) ≤ E(X|F). In particular, |E(X|F)| ≤ E(|X||F).

(v) If lim
n→∞

Xn = X and |Xn| ≤ Y, Y integrable, then E(Xn|F) → E(X|F)

a.s.

(vi) Monotone and Fatou’s hold the same way.

Proof. (i) Done above since clearly a ∈ F .
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(ii)
∫
A

aE(x|F)dp+
∫
A

bE(Y |F)dP

∫
A

(aE(x|F) + bE(Y |I))dp =

= a

∫
A

E(X|F)dP + b

∫
A

E(Y |F)dP

= a

∫
A

XdP + b

∫
A

Y dp =
∫
A

(aX + bY )dp =
∫
A

E(aX + bY |F)dP

(iii) ∫
A

E(X|F)dP =
∫
A

XdP ≤
∫
A

Y dP

=
∫
A

E(Y |F)dP. ∀ A ∈ F

∴ E(X|F) ≤ E(Y |F). a.s.

(iv) Let Zn = sup
k≥n

|Xk −X|. Then Zn ↓ 0 a.s.

|E(Xn|F)− E(X|F)| ≤ E(|Xn − Y ||Fn)

≤ E[Zn|F ].

Need to show E[Zn|F) ↓ 0 with pub. 1. By (iii), E(Zn|Fn) ↓ decreasing.

So, let Z = limit. Need to show Z ≡ 0.

We have Zn ≤ 2Y .

∴ E(Z) =
∫

Ω

E(Z|F)dp (E(Z| = E(E(Z|F))

= E(E(Z|F)) ≤ E(E(Zn|F)) = E(Zn) → 0 by D.C.T.

Theorem 1.6 (Jensen Inequality). If ϕ is convex E|X| and E|ϕ(X)| <∞, then

ϕ(E(X|F)) ≤ E(ϕ(X)|F).

Proof.
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ϕ(x0) +A(x0)(x− x0) ≤ ϕ(x).

x0 = E(X|F) x = X.

ϕ(E(X|F)) +A(E(X|F))(X − E(X|F)) ≤ ϕ(X).

Note expectation of both sides.

E[ϕ(E(X|F)) +A(E(X|F))(X − E(X|F)|F) ≤ E(ϕ(X|F)

⇒ ϕ(E(X|F)) +A(E(X|F))[E(X|F)− E(X|F)] ≤ E(ϕ(X|F)).

Corollary.

|E(X|F)|p ≤ E(|X|p|F) for 1 ≤ p <∞

exp(E(X|F)) ≤ E(eX |F).

Theorem 1.7. (1) If F1 ⊂ F2 then

(a) E(E(X|F1)|F2)) = E(X|F1)

(b) E(E(X|F2)|F1)) = E(X|F1). (The smallest field always wins).

(2) If X ∈ σ(F), E|Y |, E|XY | <∞

⇒ E(XY |F) = XE(Y |F)

(measurable functions act like constants). (Y = 1, done before).

Proof. (a) E(X|F1) ∈ (F1) ⊂ (F2).

∴ Done.

(b) E(X|F1) ∈ F1. So A ∈ F1 ⊂ F2 we have∫
A

E(X|F1)dp =
∫
A

(X)dp

=
∫
A

E(X|F2)dp =
∫
A

E(E(x|F2)|F2)dP.
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Durrett: p 220: #1.1

p. 222: #1.2

p.225: #1.3

p. 227: 1.6

p. 228: 1.8.

Let

L2(F0) = {X ∈ F0:EX2N∞}

and

L2(F1) = {Y ∈ F1:EY 2 <∞}.

Then L2(F1) is a closed subspace of L2(F0). In fact, with 〈X1, X2〉 = E(X1 ·X2),

L2(F0) and L2(F1) are Hilbert spaces. L2(F1) is closed subspace in L2(F0). Given

any X ∈ L2(F0), ∃ Y ∈ L2(F1) such that

dist (X,L2(F1)) = E(x− y)2

Theorem 1.8. Suppose Ex2 <∞, then

inf
X∈L2(F1)

E(|X − Y |2) = E(|X − (EX|F1))2.

Proof. Need to show

E(|X − Y |2) ≥ E|X − E(X|F1))2

for any y ∈ L(F1). Let y ∈ L2(F1) out set. Set

Z = Y − E(X|F) ∈ L2(F1),

Y = Z + E(X|F).

Now, since

E(ZE(X|F)) = E(ZX|F)) = E(ZX)
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we see that

E(ZE(X|F))− E(ZX) = 0.

E(X − Y )2 = E{X − Z − E(X|F)}2

= E(X − E(X|F))2 + E(Z2)

− 2E((X − E(X|F))Z)

≥ E(X − E(X|F))2

− 2E(XZ) + 2E(ZE(X|F))

= E(X − E(X|F))2. Q.E.D.

By the way: If X and Y are two r.v. we define

E(X|Y ) = E(x|σ(Y )).

Recall conditional expectation for ??

Suppose X and Y have joint density f(x, y)

P ((X,Y ) ∈ B) =
∫
B

f(x, y)dxdy, B ⊂ R2.

And suppose
∫
R

f(x, y)dx > 0 ∀y. We claim that in this case, if E|g(X)| < ∞,

then

E(g(X)|Y ) = h(Y )

and

h(y) =

∫
R g(x)f(x, y)dy∫

R(f(x, y)dx
.

Treat the “given” density as if the second probability

P (X = x|Y = y) =
P (X = x, Y = y)

P (Y = y)

=
f(x, y)∫

R f(x, y)dx
.
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Now: Integrale:

E(g(X)|Y = y) =
∫
g(x)P (X = x)Y = y))dy.

To verify: (i) clearly h(Y ) ∈ σ(Y ). For (ii): let

A = {Y ∈ B} for B ∈ B(R).

Then need to show

E(h(Y );A) = E(g(X);A).

L.H.S., E(h(Y )1R(X) ·A)

=
∫
B

∫
R
h(y)f(x, y)dxdy

∫
B

∫
R

(∫
R
g(3)f(3, y)d3

)
∫
R
f(x, y)dx

f(x, y)dxdy

=
∫
B

∫
R
g(3)f(3, y)d3dy

= E(g(X)1B(Y )) = E(g(X);A).

(If
∫
f(x, y)dy = 0, define h by h(y)

∫
f(x, y)dx =

∫
g(x)f(x, y)dy i.e. h can be

anything where
∫
f(x, y) dy = 0).


