MATH 425, Exam 1

Each problem is 20 points
(20) 1. Find all complex numbers z such that $z^{4}=-16$. Express them in polar form $r e^{i \theta}$ and cartesian form $a+i b$.
(20) 2. a) Using the notation $f(x+i y)=u(x, y)+i v(x, y)$, write down the CauchyRiemann equations and state exactly what is needed to deduce that f is an analytic function on a domain Ω.
b) Show that $f(x+i y)=e^{y} e^{i x}$ is not analytic on \mathbb{C}.
(20) 3. a) Define a branch of a complex log function and use it to compute $\int_{\gamma} \frac{1}{z} d z$ where γ is any curve that starts at $3 i$ and ends at 2 , avoiding the set

$$
\left\{z=r e^{i \theta}: r \geq 0, \frac{\pi}{6} \leq \theta \leq \frac{\pi}{3}\right\}
$$

b) Compute $\int_{\gamma} \frac{1}{z^{2}} d z$. Explain your reasoning.
(20) 4. Let C_{R} denote the half circle parametrized by $z(t)=R e^{i t}, 0 \leq t \leq \pi$. Use careful estimates to show that

$$
\int_{C_{R}} \frac{z-2}{z^{7}+5} d z
$$

tends to zero as $R \rightarrow \infty$.
(20) 5. Compute

$$
I=\int_{C_{2}} \frac{e^{2 z}}{(z-1)^{2}(z-5)} d z
$$

where C_{2} is the counterclockwise circle of radius two about the origin. Explain.

