Math in LaTeX

August 6, 2014

Square roots

Square roots

Square roots

 $\sqrt{\pi}$

 $\left\{ \right\}$

Square root in a sentence

Square root in a sentence

Here is $\sqrt{\pi}$ in a sentence.

Square root in a sentence

Here is $\sqrt{\pi}$ in a sentence.

 $\label{lem:here_is_lambda} Here_{\sqcup}is_{\sqcup}sentence.$

Here is a displayed formula

$$\sqrt{\pi^2+1}$$

in the middle of text.

Here is a displayed formula

$$\sqrt{\pi^2+1}$$

in the middle of text.

Here is a displayed formula

$$\sqrt{\pi^2+1}$$

in the middle of text.

or

Fractions

Fractions

 $\frac{x^2+1}{x^2-1}$

Fractions

$$\frac{x^2+1}{x^2-1}$$

 $\frac{x^2+1}{x^2-1}$

Square roots of big hairy fractions

Square roots of big hairy fractions

$$\sqrt{\frac{x^2+1}{x^2-1}}$$

Square roots of big hairy fractions

$$\sqrt{\frac{x^2+1}{x^2-1}}$$

 $\frac{x^2+1}{x^2-1}}$

Integrals

Integrals

 $\int f(x) dx$

Integrals

$$\int f(x) dx$$

 $\int \int (x) \, dx$

More definite integrals

More definite integrals

$$\int_a^b f(x) \ dx = F(b) - F(a)$$

More definite integrals

$$\int_a^b f(x) \ dx = F(b) - F(a)$$

$$\int_a^b f(x) = F(b) = -F(a)$$

Sine and Cosine

Sine and Cosine

$$\sin^2\theta + \cos^2\theta \equiv 1$$

Sine and Cosine

$$\sin^2\theta + \cos^2\theta \equiv 1$$

 $\sin^2\theta + \cos^2\theta$

Something more complex

Something more complex

$$e^{-\pi i} + 1 = 0$$

Something more complex

$$e^{-\pi i} + 1 = 0$$

$$e^{-\pi_i}+1=0$$

Calculus!

Calculus!

$$\iint_{\Omega} f \ dx \wedge dy$$

Calculus!

$$\iint_{\Omega} f \ dx \wedge dy$$

 $\int_{\infty} \int_{\infty} dx \cdot dy$

More calculus

More calculus

 $\frac{\partial^2 u}{\partial x \partial y}$

More calculus

$$\frac{\partial^2 u}{\partial x \partial y}$$

 $\frac{2_u}{\mathrm{partial}_x\operatorname{partial}_y}$

Real and complex

Real and complex

 $\mathbb{R}^n\subset\mathbb{C}^n$

Real and complex

$$\mathbb{R}^n\subset\mathbb{C}^n$$

 ${\bf }_R}^n\subset {\bf }_R}^n\$

Curly brackets

Curly brackets

$$\Omega_n\subset\Omega_{n+1}$$

Curly brackets

$$\Omega_n \subset \Omega_{n+1}$$

 $\Omega_n\simeq n\sum_{n+1}$

A set

A set

 $\{x \in (0,1) : x \text{ is irrational}\}$

A set

```
 \{x \in (0,1) : x \text{ is irrational} \}   \{x \in (0,1) \setminus x \in \mathbb{L} \text{ is } | x \in \mathbb{L} \}
```

Sums and products

Sums and products

$$\sum_{n=0}^{\infty} a_n z^n = \prod_{n=0}^{\infty} (1 - \frac{z}{b_n})$$

Sums and products

$$\sum_{n=0}^{\infty} a_n z^n = \prod_{n=0}^{\infty} \left(1 - \frac{z}{b_n}\right)$$

$$\sum_{n=0}^{\inf ty_a_n_z^n= \frac{n=0}^{\inf ty(1-\frac{z}{b_n})}$$

Big parentheses

Big parentheses

$$\left(\frac{x^2-1}{x^2+1}\right)$$

Big parentheses

$$\left(\frac{x^2-1}{x^2+1}\right)$$

 $\left(\frac{x^2-1}{x^2+1}\right)$

Limits

Limits

$$\lim_{x\to 0}\frac{\sin x}{x}=1$$

Limits

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

 $\lim_{x\to 0}\frac{x}{\sin_x}{x}=1$

Inequalities

Inequalities

$$1<2\leq x\neq y$$

Inequalities

$$1 < 2 \le x \ne y$$

 $1<2\leq x\leq y$

Numbered equations

Numbered equations

$$\pi = 3 \tag{1}$$

Equation 1 is only true in parts of Ohio.

Numbered equations

$$\pi = 3 \tag{1}$$

Equation 1 is only true in parts of Ohio.

```
\begin{equation}
\label{crazy}
\pi=3
\end{equation}
```

 $Equation_{\sqcup} \backslash ref\{crazy\}_{\sqcup} is_{\sqcup} only_{\sqcup} true_{\sqcup} in_{\sqcup} parts_{\sqcup} of_{\sqcup} Ohio.$

Theorems

Theorems

Theorem 1 $\sqrt{2}$ is an irrational number.

Isn't Theorem 1 lovely!

Theorems

Theorem 1

```
\sqrt{2} is an irrational number.
Isn't Theorem 1 lovely!
\begin{theorem}
\label{abiggy}
\end{theorem}
Isn't Theorem \ref{abiggy} lovely!
```

References

References

Steve Bell's best theorem appears in his paper [1].

[1] S. Bell, Unique continuation theorems for the $\bar{\partial}$ -operator and applications, J. of Geometric Analysis **3** (1993), 195–224.

References

Steve Bell's best theorem appears in his paper [1].

[1] S. Bell, Unique continuation theorems for the $\bar{\partial}$ -operator and applications, J. of Geometric Analysis **3** (1993), 195–224.

```
Steve_Bell's_best_theorem_appears_in his_paper_c\cite{best}.
```

```
\bibitem{best}
S._Bell,
{\it_Unique_continuation_theorems_for_the
$\bar\partial$-operator_and_applications},
J._of_Geometric_Analysis_{\bf_3}_(1993),
195--224.
```