$$
\frac{\sqrt{t^{2}+16}-4}{t^{2}} \cdot \frac{\sqrt{t^{2}+16}+4}{\sqrt{t^{2}+16}+4}=
$$

1. Find the limit.

$$
\lim _{t \rightarrow 0} \frac{\sqrt{t^{2}+16}-4}{t^{2}}
$$

A. 0
(B. $\frac{1}{8}$
C. $\frac{1}{4}$
D. ∞
E. -4

$$
\frac{\left(t^{2}+16\right)-16}{t^{2}\left(\sqrt{t^{2}+16}+4\right)}
$$

$\ln x<$ need $x>0$
2. Where is the function $\frac{\ln x}{x^{2}-1}$ continuous?
A. $(0,1) \cup(1, \infty)$
B. $(-\infty,-1) \cup(-1,1) \cup(1, \infty)$
C. $(0, \infty)$
D. $(-\infty,-1) \cup(-1,0) \cup(0,1) \cup(1, \infty)$

$$
\begin{aligned}
\text { Note }= & \lim _{x \rightarrow 1} \frac{\ln x}{x^{2}-1} \stackrel{i t 1}{=}=\lim _{\left(\frac{0}{0}\right)} \frac{\left(\frac{1}{x}\right)}{2 x}=\frac{1}{2} \\
& \text { but the function is not defined } \\
& \text { at } x=1 .
\end{aligned}
$$

3. If an item is thrown upward on Mars, with velocity $10 \mathrm{~m} / \mathrm{s}$, its height in meters after t seconds is given by $y=10 t-2 t^{2}$. Find the average velocity over the time interval $[1,3]$.
A. $1 \mathrm{~m} / \mathrm{s}$
B. $20 \mathrm{~m} / \mathrm{s}$
C. $2 \mathrm{~m} / \mathrm{s}$
D. $0 \mathrm{~m} / \mathrm{s}$

Average velocity $=$ $\frac{y(3)-y(1)}{3-1}$
E. $10 \mathrm{~m} / \mathrm{s}$

$$
=\frac{\left(10.3-2 \cdot 3^{2}\right)-\left(10 \cdot 1-2 \cdot 1^{2}\right)}{3-1}
$$

$$
=\frac{(30-18)-(10-2)}{2}
$$

$$
=\frac{12-8}{2}=\frac{4}{2}=2 \mathrm{~m} / \mathrm{sec}
$$

4. Find the approximate value of $\ln (0.95)$ by considering a linearization.
A. 0.95

$$
f(x)=\ln x \quad \text { Take } a=1
$$

(B.) -0.05

$$
f^{\prime}(x)=\frac{1}{x}
$$

D. -0.95
E. $\frac{20}{19}$

$$
\begin{aligned}
f(x) & \approx f(a)+f^{\prime}(a)(x-a) \\
\ln (.95) & \approx(\ln 1)+\left(\frac{1}{1}\right)(.95-1) \\
& =0+1 \cdot(-0.05)=-0.05
\end{aligned}
$$

$=e^{u}$ where $u=x^{2}$.
5. Suppose $f(x)=e^{x^{2}}$ Find $f^{\prime \prime}(x)$.

$$
f^{\prime}(x)=e^{u} \cdot \frac{d u}{d x}=e^{x^{2}}(2 x)
$$

A. $4 x^{2} e^{x^{2}}$
B. $8 x^{2} e^{x^{2}}$
C. $2 x e^{2 x}$
D. $(2+2 x) e^{x^{2}}$
E. $\left(2+4 x^{2}\right) e^{x^{2}}$

$$
=4 x^{2} e^{x^{2}}+2 e^{x^{2}}
$$

6. Find the slope of the tangent line to $f(x)=\frac{1}{1+\sqrt{x}}$ at $x=1$.
(A.) $-\frac{1}{8}$
B. 2
C. $-\frac{1}{4}$
D. $\frac{1}{2}$

$$
=\frac{1}{u}=u^{-1} \text { where } u=1+x^{1 / 2}
$$

E. 1

$$
\begin{aligned}
& =\frac{-1}{(1+\sqrt{x})^{2}} \cdot\left(\frac{1}{2 \sqrt{x}}\right) \\
\text { Slope }=f^{\prime}(1) & =\frac{-1}{(1+\sqrt{1})^{2}} \cdot\left(\frac{1}{2 \sqrt{1}}\right)=\frac{-1}{2^{3}}=\frac{-1}{8}
\end{aligned}
$$

7. f is a function with $f(1)=2, f^{\prime}(1)=3, f\left(\frac{\pi}{4}\right)=1$, and $f^{\prime}\left(\frac{\pi}{4}\right)=4$. If

$$
h(x)=f(\tan x)
$$

find $\frac{d h}{d x}$ at $x=\frac{\pi}{4}$.

$$
h(x)=f(u) \text { where } u=\operatorname{Tan} x
$$

(A.) 6
B. 8
C. 3

$$
h^{\prime}(x)=f^{\prime}(u) \cdot \frac{d u}{d x}
$$

D. 4
E. 2

$$
\begin{aligned}
& h^{\prime}(x)=f^{\prime}(\operatorname{Tan} x) \sec ^{2} x \\
& h^{\prime}\left(\frac{\pi}{4}\right)=f^{\prime}\left(\operatorname{Tan} \frac{\pi}{4}\right) \operatorname{Sec}^{2} \frac{\pi}{4}=\underbrace{f^{\prime}(1)}_{3}(\sqrt{2})^{2}=3 \cdot 2 \\
&=6
\end{aligned}
$$

8. Find the equation of the tangent line to the curve $2 y^{4}-x^{2} y=x^{3}$ at the point $(1,1)$.
A. $y=\frac{1}{3} x+\frac{2}{3}$
B. $y=\frac{5}{7} x+\frac{2}{7}$
$2 \cdot 4 y^{3} \cdot \frac{d y}{d x}-\left(2 x y+x^{2} \frac{d y}{d x}\right)=3 x^{2}$
C. $y=\frac{5}{8} x+\frac{3}{8}$
D. $y=x$
E. $y=\frac{5}{9} x+\frac{4}{9}$

Tangent line

$$
\begin{aligned}
& \frac{y-1}{x-1}=\frac{5}{7} \\
& y=1+\frac{5}{7}(x-1) \\
& =\frac{5}{7} x+\frac{2}{7}
\end{aligned}
$$

$$
\left.\frac{d M}{d x}(8)^{3}-x^{2}\right)=3 x^{2}+2 x N
$$

9. A ladder of length 10 m is resting against a vertical wall. If the foot of the ladder slides away from the wall at a rate of $3 \mathrm{~m} / \mathrm{s}$, how fast is the top of the ladder sliding down the wall at the instant the foot of the ladder is 8 m from the wall? Given: | $x^{2}+y^{2}=10^{2}$ | Want $\frac{d y}{d t}$ |
| ---: | ---: |
| | $\frac{d x}{d t}=3$ |$| \begin{gathered}\text { when } x=8 .\end{gathered}$

A. $\frac{25}{3} \mathrm{~m} / \mathrm{s}$
B. $3 \mathrm{~m} / \mathrm{s}$ \qquad

C. $4 \mathrm{~m} / \mathrm{s}$
D. $\frac{8}{3} \mathrm{~m} / \mathrm{s}$
E. $\frac{15}{2} \mathrm{~m} / \mathrm{s}$

$(8) \cdot 3+\sqrt{36} \cdot \frac{d y}{d t}=0$

$$
\text { when }\left\{\begin{array}{l}
x=8 \\
y=\sqrt{36}
\end{array}\right.
$$ $\frac{d y}{d t}=\frac{-24}{\sqrt{36}}=-4 \mathrm{~m} / \mathrm{s}$. Rate sliding down is $+4 \mathrm{~m} / \mathrm{s}$.

10. Where is the function $f(x)=x^{4}-2 x^{3}+4 x$ concave down?
A. $(-\infty, 0)$
B. $(-\sqrt{2}, \sqrt{2})$

$$
f^{\prime}(x)=4 x^{3}-6 x^{2}+4
$$

C. $(1, \infty)$
D. $(0,1)$

$$
f^{\prime \prime}(x)=12 x^{2}-12 x
$$

E. $(-\infty, \sqrt{2})$

Concave down

11. Find the horizontal asymptotes of

$$
f(x)=\frac{e^{x}+2 e^{-x}}{e^{x}+3 e^{-x}}
$$

A. $y=-1$ and $y=1$
B. $y=-\frac{2}{3}$ and $y=\frac{2}{3}$
C. $y=1$
(仓.) $y=\frac{2}{3}$ and $y=1$

$$
e^{x} \text { bass when } x \rightarrow \infty \text {; }
$$

E. There are no horizontal asymptotes.

$$
\frac{e^{x}+2 e^{-x}}{e^{x}+3 e^{-x}}=\frac{e^{x}}{e^{x}} \frac{\left[1+2 e^{-2 x}\right]}{\left[1+3 e^{-2 x}\right]}
$$

$$
\begin{aligned}
& e^{-x} \text { boss as } x \rightarrow-\infty: \\
& \frac{e^{x}+2 e^{-x}}{e^{x}+3 e^{-x}}=\frac{e^{-x}}{e^{-x}} \frac{\left[e^{2 x}+2\right]}{\left[e^{2 x}+3\right]} \rightarrow \frac{1+0}{1+0}=1 \text { as } x \rightarrow \infty \\
& y=1 \text { horiz asymp } \\
& y=\frac{0+2}{3} \quad \text { as } x \rightarrow-\infty \\
& y=\frac{2}{3} \text { horiz }
\end{aligned}
$$

12. Find the limit.

$$
\lim _{x \rightarrow 0} \frac{\csc (2 x)}{\cot x}
$$

(A.) $\frac{1}{2}$
B. 1
C. 2
D. ∞
E. The limit does not exist.

$$
\frac{\csc 2 x}{\cot x}=\frac{\left(\frac{1}{\sin 2 x}\right)}{\left(\frac{\cos x}{\sin x}\right)}
$$

$$
\begin{gathered}
=\frac{\sin x}{\cos x} \cdot \frac{1}{\sin 2 x}=\frac{1}{\cos x} \cdot \frac{\sin x}{x} \cdot \frac{2 x}{\sin 2 x} \cdot \frac{1}{2} \\
\rightarrow \frac{1}{\cos 0} \cdot 1 \cdot 1 \cdot \frac{1}{2}=\frac{1}{2}
\end{gathered}
$$

or use L'Hopital's rule.
13. Find the vertical asymptotes of the function $f(x)=\frac{x^{2}+1}{3 x-2 x^{2}}$.
A. $x=2$ and $x=-3$
B. $x=-\frac{1}{2}$

$$
3 x-2 x^{2}=x(3-2 x)
$$

C. $x=\frac{3}{2}$
(D.) $x=0$ and $x=\frac{3}{2}$
E. $x=\frac{1}{3}$

$$
\xrightarrow{t+t+t+t+t+t} \operatorname{sign} x^{2}+1
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{-}} f(x)=-\infty \\
& \lim _{x \rightarrow 0^{+}} f(x)=\infty \\
& \lim _{x \rightarrow 3 / 2^{-}} f(x)=\infty \\
& \lim _{\rightarrow 3^{+}} f(x)=-\infty
\end{aligned}
$$

$$
\xrightarrow[0]{\cdots} \frac{3}{2}
$$

$$
\frac{\text { Boom }}{\substack{\text { Boom }+x+2}} \frac{\text { Boom }}{3 / 2} \rightarrow f(x)
$$

$x \rightarrow \frac{3}{2} \times 14$. Let f be a function whose derivative, f^{\prime}, is given by

$$
f^{\prime}(x)=x(x-2)(x-1)^{2}
$$

The function f has
A. local maxima at $x=0$ and $x=2$.
(B.) a local minimum at $x=2$, and a local maximum at $x=0$.
C. local minima at $x=0$ and $x=1$, and a local maximum at $x=2$.
D. local minima at $x=0$ and $x=2$, and a local maximum at $x=1$.
E. a local minimum at $x=1$, and local maxima at $x=0$ and $x=2$.

15. If $1200 \mathrm{~m}^{2}$ of material is available to make a box with a square base and an open top, find the largest possible volume of the box.
Given: $1200=\left(x^{2}\right)+4 x y \leftarrow y=\frac{1200-x^{2}}{4 x}$

$$
V=x^{2} \cdot y=x^{2}\left(\frac{1200-x^{2}}{4 x}\right)
$$

A. $2000 \sqrt{2} \mathrm{~m}^{3}$
B. $2000 \mathrm{~m}^{3}$
C. $2000 \sqrt{3} \mathrm{~m}^{3}$

$$
V=x\left(300-\frac{1}{4} x^{2}\right)=300 x-\frac{x^{3}}{4}
$$

D. $1000 \sqrt{2} \mathrm{~m}^{3}$
E. $4000 \mathrm{~m}^{3}$

$\hat{q}_{\max }$

When $x=20, V=300.20-\frac{(20)^{3}}{4}$

$$
\begin{aligned}
& =6 \cdot 10^{3}-\frac{8}{4} \cdot 10^{3} \\
& =(6-2) \cdot 10^{3}=4000 \mathrm{~m}^{3}
\end{aligned}
$$

16. Find the point on the curve $y=\sqrt{x}$ which is closest to $(3,0)$.

Hint: The distance between two points (a, b) and (x, y) is $\sqrt{(x-a)^{2}+(y-b)^{2}}$.
(A.) $\left(\frac{5}{2}, \sqrt{\frac{5}{2}}\right)$
B. $(1,1)$
C. $(3, \sqrt{3})$

D. $\left(\frac{3}{2}, \sqrt{\frac{3}{2}}\right)$
E. None of the above. $\frac{d D}{d x}=\frac{1}{2}\left((x-3)^{2}+x\right)^{-1 / 2}[2(x-3)+1]=0$

17. Find an antiderivative of the function $f(x)=\frac{2}{1+x^{2}}$.
(A.) $2 \tan ^{-1} x$
B. $\ln \left(1+x^{2}\right)$
C. $2 x-\frac{2}{x}$

$$
F(x)=\int \frac{2}{1+x^{2}} d x=2 \int \frac{1}{1+x^{2}} d x
$$

D. $\frac{-2}{1+x}$
E. $\frac{-4 x}{\left(1+x^{2}\right)^{2}}$
$=2 \operatorname{Tan}^{-1} x+C=$ all
18. Using the table of values below, estimate $\int_{1}^{2.5} g(x) d x$ using a left Riemann sum with $n=3$ rectangles.

x	1	1.5	2	2.5
$g(x)$	3	5	4	2

A. 12
B. 14
C. $\frac{28}{3}$
D. $\frac{37}{2}$
(E.) 6^{2}

19. Suppose

$$
f(x)=\int_{0}^{x^{3}}\left(t^{2}+1\right) d t
$$

Find $f^{\prime}(x)$.
A. $3 x^{4}+3 x^{2}$
(B. $3 x^{8}+3 x^{2}$
C. $x^{6}+1$
D. $6 x^{5}$
E. $\left(x^{2}+1\right)^{3}$

$$
f(x)=\int_{0}^{u}\left(t^{2}+1\right) d t \text { where } u=x^{3}
$$

$$
\begin{aligned}
f^{\prime}(x) & =f^{\prime}(u) \cdot \frac{d u}{d x} \\
& =\left[u^{2}+1\right] \cdot 3 x^{2}=\left[\left(x^{3}\right)^{2}+1\right] \cdot 3 x^{2} \\
& =\left(x^{6}+1\right) \cdot 3 x^{2} \\
& \text { Fund Thm Calc. }
\end{aligned}=3 x^{8}+3 x^{2} .
$$

20. Evaluate.

$$
\int_{1}^{4} \frac{\sqrt{x}+x}{x^{2}} d x
$$

A. $1+\ln 16$
B. $-3+\ln 4$
C. $\frac{31}{32}+\ln 16$ $=\int_{1}^{4} \frac{x^{1 / 2}}{x^{2}}+\frac{x}{x^{2}} d x=\int_{1}^{4} x^{-3 / 2}+\frac{1}{x} d x$
D. $\frac{3}{2}+\ln 16$
E. $1+\ln 4$

$$
\begin{gathered}
=\left[\frac{1}{-\frac{3}{2}+1} x^{-\frac{3}{2}+1}+\operatorname{Ln}|x|\right]_{1}^{4} \\
=\left[-2 x^{-1 / 2}+\ln x\right]_{1}^{4}=\left(-\frac{2}{\sqrt{4}}+\ln 4\right)-\left(\frac{-2}{\sqrt{1}}-\ln 1\right) \\
=(-1+\ln 4)-(-2) \quad \ln 1=0 \\
12 \\
=1+\ln 4
\end{gathered}
$$

$$
u=1-2 x^{4} \quad d u=-8 x^{3} d x \quad x^{3} d x=-\frac{1}{8} d u
$$

21. $\int x^{3}\left(1-2 x^{4}\right)^{1 / 4} d x=\underbrace{\int-\frac{5}{32}\left(1-2 x^{4}\right)^{5 / 4}+C}_{u^{1 / 4}}\left(1-2 x^{4}\right)^{1 / 4} \underbrace{\left(x^{3} d x\right)}_{-\frac{1}{8} d u}$
B. $-\frac{1}{8}\left(1-2 x^{4}\right)^{5 / 4}+C$
$\begin{aligned} & \substack{\text { B. }-\frac{1}{8}\left(1-2 x^{4}\right)^{5 / 4}+C \\ \text { C. } \frac{4}{5}\left(1-2 x^{4}\right)^{5 / 4}+C \\ \text { (D. }-\frac{1}{2}\left(1-2 x^{4}\right)^{5 / 4}+C \\ \text { E. } \frac{2}{5}\left(1-2 x^{4}\right)^{5 / 4}+C}\end{aligned}=-\frac{1}{8} \int u^{1 / 4} d u=-\frac{1}{8}\left[\frac{1}{\frac{1}{4}+1} u^{\frac{1}{4}+1}\right]+C$

$$
\begin{aligned}
& =-\frac{1}{8}\left(\frac{4}{5} u^{5 / 4}\right)+C \\
& =-\frac{1}{10}\left(1-2 x^{4}\right)^{5 / 4}+C
\end{aligned}
$$

22. $\int_{\ln \sqrt{3}}^{\ln \sqrt{8}} 2 e^{2 t} \sqrt{1+e^{2 t}} d t \quad u=1+e^{2 t} \quad d u=2 e^{2 t} d t$
(A. $\frac{38}{3}$
B. $\frac{32}{3} \sqrt{2}-2 \sqrt{3}$
C. $\frac{1}{12}$$\left[\begin{array}{l}\text { When } x=\ln \sqrt{3}, u=1+e^{2 \operatorname{Ln} \sqrt{3}}=1+e^{\operatorname{Ln}(\sqrt{3})^{2}}=1+3=4 \\ \text { When } x=\ln \sqrt{8}, u=1+e^{2 \operatorname{Ln} \sqrt{8}}=1+e^{\operatorname{Ln}(\sqrt{8})^{2}}=1+8=9\end{array}\right.$
E. $\frac{8 \ln (3)-8}{5} \int_{9}^{\text {D. } 2 \sqrt{2}-\sqrt{3}} \int_{x=\ln \sqrt{3}}^{\ln \sqrt{8}} \underbrace{\left(1+e^{2 t}\right)^{1 / 2}}_{u^{1 / 2}} \underbrace{\left(2 e^{2 t} d t\right)}_{d u}$

$$
=\int_{u=4}^{9} u^{1 / 2} d u=\left[\frac{1}{\frac{1}{2}+1} u^{1 / 2+1}\right]_{4}^{9}=\left.\frac{2}{3} u^{3 / 2}\right|_{1} ^{9}=\frac{2}{3}\left(9^{3 / 2}-4^{3 / 2}\right)
$$

23. $\int_{\frac{\pi}{6}}^{\frac{3 \pi}{4}}(\cos t+$
B. $\sqrt{2}-\frac{\sqrt{3}}{2}+\frac{1}{2}$
C. $\sqrt{2}+\frac{\sqrt{3}}{2}-\frac{1}{2}$

$$
=\left[\sin \frac{3 \pi}{4}-\cos \frac{3 \pi}{4}\right]-\left[\sin \frac{\pi}{6}-\cos \frac{\pi}{6}\right]
$$

D. $\frac{\sqrt{3}}{2}+\frac{1}{2}$

$$
d t=[\sin t-\cos t]_{\pi / 6}^{3 \pi / 4}
$$

E. $-\frac{\sqrt{3}}{2}+\frac{1}{2}$

$$
=\sqrt{2}-\frac{1}{2}+\frac{\sqrt{3}}{2}
$$

24. The graph of f is pictured below.

A. -1
B. 0

$$
=A_{1}-A_{2}=(1.2)+\frac{1}{2} 1.1
$$

C. 1
D. 4
E. -2
(A's cancel 1)

Suppose $F(x)=\int_{0}^{x} f(t) d t$. Find $F(5)$.
,

$$
=2 \text { squares }-1 \text { square }
$$

A_{2}

25. Here is the graph of f :
downhill $f^{\prime}<0$

Find the graph of its derivative, f^{\prime}, below Boom

