MATH 425, Practice Problems

1. Prove that if a twice continuously differentiable harmonic function vanishes on an open subset of a domain, then it must be zero on the whole domain. Hint: If u is harmonic, then $u_{x}-i u_{y}$ is analytic.
2. Suppose that f and g are analytic on a disc about a and that each has a zero of multiplicity N at a. Prove that $\lim _{z \rightarrow a} \frac{f(z)}{g(z)}=\frac{f^{(N)}(a)}{g^{(N)}(a)}$.
3. Let $f(z)=\frac{1}{1+z^{2}}$. Find the first three terms in the power series $\sum_{n=0}^{\infty} a_{n}(z-2)^{n}$ for f centered at $z=2$. What is the radius of convergence of the series? Explain.
4. What is the radius of convergence of the power series for $\frac{\sin z}{z}$ centered at $z=\pi$?
5. From Saff and Snyder, know how to do p. 267: 3, p. 317: 1, and p. 325: 11.
6. Suppose $a_{1}, a_{2}, \ldots, a_{n}$ are points on the unit circle. For a point z on the unit circle, let $D(z)$ denote the product of the distances from z to each of the n points on the circle. Prove that there is a point z on the circle such that the product $D(z)$ is exactly equal to one. Hint: Let $p(z)$ denote the product of $\left(z-a_{n}\right)$ as n ranges from one to n. What is $|p(0)|$? Use the Maximum Modulus Principle.
7. State Liouville's Theorem. Show that if an entire function $f(z)$ is such that Re $f(z)<0$ for all z, then f must be constant.
8. Suppose that f and g are analytic on a disc about a point a and suppose that g has a zero of multiplicty two at a. Show that the residue of f / g at a is equal to

$$
\frac{6 g^{\prime \prime}(a) f^{\prime}(a)-2 g^{\prime \prime \prime}(a) f(a)}{3 g^{\prime \prime}(a)^{2}}
$$

9. Assume $b_{0}=1$. Constants $b_{2}, b_{4}, b_{6}, \ldots$ are generated via the recursion formula

$$
b_{n+2}=\frac{4(n+3)(n-5)}{7(n+1)(n+2)} b_{n}
$$

What is the radius of convergence of the power series

$$
\sum_{n=0}^{\infty} b_{2 n} z^{2 n}=b_{0}+b_{2} z^{2}+b_{4} z^{4}+\cdots ?
$$

10. If the complex numbers a_{n} tend to zero as n tends to infinity, show that the radius of convergence of the power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ is at least one.
