1. At time 0 a ball is thrown directly upward from a platform 10 m tall. Its height above the ground after t seconds is $s=-5 t^{2}+5 t+10$, where s is in meters. The ball hits the ground after 2 seconds. What is its velocity at impact?

$$
\begin{aligned}
& v=\frac{d s}{d t}=-10 t+5 \\
& t=2: \quad v=-10 \cdot 2+5=-15
\end{aligned}
$$

A. 0
B. $-5 \mathrm{~m} / \mathrm{s}$
C. $-10 \mathrm{~m} / \mathrm{s}$
D. $-15 \mathrm{~m} / \mathrm{s}$
E. $-20 \mathrm{~m} / \mathrm{s}$

Note: If part of the problem were to
find the moment of impact, you would
solve $-5 t^{2}+5 t+10=0$ to get $t=2$.
2. At which point(s) does the curve $y=x^{3}-6 x^{2}+12 x+7$ have a horizontal tangent?

$$
\begin{gathered}
\frac{d y}{d x}=3 x^{2}-12 x+12=0 \\
3\left[x^{2}-4 x+4\right]=0 \\
3(x-2)^{2}=0 \\
\frac{d y}{d x}=0 \text { at } x=2 .
\end{gathered}
$$

A. $x=0$ and $x=1$
B. $x=1$ and $x=2$
C. $x=0$ and $x=2$
D. $x=1$
E. $x=2$

$$
\begin{aligned}
\\
\begin{aligned}
f^{\prime}(x) & =\left(\frac{1}{2} x^{\frac{1}{2}-1}\right) e^{x-4}+\sqrt{x} e^{x-4} \cdot \frac{d}{d x}(x-4) \\
& =\frac{e^{x-4}}{2 \sqrt{x}}+\sqrt{x} e^{x-4} \\
f^{\prime}(4) & =\frac{e^{0}}{2 \cdot 2}+2 \cdot e^{0}=\frac{1}{4}+2=\frac{9}{4}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4. If } f(x)=(1+\sin 2 x)^{10} \text {, then } f^{\prime}\left(\frac{\pi}{2}\right)= \\
& f^{\prime}(x)=10(1+\sin 2 x)^{9} \cdot[0+(\cos 2 x) \cdot 2] \\
&=20(1+\sin 2 x)^{9} \cos 2 x
\end{aligned}
$$

$$
x=\frac{\pi}{2}: \quad 2 x=\pi . \quad \sin \pi=0=\frac{0}{1}
$$

$$
\cos \pi=-1=\frac{-1}{1}
$$

$$
f^{\prime}\left(\frac{\pi}{2}\right)=20(1+0)^{9} \cdot(-1)=-20
$$

5. If $g(x)=\tan \left(\frac{\pi}{2} f(x)\right)$, where $f(0)=0$ and $f^{\prime}(0)=2$, then $g^{\prime}(0)=$
$y=\operatorname{Tan} u$ where $u=\frac{\pi}{2} f(x)$
A. 4
B. $\frac{\pi}{2}$

$$
\begin{align*}
& g^{\prime}(x)=\frac{d y}{d u} \cdot \frac{d u}{d x}=\left(\sec ^{2} u\right) \cdot\left(\frac{\pi}{2} f^{\prime}(x)\right) \\
&=\left[\sec ^{2}\left(\frac{\pi}{2} f(x)\right)\right] \cdot\left(\frac{\pi}{2} f^{\prime}(x)\right) \\
& g^{\prime}(0)=\sec ^{2}\left(\frac{\pi}{2} f(0)\right) \cdot \frac{\pi}{2} f^{\prime}(0)=\left(\sec ^{2}(0) \cdot \frac{\pi}{2} \cdot 2=1^{2} \cdot \pi\right. \\
&=\pi
\end{align*}
$$

6. If $f(x)=\ln \sqrt{\frac{x^{3}}{1-x^{2}}}$, then $f^{\prime}(x)=$

$$
\begin{aligned}
& =\ln \left(\frac{x^{3}}{1-x^{2}}\right)^{1 / 2}=\frac{1}{2} \ln \frac{x^{3}}{1-x^{2}} \\
f(x) & =\frac{1}{2} \ln x^{3}-\frac{1}{2} \ln \left(1-x^{2}\right) \\
f^{\prime}(x) & =\frac{1}{2} \cdot \frac{1}{x^{3}} \cdot 3 x^{2}-\frac{1}{2} \cdot \frac{1}{1-x^{2}} \cdot(-2 x) \\
& =\frac{3}{2} \cdot \frac{1}{x}+\frac{x}{1-x^{2}}
\end{aligned}
$$

A. $\frac{1}{2}\left(\frac{3}{x}-1\right)$
(B.) $\frac{1}{2}\left(\frac{3}{x}+\frac{2 x}{1-x^{2}}\right)$
C. $\frac{1}{2}\left(\frac{3}{x}-\frac{2 x}{1-x^{2}}\right)$
D. $\frac{1}{2}\left(\frac{3}{x}+1\right)$
E. $\frac{1}{2}\left(\frac{5}{x}\right)$
7. Find an equation for the line tangent to the graph of $y=\frac{x^{3}}{\ln x}$ at the point $\left(e, e^{3}\right)$.

$$
\frac{d y}{d x}=\frac{\left(3 x^{2}\right) \ln x-x^{3} \cdot \frac{1}{x}}{(\ln x)^{2}}
$$

(A.) $y=2 e^{2} x-e^{3}$
B. $y=2 e^{2} x+e^{3}-3$
C. $y=2 e^{2} x+e$

When $x=e: \quad \frac{d y}{d x}=\frac{3 e^{2} \cdot 1-e^{2}}{1^{2}}=2 e^{2}$
D. $y=-e^{2} x+e$
E. $y=-e^{2} x-e$ and $y=\frac{e^{3}}{\ln e}=e^{3}$
Tangent line: $\quad \begin{aligned} & \quad y-e^{3} \\ & x-e\end{aligned}=2 e^{2} \quad y=e^{3}+2 e^{2}(x-e)$

$$
=2 e^{2} x-e^{3}
$$

8. Use implicit differentiation to find $\frac{d y}{d x}$ at the point $(1,2)$ if $x^{4}-3 x^{2} y+y^{2}+y^{3}=7$.

$$
\begin{align*}
& 4 x^{3}-\left[6 x y+3 x^{2} y^{\prime}\right]+2 y y^{\prime}+3 y^{2} y^{\prime}=0 \quad \text { A. } \frac{-2}{5} \\
& y^{\prime}\left(-3 x^{2}+2 y+3 y^{2}\right)=-4 x^{3}+6 x y \\
& y^{\prime}=\left.\frac{-4 x^{3}+6 x y}{-3 x^{2}+2 y+3 y^{2}}\right|_{x=1}=\frac{-4 \cdot 1^{3}+6 \cdot 1 \cdot 2}{-3 \cdot 1^{2}+2 \cdot 2+3 \cdot 2^{2}} \tag{E}\\
& \text { C. } \frac{4}{13} \\
& \text { D. }-\frac{3}{5} \\
& =\frac{8}{-3+4+12}=\frac{8}{13}
\end{align*}
$$

9. Let $y=x^{\tan x}$. Find $\frac{d y}{d x}$.

$$
\text { A. } \frac{d y}{d x}=x^{\tan x}(\sec x \tan x \ln x+\tan x)
$$

10. 60% of a radioactive substance decays in 3 hours. What is the half-life of the substance?
60% gone after 3 hrs. So 40° remains, a. $3\left(\ln \frac{1}{5}\right)$ hours

$$
R=R_{0} e^{-c t} \leftarrow R_{0} \text { present at time } t=0 \text {, }
$$

(B.) $3\left(\frac{\ln \frac{1}{2}}{\ln \frac{2}{5}}\right)$ hours
$\frac{40}{100} R_{0}=R_{0} e^{-c \cdot 3} \leftarrow 40 \%$ left after 3 hrs
C. $3\left(\frac{\ln \frac{1}{2}}{\ln \frac{5}{2}}\right)$ hours

$$
\begin{aligned}
& \frac{2}{5}=e^{-3 c} \\
& \ln \frac{2}{5}=-3 c \\
& c=-\frac{1}{3} \ln \frac{2}{5}=\frac{1}{3} \ln \frac{5}{2}
\end{aligned}
$$

$$
\ln a^{-1}=-\ln a
$$

$$
\left.\left\lvert\, \begin{array}{l}
\text { Half life } H: \\
\frac{1}{2} R_{0}=R_{0} e^{-\left(\frac{1}{3} \ln \frac{5}{2}\right) H \quad \text { D. } 3\left(\frac{\ln \frac{5}{2}}{\ln \frac{1}{2}}\right) \text { hours }} \\
\ln \frac{1}{2}=-\left(\frac{1}{3} \ln \frac{5}{2}\right) H \quad \text { E. } 3\left(\frac{\ln \frac{2}{5}}{\ln \frac{1}{2}}\right) \text { hours } \\
-\ln 2=-\frac{1}{3} \operatorname{Ln} \frac{5}{2} H \\
H=3 \ln 2 \\
\ln \frac{5}{2}
\end{array} \quad \frac{3\left(-\ln \frac{1}{2}\right)}{-\ln \frac{2}{5}}\right.\right)
$$

$$
\begin{aligned}
& \operatorname{Ln} y=\operatorname{Ln} x^{\tan x}=(\operatorname{Tan} x) \cdot \operatorname{Ln} x \\
& \frac{d}{d x}(\operatorname{Ln} y)=\left(\sec ^{2} x\right) \cdot \operatorname{Ln} x+(\tan x) \cdot \frac{1}{x} \\
& \frac{1}{y} \frac{d y}{d x}=\left[\left(\sec ^{2} x\right) \cdot \ln x+\frac{\operatorname{Tan} x}{x}\right] \\
& \text { B. } \left.\frac{d y}{d x}=x^{\tan x} \sec ^{2} x\right)\left(\frac{1}{x}\right) \\
& \text { C. } \frac{d y}{d x}=x^{\tan x}\left(\sec ^{2} x \ln x+\frac{\tan x}{x}\right) \\
& \text { D. } \frac{d y}{d x}=x^{\tan x-1}(\tan x) \\
& \text { E. } \left.\frac{d y}{d x}=x^{\tan x} \sec ^{2} x\right) \\
& \frac{d y}{d x}=y \cdot[e \operatorname{cen}]=x^{\operatorname{Tan} x}\left[\left(\operatorname{Sec}^{2} x\right) \ln x+\frac{\tan x}{x}\right]
\end{aligned}
$$

