\magnification=\magstep1 \input amstex \NoBlackBoxes \documentstyle{imappt} \nopagenumbers \vsize=10.25truein \voffset=-.5truein \define\ds{\displaystyle} \define\C{{\Bbb C}} \define\dee{\partial} \centerline{\bf MATH 530 Qualifying Exam} \centerline{January 1998} \bigskip \medskip \centerline{Notation: $D_r(a)$ denotes the disk, $\{z\in\C:|z-a|0\}$ onto $D_1(0)$. \bigskip \item"{\bf3.}" {\it (25 pts)} Let $\Cal F$ denote the set of analytic functions $f$ on $D_1(0)$ such that $|f(z)|<1$ for all $z\in D_1(0)$, $f(0)=0$, and $f'(0)=0$. Prove that if $f\in\Cal F$, then $|f(z)|\le|z|^2$ for all $z\in D_1(0)$. Let $M=\sup\{|f''(0)|\,:\,f\in\Cal F\}$. Find all functions, if any, in $\Cal F$ such that $|f''(0)|=M$. \bigskip \item"{\bf4.}" {\it (15 pts)} How many zeroes does the polynomial $$z^{1998}+z+2001$$ have in the first quadrant? Explain your answer. \bigskip \item"{\bf5.}" {\it (15 pts)} Prove that a harmonic function cannot have an isolated zero. \bigskip \item"{\bf6.}" {\it (15 pts)} Let $C_1(0)$ denote the unit circle $\{z\in\C\,:\,|z|=1\}$ and let $f$ be a function that is analytic on $D_r(0)$ for some $r>1$. Prove that if $f(C_1(0))\subset C_1(0)\setminus\{1\}$, then $f$ is a constant function. \endroster \enddocument