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Abstract. We show that the classical kernel and domain functions associated to an

n-connected domain in the plane are all given by rational combinations of three or
fewer holomorphic functions of one complex variable. We characterize those domains

for which the classical functions are given by rational combinations of only two or
fewer functions of one complex variable. Such domains turn out to have the property

that their classical domain functions all extend to be meromorphic functions on a

compact Riemann surface, and this condition will be shown to be equivalent to the
condition that an Ahlfors map and its derivative are algebraically dependent. We

also show how many of these results can be generalized to finite Riemann surfaces.

1. Introduction. On a simply connected domain Ω 6= C in the plane, the classical
Bergman kernel K(z, w) associated to Ω is given by

K(z, w) =
f ′a(z)f ′a(w)

π(1− fa(z)fa(w))2
,

where fa(z) is the Riemann mapping function mapping Ω one-to-one onto the
unit disc D1(0) with fa(a) = 0 and f ′a(a) > 0. Thus, the Bergman kernel is a
rational combination of just two holomorphic functions of one complex variable.
I have recently proved in [9] that the Bergman kernel and many other objects of
potential theory associated to a finitely multiply connected domain are rational
combinations of only three holomorphic function of one complex variable, namely
two Ahlfors maps plus the derivative of one Ahlfors map. In [8], I proved that the
three functions of z given by S(z, Aj), where S(z, w) is the Szegő kernel and Aj ,
j = 1, 2, 3, are three fixed points in the domain, generate the Szegő kernel, the
Bergman kernel, and many other objects of potential theory. In this paper, I shall
unify these results and I shall show that the three functions of one variable that
generate these classical functions can be taken from a rather long list of functions. I
also showed in [10] that there exist certain multiply connected domains in the plane
that are particularly simple in the sense that their Bergman and Szegő kernels are
generated by only two functions of one complex variable. In this paper, I shall
present all these results in a single improved framework and I will thereby be
able to characterize those domains whose kernel functions are particularly simple.
These domains are characterized by a condition on the Ahlfors map which turns
out to be equivalent to the condition that the Bergman kernel and other objects of
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potential theory associated to the domain extend to a compact Riemann surface as
single valued meromorphic functions. At the heart of these results is a relationship
between the Szegő kernel of a domain and proper holomorphic maps of the domain
to the unit disc. Because we can prove similar relationships on any finite Riemann
surface, we will see that many of these results can be generalized to this setting.

2. Statement of main results. Because the results of this paper are easiest
to state and prove for domains in the plane and because all of the main technical
advances can be understood in this setting, we shall devote the first part of the
paper to planar domains. In the last section of the paper, we sketch the rather
routine argument to generalize the results to the case of finite Riemann surfaces.

We shall be able to prove our main results for finitely connected domains in the
plane such that no boundary component is a point. For the moment, however,
assume that Ω is a bounded n-connected domain in the plane bounded by n non-
intersecting C∞ smooth simple closed curves, γj , j = 1, ...n. For a point a in Ω,
let fa denote the Ahlfors map associated to the pair (Ω, a). This map is an n-to-
one (counting multiplicities) proper holomorphic mapping of Ω onto the unit disc.
Furthermore, fa(a) = 0, and fa is the unique holomorphic function mapping Ω into
the unit disc maximizing the quantity |f ′a(a)| with f ′a(a) > 0. It is well known that
fa extends C∞ smoothly up to the boundary bΩ of Ω and that |fa| = 1 on bΩ.

Let K(z, w) denote the Bergman kernel associated to Ω and let ωj denote the
harmonic measure function which is harmonic on Ω with boundary values of one
on the boundary component γj and zero on the other boundary components. Let
F ′j(z) denote the holomorphic function given by (1/2)(∂/∂z)ωj(z). (The prime is
traditional; F ′j is not the derivative of a holomorphic function on Ω.) Let G(z, a)
denote the classical Green’s function associated to Ω.

The Szegő kernel associated to Ω is the kernel for the orthogonal projection of
L2(bΩ) (with respect to arc length measure) onto the subspace consisting of L2

boundary values of holomorphic functions on Ω, i.e., the Hardy space H2(bΩ).
When Ω is merely an n-connected domain in the plane such that no boundary

component is a point, we define the Szegő kernel associated to Ω as follows. There
exists a biholomorphic mapping Φ mapping Ω one-to-one onto a bounded domain
Ωa in the plane with real analytic boundary. The standard construction yields a
domain Ωa that is a bounded n-connected domain with C∞ smooth real analytic
boundary whose boundary consists of n non-intersecting simple closed real analytic
curves. The function Φ′ has a single valued holomorphic square root on Ω (see [4,
page 43]). Let superscript a’s indicate that a kernel function is associated to Ωa.
Kernels without superscripts are associated to Ω. The Szegő kernel associated to
Ω is defined via

S(z, w) =
√

Φ′(z) Sa(Φ(z),Φ(w))
√

Φ′(w).

We shall also define the Garabedian kernel associated to Ω via the natural trans-
formation formula,

L(z, w) =
√

Φ′(z) La(Φ(z),Φ(w))
√

Φ′(w).

(See [4, page 24] or §3 of this paper for the definition of the Garabedian kernel in
a smoothly bounded domain.) Various other transformation formulas hold for the

2



objects of potential theory mentioned above. For example, the Bergman kernels
transform via

K(z, w) = Φ′(z)Ka(Φ(z),Φ(w))Φ′(w),

and the Green’s functions satisfy

G(z, w) = Ga(Φ(z),Φ(w)),

and the functions associated to harmonic measure satisfy

ωj(z) = ωaj (Φ(z)) and F ′j(z) = Φ′(z)F aj
′(Φ(z))

(provided, of course, that we stipulate that the boundary components have been
numbered so that Φ maps the j-th boundary component of Ω to the j-th boundary
component of Ωa). The Ahlfors map fb associated to a point b ∈ Ω is the holomor-
phic function mapping Ω into D1(0) with |f ′b(b)| maximal and f ′b(b) > 0. It is easy
to see that the Ahlfors map satisfies

fb(z) = λfaΦ(b)(Φ(z))

for some unimodular constant λ and it follows that fb(z) is a proper holomorphic
mapping of Ω onto D1(0). The double of Ω may also be defined in a standard way
by using Φ and the double of Ωa.

The work in this paper is motivated by the following result from [9].

Theorem 2.1. Suppose Ω is an n-connected domain in the plane such that no
boundary component is a point. There exist points a and b in Ω and complex
rational functions R and Q of four complex variables such that the Bergman kernel
can be expressed in terms of the two Ahlfors maps fa and fb via

K(z, w) = f ′a(z)f ′a(w)R(fa(z), fb(z), fa(w), fb(w))

and the Szegő kernel can be expressed via

S(z, w)2 = f ′a(z)f ′a(w)Q(fa(z), fb(z), fa(w), fb(w)).

Alternatively, the Szegő kernel can be expressed via

S(z, w) = S(z, a)S(a, w)Q2(fa(z), fb(z), fa(w), fb(w))

where Q2 is rational. Furthermore, the functions F ′j are given by

F ′j(z) = f ′a(z)P (fa(z), fb(z))

where P is a rational function of two complex variables. Also, every proper holo-
morphic mapping of Ω onto the unit disc is a rational combination of fa and fb.

There are similar formulas for the complex derivative of the Green’s function
(∂/∂z)G(w, z) and for the Poisson kernel given in [9].

These results show that the analytic objects of potential theory and conformal
mapping in a multiply connected domain are all given as rational combinations
of only three holomorphic functions of one complex variable. In [10], I showed
that, when the kernel functions are algebraic, these analytic objects are given by
rational combinations of only two holomorphic functions of one complex variable.
In the present paper, we characterize this property in the following theorem. We
shall say that a kernel function such as the Bergman kernel K(z, w) is given as a
rational combination of two functions of one complex variable on Ω if there exist
holomorphic functions G1 and G2 on Ω such that K(z, w) can be written as a

rational combination of G1(z), G2(z), G1(w), and G2(w).
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Theorem 2.2. Suppose Ω is an n-connected domain in the plane with n > 1 such
that no boundary component is a point. The following conditions are equivalent.

(1) The Bergman kernel K(z, w) is given as a rational combination of only two
functions of one complex variable on Ω.

(2) The Szegő kernel S(z, w) is given as a rational combination of only two
functions of one complex variable on Ω.

(3) The Bergman kernel, Szegő kernel, the classical functions F ′j(z) associated
to Ω, and all proper holomorphic mappings of Ω onto the unit disc are all
given as rational combinations of the same two functions of one complex
variable on Ω.

(4) The domain Ω can be realized as a subdomain of a compact Riemann sur-
face R such that S(z, w) and K(z, w) extend to R × R as single valued
meromorphic functions, and as such, can be expressed as rational combi-
nations of any two functions on Ω which extend to R to form a primitive
pair for R. Also, every proper holomorphic mapping of Ω onto the unit disc
as well as the functions F ′k(z), k = 1, . . . , n− 1, extend to be single valued
meromorphic functions on R. Furthermore, the complement of Ω in R is
connected.

(5) There exists a single proper holomorphic mapping of Ω onto the unit disc
which satisfies an identity of the form

P (f ′(z), f(z)) = 0

on Ω for some complex polynomial P , i.e., f and f ′ are algebraically de-
pendent.

(6) For every proper holomorphic mapping f of Ω onto the unit disc, f and f ′

are algebraically dependent.

A novel feature of the proof of Theorem 2.2 is the use of the Zariski-Castelnuovo
Theorem from Algebra.

We remark that it is always possible to choose the two functions that form the
primitive pair in condition (4) to be holomorphic on Ω (see Farkas and Kra [15]).

It shall fall out from the proof of Theorem 2.2 that if the Bergman or Szegő kernel
associated to a finitely connected domain with no pointlike boundary components
is generated by a single function of one variable, then the domain must be simply
connected. In fact, if the domain under study is simply connected, the proof of
Theorem 2.2 becomes considerably easier and a similar result can be established
without using Lüroth’s Theorem in place of the Zariski-Castelnuovo Theorem.

Theorem 2.2a. Suppose Ω is a simply connected domain in the plane not equal
to C. The following conditions are equivalent.

(1) The Bergman or Szegő kernels are given as rational combinations of only
one function of one complex variable on Ω.

(2) The domain Ω can be realized as a subdomain of a compact Riemann sur-
face R such that S(z, w) and K(z, w) extend to R × R as single valued
meromorphic functions.

(3) A Riemann mapping of Ω onto the unit disc and its derivative are alge-
braically dependent.

Many frequently encountered domains satisfy the polynomial condition (5) in
Theorem 2.2 for some proper map. For example, this condition holds for generalized
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quadrature domains of the type studied by Aharonov and Shapiro (see [1, page 64]
and [18]) and it holds for domains that have algebraic kernel functions (see [7,10]).
This last class of domains is the same as the set of domains given by a connected
component Ω of a set of the form {z : |f(z)| < 1} where f is an algebraic function
without singularities in Ω, i.e., Ω is a domain such there exists an algebraic proper
holomorphic mapping from it onto the unit disc (see [7]).

Theorem 2.1 is actually a special case of a more general theorem that we prove

here. Let Ω̂ denote the double of Ω and let R(z) denote the antiholomorphic

involution on Ω̂ which fixes the boundary of Ω. Let Ω̃ = R(Ω) denote the reflection

of Ω in Ω̂ across the boundary. The double of Ω is a compact Riemann surface and

hence the field of meromorphic functions on Ω̂ is generated by a pair of meromorphic

functions (G1, G2) on Ω̂ known as a primitive pair (see Farkas and Kra [15]). The
construction of primitive pairs given in [15] shows that we may assume that G1 and

G2 are holomorphic on Ω ⊂ Ω̂.
We now define a class A of meromorphic functions on Ω. Recall that G(z, a)

denotes the classical Green’s function associated to Ω.
The class A consists of

(1) the functions F ′j(z), j = 1, . . . , n,

(2) functions of z of the form ∂
∂z
G(z, a) for fixed a in Ω,

(3) functions of z of the form Da
∂
∂z
G(z, a) where Da denotes a differential

operator of the form ∂n

∂an
or ∂n

∂ān
, and a is a fixed point in Ω,

(4) functions of z of the form S(z, a1)S(z, a2) where a1 and a2 are fixed points
in Ω,

(5) and linear combinations of functions above.

If Ω has C∞ smooth boundary, we allow the points a in (2) and (3) of the
definition of the class A to be in the larger set Ω.

Theorem 2.1 will be generalized as follows.

Theorem 2.3. Suppose that Ω is a finitely connected domain in the plane such that
no boundary component is a point. Let G1 and G2 denote any two meromorphic
functions on Ω that extend to the double of Ω to form a primitive pair, and let A(z)
denote any function from the class A other than the zero function. The Bergman
kernel associated to Ω can be expressed as

K(z, w) = A(z)A(w)R1(G1(z), G2(z), G1(w), G2(w))

where R1 is a complex rational function of four complex variables. Similarly, the
Szegő kernel can be expressed as

S(z, w)2 = A(z)A(w)R2(G1(z), G2(z), G1(w), G2(w))

where R2 is rational, and the functions F ′j can be expressed

F ′j(z) = A(z)R3(G1(z), G2(z))

where R3 is rational. Furthermore, every proper holomorphic mapping of Ω onto
the unit disc is a rational combination of G1 and G2.

The proof of Theorem 2.3 hinges on the fact proved in §6 that, when Ω has real
analytic boundary, functions in the class A can be seen to be equal to meromorphic
functions H on Ω that satisfy an identity of the form

H(z)T (z) = J(z)T (z)
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for z ∈ bΩ where J(z) is another meromorphic function on Ω and T (z) represents
the complex unit tangent vector at z pointing in the direction of the standard
orientation of bΩ. We prove in §6 that the class A is the largest set of functions
with this property.

It is remarkable how many different common functions fall into the class A. For
example, the Bergman kernel is in A because it is related to the classical Green’s
function via ([14, page 62], see also [4, page 131])

K(z, w) = − 2

π

∂2G(z, w)

∂z∂w̄
.

Another kernel function on Ω×Ω that we shall need is given by

Λ(z, w) = − 2

π

∂2G(z, w)

∂z∂w
.

(In the literature, this function is sometimes written as L(z, w) with anywhere
between zero and three tildes and/or hats over the top. We have chosen the symbol
Λ here to avoid confusion with our notation for the Garabedian kernel above.) Note
that Λ(z, w) is in A as a function of z for each fixed w in Ω. Furthermore, given
a proper holomorphic map f from Ω onto the unit disc, the quotient f ′/f is in A
by virtue of the fact that ln |f | is a linear combination of Green’s functions. Since

f̄ = 1/f on bΩ, we shall be able to see that f ′(z)T (z) = −T (z)f ′(z)/f(z)2 for
z ∈ bΩ on a smooth domain, and we will be able to deduce that f ′ itself is in A
from Lemma 6.3 below.

It is also remarkable the variety of functions that can appear as members of
a primitive pair. The argument in [9, page 332] reveals that for any proper hol-
omorphic map f1 from Ω onto the unit disc, there exists a second proper map
f2 : Ω → D1(0) such that (f1, f2) forms a primitive pair for the double of Ω. (In
fact, the second map can be taken to be an Ahlfors map.) When f ′1/f1 is taken to
be equal to A(z) in Theorem 2.3 and G1 and G2 are taken to be this primitive pair,

the Bergman kernel K(z, w) is expressed as f ′1(z)f ′1(w) times a rational function of

f1(z), f2(z), f1(w) and f2(w). This result makes it very easy to prove the result
given in [7] that the Bergman kernel associated to a finitely connected domain is
an algebraic function if and only if there exists a proper holomorphic map from the
domain onto the unit disc which is algebraic. Indeed, if f1 is algebraic, then f ′1 is
algebraic, and since f1 and f2 extend to the double to form a primitive pair, they
must be algebraically dependent (see Farkas and Kra [15, page 248]). Hence, f2 is
an algebraic function of f1 and this shows that K(z, w) is algebraic. The reverse
implication is even easier (see [7,11,12]). Similarly, the statement about the Szegő
kernel in Theorem 2.3 yields an easy proof of the result given in [7] that the Szegő
kernel associated to a finitely connected domain is an algebraic function if and only
if there exists a proper holomorphic map from the domain onto the unit disc which
is algebraic.

It is shown in [8] that, for almost any three points a1, a2, and b in Ω, the two
quotients K(z, a1)/K(z, b) and K(z, a2)/K(z, b) extend to the double of Ω and
form a primitive pair. When these two functions are used as G1 and G2 and when
K(z, b) is used as the function A(z) from the class A, we find that K(z, w) is a
rational combination of K(z, a1), K(z, a2), and K(z, b) and conjugates of K(w, a1),
K(w, a2), and K(w, b) (as was also shown in [8]). It now follows from Theorem 2.3
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that all the functions in the class A are rational combinations of K(z, a1), K(z, a2)
and K(z, b). This reinforces the idea that the Bergman kernel contains everything
there is to know about a domain.

LetGz(z, w) denote the derivative (∂/∂z)G(z, w) of the Green’s function. Similar
reasoning to that given in [8] shows that, for almost any three points a1, a2, and b
in Ω, the two quotients Gz(z, a1)/Gz(z, b) and Gz(z, a2)/Gz(z, b) form a primitive
pair for the double of Ω. Hence, Theorem 2.3 yields that the Bergman kernel is
a rational combination of the three functions of one variable given by Gz(z, a1),
Gz(z, a2), and Gz(z, b). A similar result has been proved for the Szegő kernel in
[8]. Let us summarize these results in the statement of the following theorem.

Theorem 2.4. Suppose that Ω is a finitely connected domain in the plane such
that no boundary component is a point. The Bergman kernel K(z, w) associated to
Ω can be expressed as a rational combination of the three functions

(1) K(z, A1), K(z, A2), K(z, A3), or
(2) S(z, A1), S(z, A2), S(z, A3), or
(3) Gz(z, A1), Gz(z, A2), Gz(z, A3),

where A1, A2, and A3 are three fixed points in Ω.

Recall that L(z, a) denotes the Garabedian kernel associated to Ω. We now
define another class of meromorphic functions on Ω relevant to the Szegő kernel.
The class B consists of

(1) functions of z of the form S(z, a) or L(z, a) for fixed points a in Ω,

(2) functions of z of the form ∂m

∂ām
S(z, a) or ∂m

∂am
L(z, a) for fixed points a in Ω,

(3) and linear combinations of functions above.

If Ω has C∞ smooth boundary, we allow the points a in (1) and (2) in the
definition of the class B to be in the larger set Ω.

The Szegő kernel can be expressed in a manner similar to the Bergman kernel
as follows.

Theorem 2.5. Suppose that Ω is a finitely connected domain in the plane such that
no boundary component is a point. Let G1 and G2 denote any two meromorphic
functions on Ω that extend to the double of Ω to form a primitive pair, and let
B(z) denote any function from the class B other than the zero function. The Szegő
kernel associated to Ω can be expressed as

S(z, w) = B(z)B(w)R(G1(z), G2(z), G1(w), G2(w))

where R is a complex rational function of four complex variables.

The proof of Theorem 2.5 hinges on the fact proved in §6 that, when Ω has real
analytic boundary, functions in the class B can be seen to be equal to meromorphic
functions G on Ω that satisfy an identity of the form

G(z) = H(z)T (z)

for z ∈ bΩ where H(z) is another meromorphic function on Ω and, as before, T (z)
represents the complex unit tangent vector at z pointing in the direction of the
standard orientation of bΩ. We prove in §6 that the class B is the largest set of
functions with this property.
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It is shown in [8] that, for almost any three points a1, a2, and b in Ω, the two
quotients S(z, a1)/S(z, b) and S(z, a2)/S(z, b) form a primitive pair for the double
of Ω. When these two functions are used as G1 and G2 and when S(z, b) is used
as B(z) in Theorem 2.5, we find that S(z, w) is a rational combination of S(z, a1),
S(z, a2) and S(z, b), and the conjugates of S(w, a1), S(w, a2) and S(w, b), as stated
in Theorem 2.4. It now also follows from Theorem 2.5 that all the functions in
the class B are rational combinations of S(z, a1), S(z, a2) and S(z, b). It can be
shown that the class A is equal to the complex linear span of the set of products
of two functions in the class B. Hence, it is reasonable to say that the Szegő kernel
contains even more information about a domain than the Bergman kernel does.

It is reasonable to wonder why on earth one might want to take complicated
linear combinations for A(z) or B(z) in Theorems 2.3 and 2.5 instead of a single
simple function from the classes. However, if Ω is a quadrature domain in the sense
that ∫∫

Ω

h(z) dA =

N∑
j=1

h(wj)

for finitely many fixed points wj in Ω and all holomorphic functions h in the
Bergman space, then

N∑
j=1

K(z, wj) ≡ 1

and we may take A(z) ≡ 1 in Theorem 2.3. Hence, if Ω is a quadrature domain
in this sense, then the Bergman kernel is a rational combination of any two func-
tions that extend to the double of Ω to form a primitive pair. Similarly, if Ω is a
quadrature domain in the sense that

∫
bΩ

h(z) ds =

N∑
j=1

h(wj)

for finitely many fixed points wj in Ω and all holomorphic functions h in the Hardy
space, then

N∑
j=1

S(z, wj) ≡ 1

and we may take B(z) ≡ 1 in Theorem 2.5. Hence, if Ω is a quadrature domain in
this sense, then the Szegő and Bergman kernels are rational combinations of any
two functions that extend to the double of Ω to form a primitive pair.

Most of the results of this paper depend on a special formula for the Szegő
kernel. It is a standard construction to produce the Szegő projection and kernel
with respect to a weight function on the boundary of Ω when the boundary of Ω is
sufficiently smooth. Suppose that Ω is a domain in the plane bounded by finitely
many C∞ smooth curves. (It will be clear from the proofs given later that this
smoothness condition could be greatly relaxed, but we will be able to reap enough
consequences in the smooth case that we will not bother trying to generalize the
result here.) Given a positive C∞ weight function ϕ on bΩ, let S(z, w) denote the
Szegő kernel function defined on Ω× bΩ which reproduces holomorphic functions
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on Ω with respect to the weight ϕ in the sense that

h(z) =

∫
w∈bΩ

S(z, w)h(w)ϕ(w) ds

for points z in Ω and holomorphic functions h on Ω that are in the Hardy space
associated to Ω. We shall prove that the weighted Szegő kernel S(z, w) is a rational
combination of finitely many holomorphic functions of one complex variable on Ω
in the following precise sense.

Let S0(z, w) denote S(z, w), and let Sn̄(z, w) denote (∂n/∂w̄n)S(z, w).

Theorem 2.6. Suppose that Ω is a domain in the plane bounded by finitely many
C∞ smooth curves. Suppose that f : Ω → D1(0) is a proper holomorphic map-
ping that has zeroes at a1, . . . , aN with multiplicities M(1), . . . ,M(N), respectively.
Given a positive C∞ weight function ϕ on bΩ, the weighted Szegő kernel S(z, w)
with respect to ϕ satisfies

S(z, w) =
1

1− f(z)f(w)

 N∑
i,j=1

M(i)∑
n=0

M(j)∑
m=0

cijnmSn̄(z, ai)Sm̄(w, aj)


for some constants cijnm.

The constants cijnm will be described more fully in the proof of this theorem
given in §8.

When the weight ϕ is taken to be the Poisson kernel associated to a point a in Ω,
we will be able to say more about the associated Szegő kernel and how it is related
to the objects of potential theory, see §10. This viewpoint will also allow us to find
interesting generalizations to the case where Ω is a finite Riemann surface, see §11.

3. Preliminaries. For the moment, suppose that Ω is a bounded n-connected
domain in the plane with C∞ smooth boundary, i.e., a domain whose boundary
bΩ is given by finitely many non-intersecting C∞ simple closed curves. Let γj ,
j = 1, . . . , n, denote the n non-intersecting C∞ simple closed curves which define
the boundary of Ω, and suppose that γj is parameterized in the standard sense by
zj(t). Let T (z) be the C∞ function defined on bΩ such that T (z) is the complex
number representing the unit tangent vector at z ∈ bΩ pointing in the direction of
the standard orientation. This complex unit tangent vector function is characterized
by the equation T (zj(t)) = z′j(t)/|z′j(t)|.

Let Ω̂ denote the double of Ω and let R(z) denote the antiholomorphic involution

on Ω̂ which fixes the boundary of Ω. Let Ω̃ = R(Ω) denote the reflection of Ω in

Ω̂ across the boundary. We shall frequently use the following fact. If g and h are
meromorphic functions on Ω which extend continuously to the boundary such that

g(z) = h(z) for z ∈ bΩ,

then g extends to the double of Ω as a meromorphic function. Indeed, the function

h(R(z)) gives the holomorphic extension of g to Ω̃. For example, since a proper
holomorphic map f from Ω to the unit disc extends smoothly up to the boundary
and has modulus one there, it follows that

f(z) = 1/f(z) for z ∈ bΩ,
9



and, hence, that f extends to be meromorphic on the double of Ω.
We now take a moment to recite some standard facts that we shall assume the

reader knows. Let A∞(Ω) denote the space of holomorphic functions on Ω that are
in C∞(Ω). Let L2(bΩ) denote the space of complex valued functions on bΩ that
are square integrable with respect to arc length measure ds. The Hardy space of
functions in L2(bΩ) that are the L2 boundary values of holomorphic functions on
Ω shall be written H2(bΩ). This space is equal to the closure in L2(bΩ) of A∞(Ω)
(see [4] for a proof of this elementary fact).

Let S(z, a) denote the classical Szegő kernel associated to the classical Szegő
projection P , which is the orthogonal projection of L2(bΩ) onto H2(bΩ). For each
fixed point a ∈ Ω, S(z, a) extends to the boundary as a function of z to be a
function in A∞(Ω). Furthermore, S(z, a) has exactly (n− 1) zeroes in Ω (counting
multiplicities) and does not vanish at any points z in the boundary of Ω.

The classical Garabedian kernel L(z, a) is a kernel related to the Szegő kernel
via the identity

(3.1)
1

i
L(z, a)T (z) = S(a, z) for z ∈ bΩ and a ∈ Ω.

For fixed a ∈ Ω, the kernel L(z, a) is a holomorphic function of z on Ω− {a} with
a simple pole at a with residue 1/(2π). Furthermore, as a function of z, L(z, a)
extends to the boundary and is in the space C∞(Ω−{a}). Also, L(z, a) is non-zero
for all (z, a) in Ω×Ω with z 6= a.

The kernel S(z, w) is holomorphic in z and antiholomorphic in w on Ω × Ω,
and L(z, w) is holomorphic in both variables for z, w ∈ Ω, z 6= w. We note here

that S(z, z) is real and positive for each z ∈ Ω, and that S(z, w) = S(w, z) and
L(z, w) = −L(w, z). Also, the Szegő kernel reproduces holomorphic functions in
the sense that

h(a) = 〈h, S(·, a)〉

for all h ∈ H2(bΩ) and a ∈ Ω, where the inner product is taken in L2(bΩ).
Given a point a ∈ Ω, the Ahlfors map fa associated to the pair (Ω, a) is related

to the Szegő kernel and Garabedian kernel via

(3.2) fa(z) =
S(z, a)

L(z, a)
.

Note that f ′a(a) = 2πS(a, a) 6= 0. Because fa is n-to-one, fa has n zeroes. The
simple pole of L(z, a) at a accounts for the simple zero of fa at a. The other n− 1
zeroes of fa are given by (n− 1) zeroes of S(z, a) in Ω− {a}. Let a1, a2, . . . , an−1

denote these n − 1 zeroes (counted with multiplicity). It was proved in [5] (see
also [4, page 105]) that, if a is close to one of the boundary curves, the zeroes
a1, . . . , an−1 become distinct simple zeroes. It follows from this result that, for all
but at most finitely many points a ∈ Ω, S(z, a) has n− 1 distinct simple zeroes in
Ω as a function of z.

The Bergman kernel and the kernel Λ(z, w) defined in §2 satisfy an identity
analogous to (3.1):

(3.3) Λ(w, z)T (z) = −K(w, z)T (z) for w ∈ Ω and z ∈ bΩ
10



(see [4, page 135]). We remark that it follows from well known properties of the
Green’s function that Λ(z, w) is holomorphic in z and w and is in C∞(Ω×Ω−{(z, z) :
z ∈ Ω}). If a ∈ Ω, then Λ(z, a) has a double pole at z = a as a function of z and
Λ(z, a) = Λ(a, z) (see [4, page 134]). If Ω has real analytic boundary, then the
kernels K(z, w), Λ(z, w), S(z, w), and L(z, w), extend meromorphically to Ω × Ω
(see [4, page 103, 132–136]). The derivative of the Green’s function also satisfies
an identity similar to (3.3):

(3.4)
∂G

∂z
(z, w)T (z) = −∂G

∂z
(z, w)T (z),

for w ∈ Ω and z ∈ bΩ (see [4, page 134]). We shall also need the identity,

(3.5) S(z, a1)S(z, a1)T (z) = −L(z, a1)L(z, a2)T (z)

for a1 and a2 in Ω and z ∈ bΩ, which follows from (3.1).
The transformation formulas for the Szegő and Garabedian kernels given in §2

and the biholomorphic map to a domain with real analytic boundary allow us to
certify that the Ahlfors map is given by formula (3.2) even in case the domain under
study is merely a finitely connected domain such that no boundary component is
a point.

4. Proofs of Theorems 2.2 and 2.2a. We first assume that Ω is n-connected
with n > 1. Suppose that the Szegő kernel S(z, w) associated to Ω is a rational
combination of only two holomorphic functions G1 and G2 on Ω. To be precise,
suppose that S(z, w) is equal to a rational combination of G1(z), G2(z), G1(w),

and G2(w). It is shown in [8] that the Bergman kernel K(z, w) associated to Ω
and all the other functions mentioned in Theorem 2.2 are rational combinations of
functions of z of the form S(z, A) for three fixed points A in Ω. Hence K(z, w) is
also a rational combination of the two holomorphic functions G1 and G2.

Let f1 and f2 denote two Ahlfors maps associated to Ω that generate the field of
meromorphic functions on the double of Ω (see [9]). Let C(f1, f2) denote the field
of functions generated by the two Ahlfors maps (which can be identified with the
field of meromorphic functions on the double in the obvious manner).

It is shown in [7] that any proper holomorphic map from Ω onto the unit disc
can be expressed as a rational combination of finitely many functions of z of the
form K(z, w) and (∂/∂w̄)mK(z, w) for w in f−1(0) (see also [11,12]). It follows
that f1 and f2 are in the field C(G1, G2) of functions on Ω generated by G1 and
G2. Hence, C(f1, f2) ⊂ C(G1, G2).

We now claim that the functions G1 and G2 must be algebraically dependent,
i.e., that there exists a complex polynomial P (z, w) of two complex variables such
that P (G1(z), G2(z)) ≡ 0. Indeed if there did not exist such a polynomial, then we
could apply the Zariski-Castelnuovo Theorem as follows to deduce that f1 and f2

must be algebraically independent, which cannot be the case for two functions that
extend meromorphically to the double of Ω. (The Zariski-Castelnuovo Theorem
states that an intermediate field between C(x, y) and C must be of the form C(u, v)
or C(u) where u and v are algebraically independent.) Since

C(G1, G2) ⊃ C(f1, f2) ⊃ C,
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the algebraic independence of G1 and G2 would imply that C(f1, f2) = C(u, v)
where u and v are algebraically independent elements of the field, or C(f1, f2) =
C(u) where u is a single element of the field. The first case is clearly impossible
because any two elements of the field of meromorphic functions on the double are
algebraically dependent (see Farkas and Kra [15, p. 248]). The second case implies
that the double of Ω is the Riemann sphere, which only happens if Ω is simply
connected.

Suppose that f is a proper holomorphic mapping of Ω onto the unit disc. It is
proved in [7] that both f(z) and f ′(z) can be expressed as a rational combinations
of finitely many functions of z of the form K(z, w) and (∂/∂w̄)mK(z, w) for values
of w in the finite set f−1(0) (see also [11,12]). Hence both f and f ′ are rational
combinations of G1 and G2. Since G1 and G2 satisfy a polynomial identity of the
form

P (G1(z), G2(z)) ≡ 0

on Ω, we may state that G2 is an algebraic function of G1. Hence, both f and f ′

are algebraic functions of G1, and hence f ′ must be an algebraic function of f , and
it follows that f and f ′ must be algebraically dependent.

We now consider the simply connected case. Suppose that the Szegő kernel
associated to Ω is a rational combination of only one holomorphic function G.
Since the Bergman kernel is a constant times the square of the Szegő kernel, it
follows that it is also a rational combination of G. Let f denote a Riemann map
associated to Ω mapping Ω one-to-one onto the unit disc. Note that f extends to
the double of Ω and that it generates the field of meromorphic functions on the
double of Ω (see [15]).

The same proof given in [7] for proper maps shows that f(z) and f ′(z) are both
rational combinations of functions of z of the form K(z, w) and (∂/∂w̄)K(z, w) and
w = f−1(0). Hence both f and f ′ are rational combinations of G. Hence f ′ must
be an algebraic function of f , and it follows that f and f ′ must be algebraically
dependent.

To finish the proofs of Theorems 2.2 and 2.2a, we now turn to the business of
constructing a special Riemann surface attached to the domain in case a proper
map onto the unit disc and its derivative are algebraically dependent.

5. Construction of a Riemann surface. We assume at first that Ω is a finitely
connected domain in the plane with C∞ smooth boundary. Suppose also that
there exits a proper holomorphic mapping f from Ω onto the unit disc with the
property that f and f ′ are algebraically dependent, i.e., there exists a polynomial
P (z, w) such that P (f ′(z), f(z)) ≡ 0 on Ω. We now construct the Riemann surface
mentioned in Theorems 2.2 and 2.2a.

Let Sm̄(z, a) denote (∂m/∂ām)S(z, a) and let Lm(z, a) denote (∂m/∂am)L(z, a).
Notice that we may differentiate the conjugate of (3.1) m-times with respect to ā
to obtain

Sm̄(z, a) = iLm(z, a)T (z)

for z ∈ bΩ and a ∈ Ω. When the square of this identity is combined with the
identity

f ′(z)

f(z)
T (z) = −f ′(z)T (z)/f(z) for z ∈ bΩ
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(which is obtained by differentiating log |f(z(t))| = 0 with respect to t when z(t) is
a parameterization of a boundary curve), we see that

Sm̄(z, a)2f(z)

f ′(z)

is equal to the conjugate of
Lm(z, a)2f(z)

f ′(z)

for z ∈ bΩ and any point a in Ω. This identity reveals that Sm̄(z, a)2f(z)/f ′(z)
extends to the double of Ω as a meromorphic function of z. Since f(z) extends
to the double of Ω, it follows that Sm̄(z, a)2/f ′(z) extends to the double of Ω as
a meromorphic function. The algebraic dependence of f and f ′ means that they
satisfy a polynomial equation P (f ′(z), f(z)) ≡ 0 on Ω. Since f(z) extends to the
double of Ω as a meromorphic function, this polynomial identity reveals how to
extend f ′(z) to the double of Ω as a finitely valued function with at most finitely
many algebraic singularities. Furthermore, since Sm̄(z, a)2/f ′(z) extends to the
double of Ω as a meromorphic function, we may state that Sm̄(z, a) extends to the
double of Ω as a finitely valued function of z with at most finitely many algebraic
singularities for each fixed point a in Ω.

Theorem 2.6 states that the Szegő kernel is given by a rational combination
of f and finitely many functions of the form Sm̄(z, aj). Let us call the functions
in the list of finitely many functions of the form Sm̄(z, aj) just mentioned core
functions. We may view the core functions (from the viewpoint of Weierstrass)
as being finitely valued multivalued functions that can be analytically continued
to the double of Ω. There is a finite set of points E in double of Ω at which one
or more of the function elements associated to the core functions has an algebraic
singularity. Choose a point A0 in Ω − E to act as a base point. We construct R
by performing analytic continuation of each of the core functions simultaneously,

starting at A0 and moving all around Ω̂, paying special attention to the points
in E. Away from E, the lifting of germs along curves to a Riemann surface over
the double of Ω is routine and obvious. When we analytically continue up to a
point p in E, it may happen that none of the germs of the function elements of the
core functions become singular at p. In this case, we lift and analytically continue
through p without incident. If, on the other hand, at least one of the elements is
singular at p, then we construct a local coordinate system at the point p̃ above p
as follows. Consider the function elements of the core functions that are obtained
as we analytically continue them up to p along a curve. Each of these elements can
be viewed as a function element of a Puiseux expansion at p in a local coordinate
ζ where p corresponds to the origin. Hence, for each core function C(z) there is
a positive integer λ such that the substitution z = p + (ζ)λ makes C(ζ) analytic
and continuable in ζ through ζ = 0. (Note that the number λ is equal to one
if C(z) does not have a singularity at p.) Let m be equal to the least common
multiple of all the numbers λ associated to the core functions. We can now define
a local uniformizing variable that is suitable for each of the function elements in
the obvious manner: z = p + (ζ)m. This coordinate function allows us to lift all
the core functions so as to be defined and single valued on a disc centered at ζ = 0
and we use it to define a local chart near p̃.
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It is clear that we can identify Ω as a subdomain of the Riemann surface R by
virtue of the fact that the core functions all have preferred germs in Ω given by
the values they have via the definition of the kernel functions on the domain Ω. A
point p̃ ∈ R over p ∈ Ω shall be identified as the point p in Ω ⊂ R if the germs of
all the core functions are equal to their preferred germs at p. Note that there will
be other sheets of R above Ω if it happens that one or more of the core functions
continue back to p ∈ Ω and are not equal to their preferred germs over Ω. The
Riemann surface R is clearly compact because of the finite valuedness of the core

functions on the compact Ω̂. Note that any meromorphic function on Ω̂ can be
defined as a meromorphic function on R. Hence, f(z) can be extended to R as a
meromorphic function. Since the core functions and f extend to R, it follows that
the Szegő kernel extends to be meromorphic on R×R. Since the Bergman kernel
is a rational combination of three functions of z of the form S(z, A), it follows that
the Bergman kernel extends to be meromorphic on R × R. Similarly, so do the
functions F ′j .

To see that the complement of Ω in R is connected, we can follow exactly the
same pole counting procedure given in [10] where a similar Riemann surface is
attached to a domain with algebraic kernel functions. This procedure yields that
each boundary component of Ω is attached to the Riemann surface exactly once
and that the complement of Ω in R is connected.

Let G1 and G2 denote a primitive pair for R. Theorem 2.6 states that the Szegő
kernel is a rational combination of f(z) and the core functions. Since f(z) and the
core functions extend to be meromorphic functions on R, we may now state that
the Szegő kernel is a rational combination of G1 and G2. Since the Bergman kernel
associated to Ω and all the other functions mentioned in Theorem 2.2 are rational
combinations of functions of z of the form S(z, A) for three fixed points A in Ω,
they too are rational combinations of G1 and G2. The proof of Theorem 2.2 is
complete in case Ω has smooth boundary.

If Ω does not have smooth boundary, we shall use the identity

(5.1) P (f(z), f ′(z)) ≡ 0,

which is assumed to hold for a proper holomorphic mapping f(z) of Ω onto the unit
disc, to show that the boundary of Ω must be given by piecewise C∞ smooth real
analytic curves. Let F (w) denote a local inverse defined on a small open subset
of D1(0) to the proper holomorphic map f(z). If we replace z by F (w) in (5.1)
we obtain P (w, 1/F ′(w)) ≡ 0, and this shows that F ′(w) is an algebraic function.
Hence F can be analytically continued past the boundary of the unit disc except
at possibly finitely many points where F ′ has an algebraic singularity. Since the
continuation of f maps the boundary of the unit disc into the boundary of Ω, it is
easy to deduce that the boundary of Ω is given by piecewise real analytic curves.
(Only minor complications are introduced if the point at infinity is in the boundary
of Ω and these are bypassed by standard arguments.) Now the same construction
of R we used above can be carried out and the pole counting argument of [10] given
in the case of piecewise real analytic boundary applies to yield that the complement
of Ω in R is connected. The rest of the proof is the same.

6. The proofs of Theorems 2.3 and 2.5. We shall see momentarily that we
will be able to reduce our problem to the case where Ω has C∞ smooth real analytic
boundary. The following lemmas will allow us to see that the two classes A and B
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are natural and that they are the largest classes of functions that can appear in the
statements of Theorems 2.3 and 2.5.

Lemma 6.1. Suppose that Ω is a finitely connected domain in the plane with C∞

smooth real analytic boundary. On such a domain, the class B is equal to the set
of meromorphic functions G on Ω that satisfy an identity of the form

(6.1) G(z) = H(z)T (z)

for z ∈ bΩ, where H(z) is another meromorphic function on Ω.

When we deal with the class A we shall need the following lemma.

Lemma 6.2. Suppose that Ω is a finitely connected domain in the plane with C∞

smooth real analytic boundary. On such a domain, the class A is equal to the set
of meromorphic functions G on Ω that satisfy an identity of the form

(6.2) G(z)T (z) = H(z)T (z)

for z ∈ bΩ, where H(z) is another meromorphic function on Ω.

These two lemmas have the important consequence that if g1/g2 is a quotient
of two functions in the class A (or two functions in the class B) where g2 6≡ 0,
then g1/g2 extends to the double of Ω as a meromorphic function. Indeed, this fact

follows directly from the identity of the form g1(z)/g2(z) = h1(z)/h2(z) on bΩ that
would be satisfied by the quotient of two such functions.

Proof of Lemma 6.1. Notice that (3.1) shows that L(z, a) and S(z, a) satisfy the
similar identities:

S(z, a) = −iL(z, a)T (z)

L(z, a) = −iS(z, a)T (z).

Furthermore, these identities can be differentiated with respect to a or ā.

Sm̄(z, a) = −iLm(z, a)T (z)

Lm(z, a) = −iSm̄(z, a)T (z).

Hence, functions in the class B satisfy the condition of formula (6.1).
Now suppose that G and H are meromorphic functions on Ω that satisfy

G(z) = H(z)T (z)

for z ∈ bΩ. When a is in Ω, we note that L(z, a) has a single simple pole at a as a
function of z and S(z, a) has no singularities in Ω, and Lm(z, a) has a single pole
of order m+ 1 at a and Sm̄(z, a) has no singularities in Ω. Hence, we may subtract
linear combinations of the identities in the paragraph above from (6.1) designed to
remove the singularities of G and H in Ω from both sides of the equation. In the
end, we obtain an identity of the form

G1(z) = H1(z)T (z)
15



where G1 and H1 are holomorphic on Ω with possibly finitely many poles on bΩ.
When a is in the boundary, the function S(z, a) has a single simple pole at a in Ω
and Sm̄(z, a) has a single pole of order m + 1 at a in Ω. Hence, we can subtract
linear combinations of S(z, a) and Sm̄(z, a) from G1 to eliminate the poles of G1 in
Ω and subtract the corresponding linear combinations of −iL(z, a) and −iLm(z, a)
from H1 to obtain an identity of the form

g(z) = h(z)T (z)

where g is holomorphic on Ω and h is holomorphic on Ω with possibly finitely many
poles on bΩ. However, the identity g(z) = h(z)T (z) on bΩ shows that h does not
tend to infinity at any point on the boundary, so h actually has no poles on Ω.
Hence, both g and h are holomorphic on Ω. Now we can conclude from the fact
that h(z)T (z) is orthogonal to holomorphic functions in L2(bΩ) that g and h must
both be zero. The proof of our claim is complete.

Proof of Lemma 6.2. The three identities

F ′j(z)T (z) = −F ′j(z)T (z)

Gz(z, a)T (z) = −Gz(z, a)T (z)

S(z, a1)S(z, a2)T (z) = −L(z, a1)L(z, a2)T (z)

for z ∈ bΩ (see [4, pages 80, 134], (3.3), (3.4), and (3.5)) reveal that functions in
the class A satisfy the condition of formula (6.2).

Now suppose that G and H are meromorphic functions on Ω that satisfy

G(z)T (z) = H(z)T (z)

for z ∈ bΩ. Note that the function Gz(z, a) has a simple pole at a even when a is

in bΩ. Differentiate the identity Gz(z, a)T (z) = −Gz(z, a)T (z) (z ∈ bΩ) m times
with respect to a. The function (∂m/∂am)Gz(z, a) on the left hand side of the
formula is a meromorphic function of z on Ω with a single pole of order m + 1 at
z = a. This is true even if a ∈ bΩ. When a ∈ Ω, the function (∂m/∂ām)Gz(z, a)
on the right hand side of the formula is a holomorphic function of z on Ω with no
singularity at z = a. If we differentiate the same formula m times with respect to
ā, then the function (∂m/∂ām)Gz(z, a) on the left hand side of the formula is a
holomorphic function of z on Ω with no singularity at z = a when a ∈ Ω and the
function (∂m/∂am)Gz(z, a) on the right hand side of the formula is a meromorphic
function of z on Ω with a single pole of order m+1 at z = a. Hence, it is possible to
subtract linear combinations of functions in the class A from the identity GT = HT
to remove all the poles of G(z) in Ω and all the poles of H of order two or more in
Ω to obtain an identity of the form

g(z)T (z) = h(z)T (z)

where g is holomorphic on Ω and h is meromorphic on Ω with only finitely many
simple poles in Ω and finitely many other poles on bΩ. However, none of the poles
of h can actually occur on the boundary because the identity gT = hT shows
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that h cannot blow up there. Let {bj}Nj=1 denote the simple poles of h in Ω and
choose a point a in Ω distinct from these points. The functions S(z, bj)S(z, a) are

holomorphic on Ω and satisfy the identity

S(z, bj)S(z, a)T (z) = −L(z, bj)L(z, a)T (z)

for z ∈ bΩ. Since L(z, bj)L(z, a)T (z)) has a simple pole at bj, we may subtract a

linear combination of these identities from g(z)T (z) = h(z)T (z) to eliminate the
poles of h at the points bj . We obtain

g1(z)T (z) = h1(z)T (z)

where g1 is holomorphic on Ω and h1 is meromorphic on Ω with possibly a single
simple pole at a. However, if g1(z)T (z) = h1(z)T (z) is integrated around the
boundary with respect to arc length measure, the left hand side is zero by Cauchy’s
Theorem and the right hand side is equal to 2πi times the residue of h1 at a. So,
in fact, h1 has no poles in Ω. It is shown in [4, page 80] that holomorphic functions

g1 and h1 that satisfy g1(z)T (z) = h1(z)T (z) on the boundary must be linear
combinations of the functions F ′j , and this shows that G is in the class A and the
proof of our claim is complete.

Recall that the classes A and B were defined differently for domains with smooth
boundary than for domains without. We now let A and B denote the classes defined
by restricting the points a in the definitions of the classes A and B to be in Ω. If
Ω has smooth boundary, then we let A+ and B+ denote the classes obtained by
letting the points a in the definitions also fall on the boundary.

Lemma 6.3. Suppose that Φ : Ω→ Ωa is a biholomorphic mapping between a do-
main Ω and a finitely connected domain Ωa with C∞ smooth real analytic boundary
such that no boundary component is a point. The transformation

h 7→ Φ′(z)h(Φ(z))

is a one-to-one linear map of the classA associated to Ωa onto the class A associated
to Ω. If bΩ is C∞ smooth, then this transformation is also a one-to-one linear
map of the class A+ associated to Ωa onto the class A+ associated to Ω. The
transformation

h 7→
√

Φ′(z)h(Φ(z))

is a one-to-one linear map of the class B associated to Ωa onto the class B associated
to Ω. If bΩ is C∞ smooth, then this transformation is also a one-to-one linear map
of the class B+ associated to Ωa onto the class B+ associated to Ω.

The proof of Lemma 6.3 is straightforward and uses only the well known trans-
formation properties of the functions that generate the two classes. We omit the
proof.

Proof of Theorem 2.5. Assume for the moment that Ω has smooth real analytic
boundary. Fix a point a in Ω so that the zeroes a1, . . . , an−1 of S(z, a) are distinct
simple zeroes. I proved in [4, Theorem 3.1] that the Szegő kernel can be expressed
via

(6.3) S(z, w) =
1

1− fa(z)fa(w)

c0S(z, a)S(w, a) +

n−1∑
i,j=1

cijS(z, ai)S(w, aj)
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where fa(z) denotes the Ahlfors map associated to (Ω, a), c0 = 1/S(a, a), and the
coefficients cij are given as the coefficients of the inverse matrix to the invertible
matrix [S(aj, ak)]. This shows that

S(z, w)(1− fa(z)fa(w))

is a linear combination of functions of the form g(z)h(w) where g and h are in
the class B. Let B(z) be any non-zero function in the class B. The remark after
the statement of Lemma 6.2 asserts that the quotient of any two functions in the
class B extends to the double of Ω as a meromorphic function. It follows that

(6.4)
S(z, w)(1− fa(z)fa(w))

B(z)B(w)

is equal to a linear combination of functions of the form g(z)/B(z) times the con-
jugate of h(w)/B(w), and because these quotients are meromorphic on the double,
they can be expressed as rational functions of the primitive pair. The Ahlfors map
itself extends to the double as a meromorphic function, and hence the claim about
the Szegő kernel is proved.

In case Ω does not have smooth real analytic boundary, we use the well known
fact that there exists a biholomorphic map Φ from Ω onto a bounded domain Ωa
with smooth real analytic boundary. The transformation formulas for the Szegő
kernel, the Ahlfors maps, and the functions in the class B reveal that formula
(6.4) transforms by simple composition with Φ, i.e., the terms involving Φ′ cancel.
Similarly, the linear combination of terms of the form g(z)/B(z) times the conjugate
of h(w)/B(w) where g and h are in the class B enjoy the same property, and these
extend to the double as meromorphic functions. The proof is complete.

Proof of Theorem 2.3. Assume for the moment that Ω has smooth real analytic
boundary. The Bergman kernel K(z, w) is related to the Szegő kernel via the
identity

(6.5) K(z, w) = 4πS(z, w)2 +

n−1∑
i,j=1

AijF
′
i (z)F

′
j(w),

Notice that formula (6.3) and Lemma 6.2 yield that S(z, w)2 is a linear combination

of functions in the class A divided by (1 − fa(z)fa(w))2. Hence, if we divide (6.5)

by A(z)A(w) where A(z) is a non-zero function in the class A, then we see that

K(z, w)

A(z)A(w)

is a linear combination of functions of the form g(z)/A(z) times conjugates of

h(w)/A(w) times either constants or (1 − fa(z)fa(w))−2, where g and h are in
the class A. Since all these functions of z and w extend to the double of Ω as
meromorphic functions, Theorem 2.3 follows. Now the same argument given in the
last paragraph of the proof of Theorem 2.5 shows that we can drop the hypothesis
that the boundary of Ω be smooth and real analytic. The proof is complete.
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7. The Szegő kernel with weights. Suppose that Ω is a bounded n-connected
domain in the plane with C∞ smooth boundary, i.e., a domain whose boundary
bΩ is given by finitely many non-intersecting C∞ simple closed curves. Recall
that L2(bΩ) denotes the space of complex valued functions on bΩ that are square
integrable with respect to arc length measure ds. Given a positive real valued C∞

function ϕ on the boundary of Ω, let L2
ϕ(bΩ) denote the space of complex valued

functions on bΩ that are square integrable with respect to ϕ(s)ds. The Hardy space
of functions in L2(bΩ) that are the L2 boundary values of holomorphic functions on
Ω shall be written H2(bΩ). This space is equal to the closure in L2(bΩ) of A∞(Ω)
(see [4]) and can be identified in a natural way with the subspace of L2

ϕ(bΩ) equal

to the closure of A∞(Ω) in that space. Thus, we need not define H2
ϕ(bΩ) separately.

The inner products associated to L2(bΩ) and L2
ϕ(bΩ) shall be written

〈u, v〉 =

∫
bΩ

u v̄ ds, and 〈u, v〉ϕ =

∫
bΩ

u(s) v(s) ϕ(s)ds,

respectively. We let S(z, a) denote the classical Szegő kernel associated to the
classical Szegő projection P , which is the orthogonal projection of L2(bΩ) onto
H2(bΩ), and we let σ(z, w) denote the kernel associated to the orthogonal projection
Pϕ of the weighted space L2

ϕ(bΩ) onto H2(bΩ). The arguments presented in [4]
showing that P maps C∞(bΩ) into itself can easily be modified to show that Pϕ
also maps C∞(bΩ) into itself. Also, if the boundary curves of Ω are C∞ smooth real
analytic curves and ϕ is real analytic on bΩ, then Pϕ maps real analytic functions
on bΩ into the space of holomorphic functions on Ω that extend to be holomorphic
on a neighborhood of Ω (see [4, page 41]).

Any function v in the subspace H2(bΩ)⊥ of L2(bΩ) (which is the orthogonal
complement of H2(bΩ) in L2(bΩ)) can be written

v = HT,

for a unique H in H2(bΩ) (see [4, p. 13]). Consequently, every function u in L2(bΩ)
has an orthogonal decomposition of the form

u = h+HT,

where h ∈ H2(bΩ) and H ∈ H2(bΩ). We can easily deduce from this fact that
every function u in L2

ϕ(bΩ) has an orthogonal decomposition of the form

u = h+ ϕ−1HT,

where h ∈ H2(bΩ) and H ∈ H2(bΩ). Indeed, let h = Pϕu. Then u−h is orthogonal
to H2(bΩ) with respect to the weighted inner product. Hence (u−h)ϕ is orthogonal
to H2(bΩ) with respect to the standard inner product on L2(bΩ). Hence (u −
h)ϕ = HT for a unique H ∈ H2(bΩ) and our claim is proved. This orthogonal
decomposition allows us to define a weighted Garabedian kernel as follows. The
Cauchy integral formula reveals that the weighted Cauchy kernel Ca(z), which is
given as the conjugate of

1

2πi

ϕ(z)−1T (z)

z − a ,
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reproduces holomorphic functions with respect to the weighted inner product in
the sense that

h(a) = 〈h, Ca〉ϕ.

Hence, it follows that
σ(z, a) = PϕCa

and the orthogonal decomposition for Ca is

Ca(z) = σ(z, a) + ϕ−1HaT ,

where Ha is in H2(bΩ). By analogy with the definition of the classical Garabedian
kernel (see [4, p. 24]), we define the weighted Garabedian kernel λ(z, a) to be given
by

λ(z, a) =
1

2π

1

z − a − iHa(z).

Notice that σ(z, a) and λ(z, a) satisfy the identity

(7.1) σ(z, a) =
1

iϕ(z)
λ(z, a)T (z)

for z ∈ bΩ and a ∈ Ω. Since σ(z, a) = PϕCa, it follows that σ(z, a) is in A∞(Ω) as
a function of z for each fixed a ∈ Ω if ϕ is C∞ smooth. Furthermore, for a fixed
point a ∈ Ω, λ(z, a) is holomorphic function of z on Ω− {a} with a simple pole at
a with residue 1/(2π) and λ(z, a) extends C∞ smoothly to bΩ if ϕ is C∞ smooth.
In case the boundary of Ω is real analytic and ϕ is real analytic on bΩ, both σ(z, a)
and λ(z, a) extend holomorphically past the boundary in z for each fixed a in Ω.
We record here for future use the derivative

(7.2)
∂n

∂an
σ(a, z) =

1

iϕ(z)

∂n

∂an
λ(z, a)T (z)

of (7.1) with respect to a.
The weighted Szegő kernel reproduces holomorphic functions with respect to the

weighted inner product in the sense that

h(a) = 〈h, σ(·, a)〉ϕ

for h ∈ H2(bΩ). This last identity may be differentiated with respect to a to yield
that

h(n)(a) = 〈h, (∂n/∂ān)σ(·, a)〉ϕ

for h ∈ H2(bΩ). The weighted Szegő kernel satisfies σ(z, a) = σ(a, z).
The conjugate of formula (7.1) is

i

ϕ(z)
λ(z, a) = σ(z, a)T (z)

If we multiply this by (7.1) and divide out the 1/ϕ factors, we obtain

σ(z, a)λ(z, a)T (z) = −λ(z, a)σ(z, a)T (z) for z ∈ bΩ
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and a ∈ Ω. Hence, it follows from Lemma 6.2 that σ(z, a)λ(z, a) is in the class A
and hence, even though the weight function may be quite arbitrary, it is possible
to relate these kernels to standard objects of potential theory. For example, similar
arguments to those used in [8] can be used to show that the Green’s function can
be expressed via

∂

∂z
G(z, w) = π

σ(z, w)λ(z, w)

σ(w,w)
+
n−1∑
j=1

cj(w)F ′j(z)

where the functions cj(w) can be easily determined as in §5 of [8] to be given by
a linear combination of n − 1 explicit harmonic functions and finitely many other
functions that are rational combinations of the basic holomorphic functions that
comprise σ and λ.

8. An orthonormal basis for the weighted Hardy space. We suppose, as we
did in §7, that Ω is a bounded n-connected domain in the plane with C∞ smooth
boundary and that ϕ is a real valued positive C∞ weight function on bΩ. Suppose
that f : Ω→ D1(0) is a proper holomorphic mapping of Ω into the unit disc. Such
a mapping extends C∞ smoothly to the boundary and is a finite branched covering
map of some finite order M . Let a1, . . . , aN denote the zeroes of f in Ω and let

M(k) denote the multiplicity of the zero of f at ak. Of course, M =
∑N
k=1 M(k).

Notice that, because |f(z)| = 1 for z in bΩ, it follows that f(z) = 1/ f(z) for z in
bΩ.

Let σ0(z, w) denote σ(z, w), let σn̄(z, w) denote (∂n/∂w̄n)σ(z, w), and let

σmn̄(z, w) :=
∂m+n

∂zm∂w̄n
σ(z, w).

We shall now prove that the set of functions

hinp(z) = σn̄(z, ai)f(z)p,

where 1 ≤ i ≤ N , 0 ≤ n ≤ M(i), and p ≥ 0, forms a basis for the Hardy space
H2(bΩ) and that

(8.1) 〈hinp, hjmq〉ϕ =

{
0, if p 6= q,

σmn̄(aj, ai), if p = q.

First, we must show that the set of functions above spans a dense subset of
H2(bΩ). Indeed, suppose that g ∈ H2(bΩ) is orthogonal to the span. Notice that
the reproducing property of the weighted Szegő kernel yields that

0 = 〈g, σn̄(·, aj)〉ϕ = g(n)(aj)

for 0 ≤ n ≤ M(j), and therefore g vanishes at a1, . . . , aN to the same order that
f does. Suppose we have shown that g vanishes to order m times the order that f
vanishes at each aj , j = 1, . . . , N . It follows that g/fm has removable singularities
at each aj and so it can be viewed as an element of H2(bΩ). We shall now show that
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g/fm must vanish to the same order at each aj that f does. Since 1/f(z) = f(z)
when z ∈ bΩ, we may write

0 = 〈g, σn̄(·, aj)fm〉ϕ = 〈g/fm, σn̄(·, aj)〉ϕ

and this last quantity is equal to the n-th derivative of g/fm at aj . Since this is
zero for 0 ≤ n ≤ M(j), we conclude that g/fm vanishes to the same order that f
does at each aj . Hence, g vanishes to order m+ 1 times the order that f vanishes
at each aj , j = 1, . . . , N . By induction, we may conclude that g vanishes to infinite
order at each aj and hence, g ≡ 0. This proves the density.

We now turn to the proof of (8.1). We may suppose that p ≥ q. The fact that
f = 1/f on bΩ yields that

〈hinp, hjmq〉ϕ = 〈σn̄(z, ai)f(z)p−q, σm̄(z, aj)〉ϕ.

The reproducing property of the weighted Szegő kernel yields that this last last
inner product is equal to

∂m

∂zm

[
σn̄(z, ai)f(z)p−q

]
evaluated at z = aj. Since the multiplicity of the zero of f at aj is greater than
or equal to m, this quantity is zero if p > q. If p = q, then the f(z) term is not
present and the proof of identity (8.1) complete.

It is now easy to see that the functions hinp are linearly independent. Indeed,
identity (8.1) reveals that we need only check that, for fixed p, the functions hinp,
i = 1, . . . , N , n = 0, . . . ,M(i), are linearly independent, and this is true because a
relation of the form

N∑
i=1

M(i)∑
n=0

Cinσn̄(z, ai) ≡ 0

implies, via the reproducing property of the weighted Szegő kernel, that every
function g in the Hardy space satisfies

N∑
i=1

M(i)∑
n=0

Cing
(n)(ai) = 0,

and it is easy to construct polynomials g that violate such a condition.
We next orthonormalize the sequence {hinp} via the Gram-Schmidt procedure.

Formula (8.1) shows that we need only orthonormalize the functions hinp, i =
1, . . . , N , n = 0, . . . ,M(i) for each fixed p. If we are careful to perform the Gram-
Schmidt procedure in exactly the same order with respect to the indices i and n at
each level p, we obtain an orthonormal set {Hinp} which is related to our original
set via a formula,

Hinp(z) =

N∑
j=1

M(j)∑
m=0

bijnmhjmp,

where, because |f | = 1 on bΩ, the coefficients bijnm do not depend on p. This last
fact is critical in what follows.
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The weighted Szegő kernel can be written in terms of our orthonormal basis via

σ(z, w) =

∞∑
p=0

N∑
i=1

M(i)∑
n=1

Hinp(z)Hinp(w).

The geometric sum
∞∑
p=0

f(z)p f(w)p =
1

1− f(z)f(w)

can be factored from the expression for σ(z, w) to yield a formula like the one in
the following theorem. (Note that by taking the weight function to be identically
one, we obtain a proof of Theorem 2.6.)

Theorem 8.1. Suppose that f is a proper holomorphic mapping of Ω onto the unit
disc with zeroes at a1, . . . , aN with multiplicities M(1), . . . ,M(N), respectively. The
weighted Szegő kernel σ(z, w) satisfies

(8.2) σ(z, w) =
1

1− f(z)f(w)

 N∑
i,j=1

M(i)∑
n=0

M(j)∑
m=0

cijnmσn̄(z, ai) σm̄(w, aj)

 .

The coefficients cijnm can easily be determined. Suppose 1 ≤ k ≤ N and
0 ≤ q ≤ M(k). Differentiate (8.2) q times with respect to w̄ and set w = ak
(and recall that f has a zero of multiplicity M(k) at ak) to obtain

σm̄(z, ak) =
N∑

i,j=1

M(i)∑
n=0

M(j)∑
m=0

cijnmσn̄(z, ai) σqm̄(ak, aj)

We saw an identity like this when we showed above that the functions hjnp are
linearly independent for each fixed k. The same reasoning we used there yields
that such a relation can only be true if the system,

N∑
j=1

M(j)∑
m=0

cijnmσqm̄(ak, aj) =

{
1, if i = k and m = q,

0, if i 6= k or m 6= q,

has a unique solution. This gives us a non-degenerate linear system to solve for the
coefficients cijnm.

In the case that the proper holomorphic mapping f in Theorem 8.1 has simple
zeroes, the formula for the weighted Szegő kernel becomes easier to write.

Theorem 8.2. Suppose that f is a proper holomorphic mapping of Ω onto the unit
disc with simple zeroes at a1, . . . , aN . The weighted Szegő kernel σ(z, w) satisfies

(8.3) σ(z, w) =
1

1− f(z)f(w)

N∑
i,j=1

cijσ(z, ai) σ(w, aj)

where the coefficients cij are determined by the condition that the matrix formed by
the coefficients [cij ] is the inverse to the matrix [σ(ak, aj)].

We remark that for any proper holomorphic mapping f from Ω onto the unit
disc, it is always possible to choose a Möbius transformation ϕ so that the proper
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map ϕ ◦ f has simple zeroes. Hence the simpler formula in Theorem 8.2 is always
at our disposal.

We can use identity (8.3) and (7.1) to derive similar results for the weighted

Garabedian kernel. Assume that w is in bΩ and multiply (8.3) by iϕ(w)T (w). Use
(7.1) to obtain

λ(w, z) =
1

1− f(z)f(w)

N∑
i,j=1

cijσ(z, ai)λ(w, aj).

Finally, replace f(w) by 1/f(w) to obtain

λ(w, z) =
f(w)

f(w)− f(z)

N∑
i,j=1

cijσ(z, ai)λ(w, aj).

Since both sides of this identity are holomorphic in w, the identity extends to hold
for all w in Ω minus the finite set of points {a1, . . . , aN} and z. The singularities
at {a1, . . . , aN} are easily seen to be removable because f vanishes at these points.

Theorem 8.3. Suppose that f is a proper holomorphic mapping of Ω onto the
unit disc with simple zeroes at a1, . . . , aN . The weighted Garabedian kernel λ(z, w)
satisfies

(8.4) λ(w, z) =
f(w)

f(w)− f(z)

N∑
i,j=1

cijσ(z, ai)λ(w, aj)

where the coefficients cij are determined by the condition that the matrix formed by
the coefficients [cij ] is the inverse to the matrix [σ(ak, aj)].

9. The weighted Szegő kernel and the double of a domain. Suppose that
Ω is an n-connected domain in the plane such that no boundary component is a
point and assume further that the boundary of Ω consists of n non-intersecting

C∞ smooth closed curves. As before, we let Ω̂ denote the double of Ω and R(z)

denote the antiholomorphic involution on Ω̂ which fixes the boundary of Ω and

let Ω̃ = R(Ω) denote the reflection of Ω in Ω̂ across the boundary. Recall that if
f : Ω → D1(0) is a proper holomorphic mapping of Ω onto the unit disc, then f

extends to be a meromorphic function on Ω̂.
We shall now prove that for fixed points A1 and A0 in Ω, functions of z of the

form σ(z, A1)/σ(z, A0) extend as meromorphic functions to the double of Ω. Indeed,
if we write the conjugate of formula (7.1), first using a = A1 and then a = A0, and
divide the two resulting formulas, we see that σ(z, A1)/σ(z, A0) is equal to the
complex conjugate of λ(z, A1)/λ(z, A0) when z ∈ bΩ. The arguments in [13] can
easily be adapted to show that functions of z of the form σ(z, a) cannot vanish
to infinite order at a boundary point for fixed points a in Ω. Hence, the zeroes of
σ(z, A1) and σ(z, A0) on bΩ are isolated and of finite order. Now the usual reflection
argument (which maps a one sided neighborhood of a boundary point of Ω onto the
lower half disc) in the construction of the double of Ω shows that σ(z, A1)/σ(z, A0)
is a meromorphic function on Ω which extends up to bΩ with at most finitely many
pole-like singularities on bΩ, and the conjugate of λ(R(z), A1)/λ(R(z), A0) is a
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meromorphic function on Ω̃ which extends up to bΩ from the “outside” of Ω and

which agrees with σ(z, A1)/σ(z, A0) on bΩ. Hence, σ(z, A1)/σ(z, A0) extends to Ω̂
as a meromorphic function. Similar reasoning using (7.1) and (7.2) shows that for
fixed points A1 and A0 in Ω, functions of z of the form σn̄(z, A1)/σ(z, A0) extend
as meromorphic functions to the double of Ω.

If we fix a point b in Ω and if we divide (8.2) by σ(z, b)σ(b, w), we see that

σ(z, w)

σ(z, b)σ(b, w)

is a rational combination of holomorphic functions of z that extend meromorphically
to the double of Ω and antiholomorphic functions of w that extend antimeromorphi-
cally to the double of Ω. Since the field of meromorphic functions on the double of
Ω is generated by just two such functions (a primitive pair), we obtain the following
result about the complexity of σ(z, w).

Theorem 9.1. Suppose that Ω is an n-connected domain in the plane such that
the boundary of Ω consists of n non-intersecting analytic C∞ smooth closed curves.
Let G1 and G2 be a primitive pair for the field of meromorphic functions on the
double of Ω. Given any point b in Ω, the weighted Szegő kernel is given by

σ(z, w) = σ(z, b)σ(b, w)R(G1(z), G2(z), G1(w), G2(w)),

and thus is a rational combination of only three functions of one complex variable
on Ω.

We showed in §8 that it is not possible for a function of the form

σ(z, A1)− cσ(z, A0)

to vanish identically on Ω. (If it did, then every polynomial p(z) would satisfy
p(A1) − c̄p(A0) = 0 by virtue of the reproducing property of the weighted Szegő
kernel, and this is absurd.) Hence, if A1 6= A0, then σ(z, A1)/σ(z, A0) extends to

Ω̂ as a non-constant meromorphic function of some finite order m on Ω̂. We record
this result here for future use.

Theorem 9.2. Suppose that Ω is an n-connected domain in the plane such that
the boundary of Ω consists of n non-intersecting C∞ smooth closed curves. If A1

and A0 are distinct points in Ω, then σ(z, A1)/σ(z, A0) extends to the double of Ω
as a non-constant meromorphic function.

10. A special weight function for the Szegő kernel. Assume, as we did in §9,
that Ω is an n-connected domain in the plane such that the boundary of Ω consists
of n non-intersecting C∞ smooth closed curves. Let p(a, z) denote the classical
Poisson kernel associated to Ω which reproduces harmonic functions in the sense
that

u(a) =

∫
z∈bΩ

p(a, z) u(z) ds

when u is harmonic in Ω and continuous up to the boundary. Choose a point A0

in Ω and define a weight function via

ϕ(z) = p(A0, z).
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The weighted Szegő kernel associated to this weight has the virtue that

σ(z, A0) ≡ 1.

Formula (7.1) shows that λ(z, A0) is non-vanishing on the boundary of Ω and the
argument principle and formula (7.1) show that λ(z, A0) has exactly n − 1 zeroes
in Ω (counted with multiplity) in the z variable. Furthermore, since

p(w, z) =
1

2π

∂

∂nz
G(w, z) =

i

π

∂

∂z̄
G(w, z)T (z),

it follows that

p(A0, z) =
i

π

∂

∂z̄
G(A0, z)T (z),

and (7.1) reveals that

(10.1) λ(z, A0) =
1

π

∂

∂z̄
G(A0, z)

for z ∈ bΩ. Since these two functions extend meromorphically inside Ω and have
exactly the one simple pole at A0 with exactly the same residue, they are equal for
all z in Ω, too.

Because σ can be expressed as the weighted projection of the weighted Cauchy
kernel (see §7), σ(z, a) = PϕCa, and because Pϕ is a continuous linear operator
from C∞(bΩ) into A∞(Ω), we may conclude that σ(z, a) has no zeroes in the z
variable in Ω for all a sufficiently close to A0. Furthermore, λ(z, a) is non-vanishing
on bΩ and has exactly n − 1 zeroes in Ω when a is close to A0. Choose a point
A1 6= A0 which is close enough so that these two conditions hold. Let G(z) denote
the extension of

σ(z, A1) =
σ(z, A1)

σ(z, A0)

to the double of Ω given by Theorem 9.2. Notice that

G(z) = λ(R(z), A1)/λ(R(z), A0)

on Ω̃. Hence, G has no zeroes and no poles in Ω and some positive number m ≤ n−1

of zeroes in Ω̃ and the same number m of poles in Ω̃. The order of G on Ω̂ is m.
Choose a point w0 6= 0 in C close enough to the origin that G−1(w0) consists of

m distinct points in Ω̂ which all fall in Ω̃. We may also choose w0 so that none of

these points is one of the n − 1 zeroes of λ(R(z), A0) in Ω̃. Let z1, . . . , zm denote
these m points.

We now wish to show that it is possible to choose a point A2 in Ω so that the
meromorphic extensions of σ(z, A1) and

σ(z, A2) =
σ(z, A2)

σ(z, A0)

to Ω̂ form a primitive pair for Ω̂ (meaning that they generate the field of meromor-
phic functions on the double of Ω). For a fixed point A2 in Ω, let H(z) be defined
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to be the meromorphic extension of σ(z, A2) to Ω̂. Think of H as depending on A2

even though we have suppressed this fact in the notation. To show that G(z) and
H(z) form a primitive pair, we need only choose A2 so that H(z) separates the m
points in G−1(w0) (see [3, page 321-324]).

Suppose that A2 is not equal to A1 and suppose that A2 is close enough to A0

that λ(R(zk), A2) 6= 0 for each k.

If zi ∈ Ω̃ and zj ∈ Ω̃ are points in G−1(w0) which are not separated by H, then

λ(R(zi), A2)

λ(R(zi), A0)
=
λ(R(zj), A2)

λ(R(zj), A0)
,

and so
λ(R(zi), A2)

λ(R(zj), A2)
= c

where

c =
λ(R(zi), A0)

λ(R(zj), A0)

is a non-zero constant. But the set of points w in Ω where

λ(R(zi), w)

λ(R(zj), w)
= c

is a finite subset of Ω because this function of w extends to the double of Ω as a
non-constant meromorphic function since

λ(R(zi), w)

λ(R(zj), w)

is equal to the conjugate of
σ(R(zi), R(w))

σ(R(zj), R(w))

on bΩ. Hence w = A2 can be chosen to avoid this possibility for each pair of indices
i 6= j.

Assume that A1 and A2 in Ω are two points in Ω such that the extensions of
σ(z, A1) and σ(z, A2) to the double of Ω form a primitive pair for the field of
meromorphic functions on the double.

Let f denote an Ahlfors mapping of Ω onto the unit disc. We may suppose
that the base point of the map has been chosen so that the zeroes of f are all

simple zeroes. We know that f(z) extends meromorphically to Ω̂. It follows that
all the functions that appear on the right hand side of formula (8.3) extend to the
double of Ω. Hence, σ(z, w) is a rational combination of σ(z, A1), σ(z, A2) and the
conjugates of σ(w,A1) and σ(w,A2).

We collect these results in the following theorem.

Theorem 10.1. Suppose that Ω is an n-connected domain in the plane such that
the boundary of Ω consists of n non-intersecting C∞ smooth closed curves. The
weighted Szegő kernel with respect to the Poisson weight

ϕ(z) = p(A0, z)

for a point A0 in Ω is such that σ(z, a) extends to the double of Ω as a non-constant
meromorphic function for each a in Ω. Furthermore, there exist two points A1 and
A2 in Ω such that the extensions of σ(z, A1) and σ(z, A2) to the double of Ω form
a primitive pair for the field of meromorphic functions on the double. The kernel
σ(z, w) is a rational function of σ(z, A1), σ(z, A2), σ(w,A1) and σ(w,A2).
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11. Finite Riemann surfaces. Suppose that Ω is a finite Riemann surface with
boundary, i.e. suppose that Ω is a Riemann surface with boundary with compact
closure of finite genus and finitely many boundary curves. We assume that there is
at most one boundary curve and that none of the boundary curves are pointlike. To
make the exposition easier, we shall assume that the boundary curves of Ω are C∞

smooth real analytic curves. It will be clear that this assumption can be greatly
reduced in what follows, but we do not concern ourselves with this here. It is a
standard construction to produce the Szegő projection and kernel with respect to a
weight function on the boundary of Ω (see [16]). Given a measure ω on the boundary
which is given by a positive C∞ weight function with respect to the standard metric
on the boundary, let S(z, w) denote the Szegő kernel function defined on Ω × bΩ
which reproduces holomorphic functions on Ω with respect to ω in the sense that

h(z) =

∫
w∈bΩ

S(z, w)h(w) dω

for points z in Ω and holomorphic functions h on Ω that are in the L2 Hardy space
associated to Ω relative to the measure ω. Let P denote the Szegő projection, which
is the orthogonal projection of the L2 space on bΩ with respect to the weight func-
tion ω onto the closed subspace of functions in this space which are the boundary
values of holomorphic functions on Ω.

Ahlfors proved that Ahlfors maps exist in the more general setting that we are
dealing with now (see [2]). Fix a point a in Ω and let fa denote an Ahlfors map
associated to (Ω, a). This map is a holomorphic map of Ω onto the unit disc
such that fa(a) = 0 and which maximizes the derivative f ′a(a) in some coordinate
chart. Ahlfors proved that this map is a proper holomorphic mapping of Ω onto
the unit disc. Since the boundary of Ω is C∞ smooth, it follows that fa extends
C∞ smoothly up to the boundary of Ω. Of course, fa maps the boundary of Ω into
the boundary of the unit disc, i.e. |f(z)| = 1 when z ∈ bΩ.

Exactly the same arguments as those given in §§7-8 can now be applied in this
more general context to yield that the Szegő kernel S(z, w) is a rational combination
of finitely many holomorphic functions of one complex variable on Ω. Indeed, if
the zeroes of fa are simple, then the formula in Theorem 8.2 holds with S(z, w) in
place of σ(z, w) and fa in place of f . If the zeroes are not simple, then the formula
in Theorem 8.1 holds where it is understood that the derivatives Sn̄(z, aj) in the
second variable are taken with respect to some arbitrary, but fixed, coordinate chart
near aj.

To show that S(z, w) is actually generated by only three holomorphic functions of
one variable, we must do a little extra work. Let G(z, w) denote the classical Green’s
function for Ω. For a fixed point b in Ω, let ∂zG(z, b) denote the meromorphic one-
form (∂/∂z)G(z, b) dz. This form reproduces holomorphic functions on Ω in the
sense that

h(b) =

∫
z∈bΩ

h(z)∂zG(z, b).

There is a C∞ function Gb on the boundary of Ω, such that∫
z∈bΩ

ψ(z)∂zG(z, b) =

∫
z∈bΩ

ψ(z)Gb(z) dω

for all continuous functions ψ on bΩ. It follows that the function Sb(z) := S(z, b)
is the Szegő projection of Gb. Since (Sb(z) − Gb)ω is orthogonal to holomorphic
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functions, we may use a theorem of Read (see [16, page 75] and [17]) to assert that
there is a meromorphic one-form Ab on Ω with no singularities on Ω such that∫

z∈bΩ
ψ(z)

(
Sb(z)− Gb(z)

)
dω =

∫
z∈bΩ

ψ(z) ∗Ab

for all continuous functions ψ on bΩ. Since Sb and Gb are C∞ smooth on bΩ, it
follows that Ab is C∞ smooth up to bΩ and hence, there is a C∞ smooth function
αb(z) on bΩ such that ∫

z∈bΩ
ψ(z) ∗Ab =

∫
z∈bΩ

ψ(z)αb(z) dω

for all continuous functions ψ on bΩ. Define λb(z) to be Gb(z) + αb(z). For two
points a and b in Ω, the quotient Sb(z)/Sa(z) is a meromorphic function on Ω. It is
easy to verify that the quotient λb(z)/λa(z) is the boundary value of an antimero-
morphic function on Ω given as the quotient of two meromorphic one-forms. Hence
Sb(z)/Sa(z) extends to the double of Ω as a meromorphic function. This and the
fact that we may compose by a Möbius transformation so as to be able to assume
that our proper holomorphic map to the disc has simple zeroes is all that we need
to be able to use the formula in Theorem 8.2 to deduce that

S(z, w) = S(z, a)S(a, w)R(G1(z), G2(z), G1(w), G2(w))

where R is a rational function and G1 and G2 form a primitive pair for the double
of Ω.

The arguments in §10 carry over to our finite Riemann surface and Theorem 10.1
holds in this more general context.

We conclude by showing how these results can be applied to the Bergman kernel
on Ω. The Bergman kernel on Ω is a differential (1, 1) form given by

K(w, z)dw ∧ dz̄ =
∂2

∂w∂z̄
G(w, z)dw ∧ dz̄.

Let α = df/f where f is a proper holomorphic mapping of Ω onto the unit disc
(such as an Ahlfors map). The proof of Theorem 1.2 given in [9] yields that

K(w, z)dw ∧ dz̄
α(w) ∧ α(z)

can be viewed as a function on Ω×Ω which extends to Ω̂×Ω̂ to be meromorphic in w
and antimeromorphic in z. It now follows from the generalization of Theorem 10.1
mentioned above that the Bergman kernel associated to Ω is given as

K(w, z)dw ∧ dz̄ = R(G1(w), G2(w), G1(z), G2(z))df(w) ∧ df(z)

where R is a complex rational function and G1 and G2 form a primitive pair for Ω̂.
It is interesting to note that the two functions G1(z) and G2(z) can be taken to be
S(z, A1) and S(z, A2) for suitably chosen points A1 and A2 in Ω and that f is also
a rational combination of these two functions.

I leave it for the future to relate other objects of potential theory associated to a
finite Riemann surface to this weighted Szegő kernel so as to obtain results about
complexity in complex analysis and potential theory.
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