\documentclass[12pt]{article} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{enumerate} \usepackage{graphicx} \setlength{\textwidth}{6.5in} \setlength{\textheight}{9.0in} \setlength{\topmargin}{-.5in} \setlength{\oddsidemargin}{0in} \setlength{\parindent}{0pt} %\newcommand{\correct}[1]{\fbox{#1}} \newcommand{\correct}[1]{#1} \begin{document} \begin{center} MA 262 \\ FINAL EXAM INSTRUCTIONS \\ December 15, 1997 \end{center} \bigskip \leftline{NAME\ \ {\hbox to 2truein{\hrulefill}}\hfil INSTRUCTOR\ \ {\hbox to 2truein{\hrulefill}}} \bigskip \bigskip \begin{enumerate}[{\bfseries 1.}] \item You must use a \underbar{\#2 pencil} on the mark--sense sheet (answer sheet). \bigskip \item If the cover of your question booklet is WHITE, write 01 in the TEST/QUIZ NUMBER boxes and blacken in the appropriate spaces below. If the cover is BLUE, write 02 in the TEST/QUIZ NUMBER boxes and darken the spaces below. \bigskip \item On the mark-sense sheet, fill in the \underbar{instructor's} name and the \underbar{course number}. \bigskip \item Fill in your \underbar{NAME} and \underbar{STUDENT IDENTIFICATION NUMBER} and blacken in the appropriate spaces. \bigskip \item Fill in the \underbar{SECTION NUMBER} boxes with the division and section number of your class. For example, for division 02, section 03, fill in 0203 and blacken the corresponding circles, including the circles for the zeros. (If you do not know your division and section number ask your instructor.) \bigskip \item Sign the mark--sense sheet. \bigskip \item Fill in your name and your instructor's name on the question sheets above. \bigskip \item There are 25 questions, each worth 8 points. Blacken in your choice of the correct answer in the spaces provided for questions 1--25. Do all your work on the question sheets. \underbar{Turn in both the mark--sense sheets and the question sheets when you are finished}. \bigskip \item \underbar{Show your work} on the question sheets. Although no partial credit will be given, any disputes about grades or grading will be settled by examining your written work on the question sheets. \bigskip \item NO CALCULATORS, BOOKS, OR PAPERS ARE ALLOWED. Use the back of the test pages for scrap paper. \end{enumerate} \vfill\eject \begin{enumerate}[{\bfseries 1.}] \item The general solution to $xy'+y=e^{5x}$ is \begin{enumerate}[A.] \item $y=\frac15 e^{5x} + c$ \item \correct{$y=\frac{1}{5x}e^{5x}+cx^{-1}$} \item $y=\frac{1}{6}e^{5x}+ce^{-x}$ \item $y=ce^{5x}$ \item $y=\frac{5}{x}e^{5x}+c$ \end{enumerate} \vfill \item Solutions to $2xy+(x^2+1)\frac{dy}{dx}=0$ satisfy \begin{enumerate}[A.] \item \correct{$x^2y+y=c$} \item $x^2y^2+x=c$ \item $y=e^{\tan^{-1} (x)}+c$ \item $x^2y+1=c$ \item $\ln y=-2x \tan^{-1}(x)+c$ \end{enumerate} \vfill \item The substitution $v=y/x$ transforms the equation $\frac{dy}{dx}=\sin(y/x)$ into \begin{enumerate} [A.] \item $v'= \sin(v)$ \item $v'= x \sin(v)$ \item $v'+ v = \sin(v)$ \item \correct{$x v'+ v = \sin(v)$} \item $v'+ x v = \sin(v)$ \end{enumerate} \vfill\eject \item The general solution to $y''=\frac{2}{x}y'+4x^2$ is \begin{enumerate} [A.] \item $y=\frac29 x^6+ c_1x^{3}+c_2$ \item $y=2x^2+c_1x+c_2$ \item $y=x^{4}+c_1x +c_2$ \item $y=\frac13 x^4+c_1x+c_2$ \item \correct{$y=x^4+c_1x^3+c_2$} \end{enumerate} \vfill \item A fish tank contains 20 gallons of a salt solution with a concentration of 5 grams of salt per gallon. A salt solution with a concentration of 10 grams/gallon is added to the tank at a rate of 2 gallons per minute. At the same time, water is drained from the tank at a rate of 2 gallons per minute. How many grams of salt are in the tank after 10 minutes? \begin{enumerate} [A.] \item $200e^{-1}+100$ \item \correct{$200-100e^{-1}$} \item $200e-100$ \item $100$ \item $200$ \end{enumerate} \vfill \item Which of the following sets forms a basis for ${\mathbb R}^3$? \newline (i) \ \ $\{(2,-1,0), (1,-2,0),(1,-3,1)\}$ \newline (ii) \ \ $\{({\frac12},1,1), (0,3,0),(0,0,2),(1,1,0)\}$ \newline (iii) \ \ $\{(1,1,1), (0,{\frac12}, {\frac12}), (2,0,0)\}$ \newline (iv) \ \ $\{({\frac12},1,1), (0,1,0), (1,2,0)\}$ \begin{enumerate} [A.] \item (i) only \item (i), (ii) and (iv) \item (i), (iii) and (iv) \item \correct{(i) and (iv)} \item None of the above. \end{enumerate} \vfill\eject \item Let $T:{\mathbb R}^4\rightarrow {\mathbb R}^3$ be defined by $T({\mathbf x})= A{\mathbf x}$ where $A=\left[\matrix 1 & 1 & -1 &-3 \\ 0 & 1 & 1 &-4 \\ 2 & 2 & -2 &-6 \endmatrix\right]$. Then the dimension of Ker\,$(T)$ is \begin{enumerate} [A.] \item $0$ \item $1$ \item \correct{$2$} \item $3$ \item $4$ \end{enumerate} \vfill \item Let $\cal S$ denote the subspace of ${\mathbb R}^3$ equal to the set of all solutions to $A\vec x=0$ where $$A=\left[\matrix 0 & 1 & 1\\ 0 & 1 & 1\\ -1 & 0 & 2 \endmatrix\right].$$ Which of the following vectors forms a basis for $\cal S$? \begin{enumerate} [A.] \item $(-2,1,1)$ \item $(2,1,0)$ \item \correct{$(2, -1,1)$} \item $(-1,0,1)$ \item None of the above. \end{enumerate} \vfill \item If $T:{\mathbb R}^3\rightarrow {\mathbb R}^3$ is a linear transformation satisfying $$T(1,0,0)=(0,0,-1), \quad T(0,1,0)=(1,1,0), \quad T(0,0,1)=(1,1,2),$$ then $T(1,2,3)=$ \begin{enumerate} [A.] \item \correct{$(5,5,5)$} \item $(2,1,0)$ \item $(2, -1,1)$ \item $(0,0,0)$ \item $(1,2,3)$ \end{enumerate} \vfill\eject \item For which value(s) of $k$ are the vectors $( 2,-k,0)$, $(1,2,2)$, and $(0,1,-k)$ linearly {\it dependent}? \begin{enumerate}[A.] \item No values of $k$. \item \correct{$k = - 2$} \item $k \ne - 2$ \item $k = 0$ \item All values of $k$. \end{enumerate} \vfill \item For which value(s) of $k$ are the vectors $( 2,-k,0)$ and $(1,2,2)$ linearly {\it dependent}? \begin{enumerate}[A.] \item \correct{No values of $k$.} \item $k = - 2$ \item $k \ne - 2$ \item $k = 0$ \item All values of $k$. \end{enumerate} \vfill \item For which value(s) of $k$ are the vectors $( 2,-k,0)$, $(1,2,2)$, $(0,1,-k)$, and $(0,1,k)$ linearly {\it dependent}? \begin{enumerate}[A.] \item No values of $k$. \item $k = - 2$ \item $k \ne - 2$ \item $k = 0$ \item \correct{All values of $k$.} \end{enumerate} \vfill\eject \item If $A=\left[\matrix 1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 3 \endmatrix \right]$, and $B=A^{-1}$, then the entry $b_{23}$ of $B$ is \begin{enumerate} [A.] \item $0$ \item $-4$ \item $4$ \item $1/6$ \item \correct{$-2/3$} \end{enumerate} \vfill \item Determine all values of $k$ so that the following system has {\bf no solution}. \begin{eqnarray*} x_1+x_2+3 x_3 &=& 1\\ 2x_1+4x_2+5 x_3 &=& 1\\ x_1-x_2+k^2x_3 &=& -k \end{eqnarray*} \begin{enumerate}[A.] \item $k\ne\pm2$ \item $k=\pm 2$ \item \correct{$k=2$} \item $k=-2$ \item $-2 2 \) \item all \( \alpha \) \end{enumerate} \vfill \item All the solutions of a $2\times2$ homogeneous linear system of differential equations ${\vec x}\,'=A{\vec x}$ tend to zero as ${t\to\infty}$ if the eigenvalues of $A$ are equal to: \begin{enumerate}[A.] \item $1$ and $-1$ \item $i$ and $-i$ \item $1+i$ and $1-i$ \item \correct{$-1+i$ and $-1-i$} \item None of the above. \end{enumerate} \vfill\eject \item The general solution of the linear system of differential equations \begin{eqnarray*} x_1'&=&x_1+2x_2\\ x_2'&=&4x_1+3x_2 \end{eqnarray*} is equal to \begin{enumerate}[A.] \item \correct{ $c_1\bmatrix e^{-t}\\ -e^{-t}\endbmatrix + c_2\bmatrix e^{5t}\\ 2e^{5t}\endbmatrix$ } \item $c_1\bmatrix e^{-t}\\ e^{-t}\endbmatrix + c_2\bmatrix e^{5t}\\ -2e^{5t}\endbmatrix$ \item $c_1\bmatrix e^{-t}\\ -e^{-t}\endbmatrix + c_2\bmatrix e^{5t}\\ -2e^{5t}\endbmatrix$ \item $c_1\bmatrix e^{-t}\\ e^{-t}\endbmatrix + c_2\bmatrix e^{5t}\\ 2e^{5t}\endbmatrix$ \item None of the above. \end{enumerate} \vfill \item The function $x_2(t)$ determined by the initial value problem \begin{eqnarray*} x_1'&=&x_2\\ x_2'&=&-x_1 \end{eqnarray*} with initial conditions $x_1(0)=1$ and $x_2(0)=1$ is given by \begin{enumerate}[A.] \item \correct{$x_2=-\sin t + \cos t$} \item $x_2=\sin t + \cos t$ \item $x_2=\frac12(e^{t}+e^{-t})$ \item $x_2= \cos t$ \item $x_2= ie^{it}-ie^{-it}$ \end{enumerate} \vfill\eject \item The $2\times2$ matrix $A=\left[\matrix -3 & -1 \\ 2 & -1\endmatrix\right]$ has complex eigenvalues $r=-2\pm i$. An eigenvector corresponding to $r=-2+i$ is $\left(\matrix 1 \\ -1-i \endmatrix\right)$. The system $$\vec x\,'=A\vec x+\left(\matrix 3\\-4\endmatrix\right)e^{-2t}$$ has one solution given by $\vec x(t)=\left(\matrix 1 \\ 2 \endmatrix\right)e^{-2t}$. What is the general solution to the system? \begin{enumerate}[A.] \item $c_1 \left(\matrix 1 \\ -1-i \endmatrix\right)e^{(-2+i)t} +c_2 \left(\matrix 1 \\ 2 \endmatrix\right)e^{2t}$ \item\correct{ $c_1 \left(\matrix \cos t \\ \sin t-\cos t \endmatrix\right)e^{-2t} + c_2 \left(\matrix \sin t \\ -\sin t-\cos t \endmatrix\right)e^{-2t} + \left(\matrix 1 \\ 2 \endmatrix\right)e^{-2t}$ } \item $c_1 \left(\matrix \cos t \\ -\cos t \endmatrix\right)e^{-2t} + c_2 \left(\matrix 0 \\ -\sin t \endmatrix\right)e^{-2t} + \left(\matrix 1 \\ 2 \endmatrix\right)e^{-2t}$ \item $c_1 \left(\matrix 1 \\ -1-i \endmatrix\right)e^{(-2+i)t} +c_2 \left(\matrix -1 \\ 1+i \endmatrix\right)e^{(-2-i)t} + \left(\matrix 1 \\ 2 \endmatrix\right)e^{-2t}$ \item $c_1 \left(\matrix \cos t \\ -\cos t \endmatrix\right)e^{-2t} + c_2 \left(\matrix 0 \\ -\sin t \endmatrix\right)e^{-2t} + c_3\left(\matrix 1 \\ 2 \endmatrix\right)e^{-2t}$ \end{enumerate} \vfill\eject \end{enumerate} \end{document}