MATH 425, Exam 1 Practice Problems

1. a) Find all solutions to $z^{3}-8=0$.
b) What are the eighth roots of unity, i.e., solutions to $z^{8}=1$?
2. Show that $u(x, y)=x e^{x} \cos y-y e^{x} \sin y$ is harmonic on \mathbb{C} and find a harmonic conjugate for u on \mathbb{C}.
3. Find a continuous real valued function u on the annulus $\{z: 1 \leq|z| \leq 2\}$ that is harmonic inside the annulus, equal to 20 on the inner boundary and equal to 5 on the outer boundary.
4. Use the Cauchy-Riemann equations to prove that a real valued analtyic function on a domain must be constant.
5. Show that an analytic function on a domain that has constant modulus must be constant.
6. Let C denote the unit circle parameterized in the counterclockwise sense. Compute $\int_{C} \frac{e^{3 z}}{(2 z-1)^{2}(z-2)} d z$. Explain.
7. Find all z so that $\sin z=2$.
8. Define the following functions in terms of the complex exponential and/or \log functions:
a) $\sin z$
b) $\cosh z$
c) $\sinh ^{-1} z$
9. Compute $\int_{0}^{\pi} e^{3 i t} d t$ where t is a real variable.
10. Compute the following path integrals
a) $\int_{\gamma}|z|^{2} d z$ where γ is the line from 0 to 1 followed by the line from 1 to $1+i$.
b) $\int_{\Gamma}|z|^{2} d z$ where Γ is the radial line from 0 to $1+i$.
11. Let γ denote any curve that starts at $2-i$ and ends at $-2-i$ and avoids
the set $\{i t: t \leq 0\}$. Compute
a) $\int_{\gamma} \frac{1}{z^{3}} d z$
b) $\int_{\gamma} \frac{1}{z} d z$
12. Let C_{R} denote the half circle parameterized by $z(t)=R e^{i t}$ for $0 \leq t \leq \pi$. Show that

$$
\int_{C_{R}} \frac{1}{z^{4}+1} d z
$$

tends to zero as R tends to infinity.
13. Determine a branch of $\log \left(z^{2}+4 z+1\right)$ that is analytic near $z=-1$ and find its derivative there.
14. Find a one-to-one analytic function that maps the strip $\{z: 0<\operatorname{Re} z<1\}$ onto the upper half plane.
15. Sketch the following subsets of the complex plane and explain why each is or is not a domain.
a) $\{x+i y: 3<x<5,-\infty<y<\infty\}$
b) $\{z: 4 \leq|z|<7\}$
c) $\{z: 0<\operatorname{Re} z<1, \operatorname{Im} z=0\}$
d) $\{z: 0<\operatorname{Re} z<1, \operatorname{Im} z \neq 0\}$
e) $\left\{z: z \neq 0,-\frac{\pi}{4} \leq \operatorname{Arg} z \leq \frac{\pi}{4}\right\}$

