MATH 425, Exam 1 Practice Problems

- 1. a) Find all solutions to $z^3 8 = 0$.
 - b) What are the eighth roots of unity, i.e., solutions to $z^8 = 1$?
- **2.** Show that $u(x,y) = xe^x \cos y ye^x \sin y$ is harmonic on $\mathbb C$ and find a harmonic conjugate for u on \mathbb{C} .
- **3.** Find a continuous real valued function u on the annulus $\{z:1\leq |z|\leq 2\}$ that is harmonic inside the annulus, equal to 20 on the inner boundary and equal to 5 on the outer boundary.
- 4. Use the Cauchy-Riemann equations to prove that a real valued analtyic function on a domain must be constant.
- 5. Show that an analytic function on a domain that has constant modulus must be constant.
- **6.** Let C denote the unit circle parameterized in the counterclockwise sense.

Compute $\int_C \frac{e^{3z}}{(2z-1)^2(z-2)} dz$. Explain. 7. Find all z so that $\sin z = 2$.

- 8. Define the following functions in terms of the complex exponential and/or log functions: a) $\sin z$ b) $\cosh z$ c) $\sinh^{-1} z$
- **9.** Compute $\int_0^{\pi} e^{3it} dt$ where t is a real variable.
- 10. Compute the following path integrals
 - a) $\int_{\gamma} |z|^2 dz$ where γ is the line from 0 to 1 followed by the line from 1 to
 - b) $\int_{\Gamma} |z|^2 dz$ where Γ is the radial line from 0 to 1+i.
- **11.** Let γ denote any curve that starts at 2-i and ends at -2-i and avoids the set $\{it: t \leq 0\}$. Compute a) $\int_{\gamma} \frac{1}{z^3} dz$ b) $\int_{\gamma} \frac{1}{z} dz$
- 12. Let C_R denote the half circle parameterized by $z(t) = Re^{it}$ for $0 \le t \le \pi$. Show that

$$\int_{C_R} \frac{1}{z^4 + 1} \ dz$$

tends to zero as R tends to infinity.

- 13. Determine a branch of $\log(z^2+4z+1)$ that is analytic near z=-1 and find its derivative there.
- **14.** Find a one-to-one analytic function that maps the strip $\{z : 0 < \operatorname{Re} z < 1\}$ onto the upper half plane.
- 15. Sketch the following subsets of the complex plane and explain why each is or is not a domain.
- a) $\{x + iy : 3 < x < 5, -\infty < y < \infty\}$
- b) $\{z: 4 \le |z| < 7\}$
- c) $\{z: 0 < \text{Re } z < 1, \text{Im } z = 0\}$
- d) $\{z: 0 < \text{Re } z < 1, \text{Im } z \neq 0\}$
- e) $\{z: z \neq 0, -\frac{\pi}{4} \leq \operatorname{Arg} z \leq \frac{\pi}{4}\}$