MATH 425, Practice Problems

1. Prove that if an analytic function f has constant modulus on a domain, then it must be constant there.
2. Let γ denote any curve that starts at 2 and ends at -2 and avoids the set $\{z$: $\operatorname{Im} z \leq 0\}$. Compute
a) $\int_{\gamma} \frac{1}{z^{3}} d z$
b) $\int_{\gamma} \frac{1}{z} d z$
3. Compute

$$
\int_{0}^{\pi} e^{3 i t} d t
$$

where t is a real variable.
4. Prove the following version of the Chain Rule. If f is analytic on a domain Ω and $z(t)$ is a complex valued function of the real variable t that is differentiable and maps into Ω, then $h(t)=f(z(t))$ is differentiable and $h^{\prime}(t)=f^{\prime}(z(t)) z^{\prime}(t)$.
5. Find all z so that $\sin z=2$.
6. Find a conformal mapping that maps the strip $\{z: 0<\operatorname{Re} z<1\}$ one-to-one onto the unit disc.
7. Let C_{R} denote the half circle parameterized by $z(t)=R e^{i t}$ for $0 \leq t \leq \pi$. Show that

$$
\int_{C_{R}} \frac{1}{z^{4}+1} d z
$$

tends to zero as R tends to infinity.
8. Find an analytic function that maps the quarter disc

$$
\left\{r e^{i \theta}: 0<r<1, \quad 0<\theta<\pi / 2\right\}
$$

one-to-one onto the strip

$$
\{z: 0<\operatorname{Im} z<1\}
$$

9. What is the image of the unit disc under the linear fractional transformation $T(z)=z /(1-z) ?$
