Math via LaTeX in Piazza

January 12, 2016

<□ > < @ > < E > < E > E のQ @

Square roots

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - 約९.00

Square roots

 $\sqrt{\pi}$

▲ロト ▲園 ▶ ▲ 国 ▶ ▲ 国 ▶ ● 回 ● ● ● ●

$\sqrt{\pi}$

\$\$\sqrt{\pi}\$\$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Square root in a sentence

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Square root in a sentence

Here is $\sqrt{\pi}$ in a sentence.

Square root in a sentence

Here is $\sqrt{\pi}$ in a sentence.

 $\texttt{Here}_{is} \ \texttt{sqrt} \ \texttt{here}_{ial} \ \texttt{here}_{alsentence}.$

A displayed formula

<□> <昂> < 言> < 言> < 言> < 言 > ○へぐ

A displayed formula

Here is a displayed formula

$$\sqrt{\pi^2+1}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○

in the middle of text.

A displayed formula

Here is a displayed formula

$$\sqrt{\pi^2+1}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

in the middle of text.

```
Here_{\sqcup}is_{\sqcup}a_{\sqcup}displayed_{\sqcup}formula
```

\$\$\sqrt{\pi^2+1}\$\$

 $in_{\sqcup}the_{\sqcup}middle_{\sqcup}of_{\sqcup}text.$

Fractions

(日) (個) (目) (日) (日) (の)

Fractions

(ロ) (個) (主) (主) (三) のへで

Fractions

$\frac{x^2+1}{x^2-1}$

$\frac{x^2+1}{x^2-1}$

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

Square roots of big hairy fractions

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三日 - のへの

Square roots of big hairy fractions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Square roots of big hairy fractions

$$\sqrt{\frac{x^2+1}{x^2-1}}$$

$\frac{x^2+1}{x^2-1}$

Integrals

Integrals

 $\int f(x) dx$

◆□>
◆□>
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

Integrals

$\int f(x) dx$

 $\hat{x} \in (x) , dx$

More definite integrals

<ロ> <@> < E> < E> E のQの

More definite integrals

$$\int_a^b f(x) \, dx = F(b) - F(a)$$

<□ > < @ > < E > < E > E のQ @

More definite integrals

$$\int_a^b f(x) \, dx = F(b) - F(a)$$

 $\hat{t}_a^b_f(x)_{dx=F(b)_{du}-F(a)}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Sine and Cosine

Sine and Cosine

 $\sin^2\theta + \cos^2\theta \equiv 1$

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

$$\sin^2\theta + \cos^2\theta \equiv 1$$

\$\$\sin^2\theta+\cos^2\theta\equiv1\$\$

Something more complex

Something more complex

<□ > < @ > < E > < E > E のQ @

$$e^{-\pi i} + 1 = 0$$

Something more complex

$$e^{-\pi i} + 1 = 0$$

<□ > < @ > < E > < E > E のQ @

Calculus!

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○</p>

Calculus!

 $\iint_{\Omega} f \, dx \wedge dy$

Calculus!

$\iint_{\Omega} f \, dx \wedge dy$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

More calculus

More calculus

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

More calculus

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Real and complex

Real and complex

 $\mathbb{R}^n \subset \mathbb{C}^n$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 - の��

Real and complex

 $\mathbb{R}^n \subset \mathbb{C}^n$

 ${\rm R}^n \sum_{n \in \mathbb{C}^n$

Curly brackets

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Curly brackets

 $\Omega_n \subset \Omega_{n+1}$

Curly brackets

$\Omega_n \subset \Omega_{n+1}$

$\ \number \$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

A set

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

$\{x \in (0,1) : x \text{ is irrational}\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

$\{x \in (0,1) : x \text{ is irrational}\}$

$\ (x\in(0,1)\,:\,x\text\{\in(0,1)\)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Sums and products

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Sums and products

$$\sum_{n=0}^{\infty}a_nz^n=\prod_{n=0}^{\infty}(1-\frac{z}{b_n})$$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > ・ Ξ = ・ の < @

Sums and products

$$\sum_{n=0}^{\infty} a_n z^n = \prod_{n=0}^{\infty} (1 - \frac{z}{b_n})$$

 $s_n=0}\infty_a_n_z^n=\n=0}\infty(1-\frac{z}{b_n})$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ のへぐ

Big parentheses

(ロ) (個) (目) (目) (日) (の)

Big parentheses

Big parentheses

$$\left(\frac{x^2-1}{x^2+1}\right)$$

$\ (\rac{x^2-1}{x^2+1})\$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Limits

Limits

<□ > < @ > < E > < E > E のQ @

Limits

$\lim_{x\to 0}\frac{\sin x}{x}=1$

$\ \ x\t_x=1\$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Inequalities

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三回 のへの

Inequalities

$1 < 2 \leq x \neq y$

- ◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ● ⑦ � ♡

Inequalities

$1 < 2 \le x \neq y$

 $1<2\le_x\ne_y$

Numbered equations

The rest of the examples are for LaTeX outside of Piazza in something like a paper or thesis.

Numbered equations

The rest of the examples are for LaTeX outside of Piazza in something like a paper or thesis.

$$\pi = 3 \tag{1}$$

Equation 1 is only true in parts of Ohio.

Numbered equations

The rest of the examples are for LaTeX outside of Piazza in something like a paper or thesis.

$$\pi = 3 \tag{1}$$

Equation 1 is only true in parts of Ohio.

```
\begin{equation}
\label{crazy}
\pi=3
\end{equation}
```

 $Equation_{\cup} ref\{crazy\}_{\cup} is_{\cup} only_{\cup} true_{\cup} in_{\cup} parts_{\cup} of_{\cup} Ohio.$

Theorems

<ロ> <@> < E> < E> E のQの

Theorems

Theorem 1 $\sqrt{2}$ is an irrational number.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Isn't Theorem 1 lovely!

Theorems

Theorem 1 $\sqrt{2}$ is an irrational number.

Isn't Theorem 1 lovely!

```
\begin{theorem}
\label{abiggy}
$\sqrt{2}$_is_an_irrational_number.
\end{theorem}
```

 $Isn't_{\sqcup}Theorem_{\sqcup}\ref{abiggy}_{\sqcup}lovely!$

References

References

Steve Bell's best theorem appears in his paper [1].

[1] S. Bell, Unique continuation theorems for the $\bar{\partial}$ -operator and applications, J. of Geometric Analysis **3** (1993), 195–224.

References

Steve Bell's best theorem appears in his paper [1].

[1] S. Bell, Unique continuation theorems for the $\bar{\partial}$ -operator and applications, J. of Geometric Analysis **3** (1993), 195–224.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

```
Steve_Bell's_best_theorem_appears_in his_paper_\cite{best}.
```

```
\bibitem{best}
S._Bell,
{\it_Unique_continuation_theorems_for_the
$\bar\partial$-operator_and_applications},
J._of_Geometric_Analysis_{\bf_3}(1993),
195--224.
```