\magnification=\magstep1 \baselineskip=12pt \parskip=6pt \def\ds{\displaystyle} \input amstex \line{April 7, 1997\hfil Math 262 Exam 2\hfil Name\ {\hbox to 2truein{\hrulefill}}} \bigskip \item{(10) \bf 1.} The vectors $(1,2,1),\ (3,4,5),\ (2,0,k)$ are linearly {\bf dependent} if \medskip \hskip4truein{A.\ \ $k=1$} \hskip4truein{B.\ \ $k=6$} \hskip4truein{C.\ \ $k\ne6$} \hskip4truein{D.\ \ $k=0$} \hskip4truein{E.\ \ $k\ne0$} \vfill \item{(10) \bf 2.} If $T\colon P_3 @>>> P_3$ is a linear transformation such that $T(x^2-1)=x^2+x-3,\ T(3x)=6x$ and $T(2x+1)=4x+4$, then $T(x^2)$ is \hskip4truein{A.\ \ $x^2$} \hskip4truein{B.\ \ $x^2+x-2$} \hskip4truein{C.\ \ $x^2+x-1$} \hskip4truein{D.\ \ $x^2+x$} \hskip4truein{E.\ \ $x^2+x+1$} \vfill\eject \item{(10) \bf 3.} Use {\it Cramer's Rule\/} to solve the system below for the unknown functions $u_1(x)$ and $u_2(x)$. $$\aligned u_1\sin x+ u_2\cos x & = 0 \\ u_1\cos x- u_2\sin x & = e^x \endaligned$$ \vfill \item{(10) \bf 4.} What is the correct {\it form\/} of $y_p$ to use when finding a particular solution to the equation $y'' + y = x \cos x$ using the method of undetermined coefficients? \newline {\bf Do not compute the coefficients}. Just write down the {\bf FORM} of the particular solution. (For example, if the right hand side were $x^2$, the correct form of $y_p$ would be $Ax^2+Bx+C$.) \vskip.8in \item{(20) \bf 5.}Let $$ A=\bmatrix\format\r&\quad\r&\quad\r\\ 1&1&-2\\ 0&1&a\\ 2&4&-3\endbmatrix $$ \itemitem{\bf a)}for what value(s) of $a$ is $\det A\not= 0$. \itemitem{\bf b)}Find all $a$ such that the equation $Ax=0$ has a nontrivial solution. \vfill\eject \item{(20) \bf 6.} Find the general solution $y(x)$ to the differential equation $$ y''+3y'+2y=10\sin x. $$ \vfill\eject \item{(20) \bf 7.}Let $T\colon R^4 @>>> R^3$ be defined by $Tx=Ax$ where $$ A=\bmatrix\format\r&\quad\r&\quad\r&\quad\r\\ 1&1&-1&-3\\ 0&1&1&-4\\ 2&2&-2&-6\endbmatrix. $$ Find a basis for ker$(T)$. What is the dimension of ker$(T)$? \enddocument