1. Find the inverse Laplace transform of $\frac{s^{2}+6}{(s-2)\left(s^{2}+2 s+2\right)}$.
2. Find the inverse Laplace transform of $\frac{e^{-3 s}}{s^{2}+4 s+5}$.
3. Compute $u(t-1) *\left(e^{-2 t} u(t)\right)$ and its Laplace transform.
4. Solve $y(t)=2 t-4 \int_{0}^{t} y(\tau)(t-\tau) \mathrm{d} \tau$.
5. Solve $y^{\prime \prime}+2 y^{\prime}-3 y=8 e^{-t}+\delta(t-1 / 2) \quad y(0)=3 \quad y^{\prime}(0)=-5$.
6. Find the Laplace transform of the π-periodic extension of the function $f(x)=x$ defined on the interval $[0, \pi]$.
7. Find all eigenfunctions and eigenvalues of the following Sturm-Liouville problem:

$$
y^{\prime \prime}+2 y^{\prime}+(2+\lambda) y=0, \quad y(0)=y(\pi)=0
$$

8. Find sine, cosine and complex Fourier transforms of the function

$$
f(x)= \begin{cases}0, & x<0 \\ x e^{-x}, & 0 \leq x\end{cases}
$$

Find also the Laplace transform of f. Try not to repeat calculations.
9. Let $f(x)=x$ be defined on the interval $[0, \pi]$.
(1) Find the Fourier series of its π-periodic extension.
(2) Find the sine and cosine series of f.
(3) Draw the graphs of sums of all three series.
(4) Substitute $x=0$ into all three series. What are the sums of the resulting series? The same question for $x=-2$.
10. Suppose the Fourier series of some 2π-periodic function $f(x)$ starts from $1+$ $\sin x+\cos x$ (i.e. $a_{0}=a_{1}=b_{1}=1$). Could it happen that $|f(x)| \leq 1$ for all x ? (Hint: use Parseval's equality/Bessel's inequality).

