
THE ADJOINT OF A COMPOSITION OPERATOR

VIA ITS ACTION ON THE SZEGŐ KERNEL

STEVEN R. BELL

Abstract. The adjoint of the classic composition operator on the Hardy
space of the unit disc determined by a holomorphic self map of the unit disc
is well known to send the Szegő kernel function associated to a point in the
unit disc to the Szegő kernel associated to the image of that point under the
self map. The purpose of this paper is to show that a constructive proof that
holomorphic functions that extend past the boundary can be well approxi-
mated by complex linear combinations of the Szegő kernel function gives an
explicit formula for the adjoint of a composition operator that yields a new
way of looking at these objects and provides inspiration for new ways of think-
ing about operators that act on linear spans of the Szegő kernel. Composition
operators associated to multivalued self mappings will arise naturally, and out
of necessity. A parallel set of ideas will be applied to composition operators
on the Bergman space.

In honor of Dima’s 60-th!

1. Introduction

The classic composition operator Cϕ associated to a holomorphic self map ϕ
of the unit disc D1(0) is defined via

(Cϕh)(z) = h(ϕ(z)).

It is well known to be a bounded operator on the Hardy space of the unit disc.
The adjoint of Cϕ satisfies

(1.1) 〈Cϕh, g〉 = 〈h,C∗

ϕg〉

for all h and g in the Hardy space, where the inner product is the standard one
on the boundary associated to L2 of the boundary with respect to arc length
measure ds. We refer the reader to [11] for the basic facts about composition
operators.

The Szegő kernel associated to the unit disc is

S(z, w) =
1

(2π)(1− zw̄)
.

Let Sa be defined via Sa(z) = S(z, a). It is a well known fact in the theory
of composition operators that C∗

ϕSa = Sϕ(a). Indeed, to see this, let g = Sa
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in equation (1.1) for a point a in the unit disc and use the fact that pairing a
function in the Hardy space with Sa yields point evaluation for the function at
a. Hence,

h(ϕ(a)) = 〈h,C∗

ϕSa〉

for all h in the Hardy space. Since the Szegő kernel is characterized by the point
evaluation property, we must conclude that C∗

ϕSa = Sϕ(a).

We now set some notation that we will use throughout this paper. Suppose
that Ω is a bounded domain in the plane with smooth real analytic boundary and
let bΩ denote its boundary. We let H2(bΩ) denote the Hardy space (with respect
to boundary arc length measure) and H2(Ω) denote the Bergman space (with
respect to Lebesgue area measure). Let A−∞(Ω) denote the space of holomorphic
functions on Ω that grow at worst as a constant times an inverse power of the
distance to the boundary near the boundary, and let A∞(Ω) denote the space of
holomorphic functions in C∞(Ω).

Let Sa denote the Szegő kernel S(z, a) viewed as a function of z ∈ Ω for fixed
a ∈ Ω. Let Σ denote the complex linear span of Sa as a ranges over points in
the unit disc. It was proved in [4] that a holomorphic function in C∞(Ω) can
be approximated in that space by functions in Σ (also see Chapter 8 in [5] for a
proof). The proof there uses Stokes’ theorem and spreads the sum over points
ranging over the whole interior of the domain. It also uses the fact that the
Szegő projection preserves C∞(Ω) and is therefore more of an existence proof
than a constructive proof. One of the purposes of this paper is to write out a
constructive simplified proof of this fact in the real analytic boundary setting
that will easily allow us to apply the adjoint of a composition operator to the
result. The construction will use a contour integral, and so the points in the
sum will fall on curves. In this way, we will obtain a concrete expression for
the adjoint. The construction will also reveal the relevance of double quadrature
domains, domains that satisfy a quadrature identity on holomorphic functions
both with respect to area measure and boundary arc length measure, to these
considerations.

I would like to thank Carl Cowen, Eva Gallardo-Gutiérrez, and their students
for introducing me to this subject and for teaching me so much about it over the
years.

2. A constructive proof of the density of Σ and consequences

We begin this section by considering the problem of approximating a function
on the unit disc by a linear combination of the Szegő kernel function Sak as the
points ak range over a finite set of points in the disc. Let Ω denote the unit
disc D1(0) and assume that h(z) is a holomorphic function on Ω that extends
holomorphically to a larger disc DR(0). The construction we are about to de-
scribe is related to the fact that the unit disc is a quadrature domain both with
respect to area measure and boundary arc length measure. Being an area quad-
rature domain means that the Schwarz function for the unit disc S(z) extends
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meromorphically to the disc and being an arc length quadrature domain means
that S ′(z) is the square of a function that extends meromorphically to the disc.
These results are due to Aharonov an Shapiro [1] and Shapiro and Ullemar [21]
in the simply connected case and Gustafsson [14, 15] in the multiply. (See [20]
and [13] for more about quadrature domains and the history of the subject, and
see [8] for a summary of results on double quadrature domains.)

On the unit disc, the Schwarz function is S(z) = 1/z. (The Schwarz function
notation S(z) is not to be confused with the notations S(z, w) = Sw(z) that we
reserve for the Szegő kernel.) Note that z = 1/z̄ on the boundary of the unit
disc and the element of arc length ds satisfies ds = z dz̄ = (1/z̄)dz̄. As before,
let 〈·, ·〉 denote the L2 inner product on the unit circle with respect to arc length
measure. The facts just mentioned and the reproducing property of the Szegő
kernel allow us to write

h(w) = 〈h, Sw〉 =

∫

bΩ

h(z)Sw(z) ds =

∫

bΩ

h(1/z̄)Sw(z)
1

z̄
dz̄,

and since the integrand is antiholomorphic on {z : (1/R) < |z| ≤ 1}, Cauchy’s
theorem yields that this integral is equal to the integral of the same function over
a smaller circle of radius r where (1/R) < r < 1. These considerations yield the
following lemma.

Lemma 2.1. Suppose that h is holomorphic on a disc DR(0) where R > 1. Then
h can be expanded in terms of the Szegő kernel via

h(w) =

∫

Cr(0)

h(1/z̄)Sw(z)
1

z̄
dz̄,

where Cr(0) is a circle of radius r such that 1/R < r < 1. It follows by approx-

imating this integral by a finite Riemann sum that h can be uniformly approxi-

mated on any disc Dρ(0) with 1 < ρ < R by a finite linear combination of the

functions Sw(ak) = S(w, ak) where the points ak range over a circle of radius r
with (1/R) < r < (1/ρ) < 1.

We can now apply the adjoint of a composition operator to the the approxima-
tion of h by a linear combination of Szegő kernels to see that C∗

ϕh is approximated
by a linear combination of the functions S(w,ϕ(ak)). Next, we may let this Rie-
mann sum tend to its original integral and note that uniform convergence implies
convergence in the Hardy space, which in turn implies uniform convergence on
compact subsets, to see that

(2.1)
(

C∗

ϕh
)

(w) =

∫

Cr(0)

h(1/z̄)Sw(ϕ(z))
1

z̄
dz̄,

where Cr(0) denotes the circle of radius r about zero. This formula shows that
C∗

ϕh also extends holomorphically past the boundary of the unit disc, a fact that
is well-known to the experts. This formula illustrates the utility of characterizing
the adjoint of a composition operator by its action on the Szegő kernel and we
will use similar ideas when we generalize the operators in what follows. However,
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the last formula should not be considered as something new in and of itself in
the case of the disc. It is more of a new way to view the adjoint by fixating on
its action on the Szegő kernel. Indeed, we can let r tend back to one to obtain
Cowen and Gallardo’s formula [12],

(

C∗

ϕh
)

(w) =
1

2π

∫

z∈bΩ

h(z)
1

1− wϕ(z)
ds

for w ∈ Ω, using the H∞ boundary values of ϕ in the integral. We have de-
rived Cowen and Gallardo’s formula in case h extends holomorphically past the
boundary, but we can take a sequence of such functions converging in L2(bΩ) to
a function in the Hardy space, noting that convergence in H2(bΩ) implies uni-
form convergence on compact subsets, to see that the formula holds for h in the
Hardy space, as Cowen and Gallardo demonstrate. (The techniques of Cowen
and Gallardo were further refined in [10] and [16].)

We remark here that we have approximated a function that extends holomor-
phically past the boundary by a linear combination of Szegő kernel functions
that approximate it uniformly in a neighborhood of the boundary. If we wanted
to approximate a function h in A∞ or H2 or a holomorphic function that merely
extended continuously up to the boundary in the respective topologies of those
spaces, we would first replace h(z) by h(rz) with r < 1 (which approximates h
in each space) and apply our result to h(rz) to get an approximation.

Another common operator studied by researchers in composition operators is
the weighted composition operator given by

(Wψ,ϕh)(z) = ψ(z)h(ϕ(z)),

where ϕ is a holomorphic map of the unit disc into itself and ψ is a bounded
holomorphic function. The adjoint of this operator satisfies

W ∗

ψ,ϕSa = ψ(a)Sϕ(a).

Assuming that h extends holomorphically past the boundary, we may proceed
as above in the unweighted case to obtain the formula

(W ∗

ψ,ϕh)(w) =

∫

Cr(0)

h(1/z̄)ψ(z)Sw(ϕ(z))
1

z̄
dz̄,

and we may let r tend to one and relax the extension assumptions about the
functions involved in this computation. As in the unweighted case, the formula
leads back to Cowen and Gallardo’s formula for the adjoint of the weighted
composition operator.

3. The Szegő span and adjoints of composition operators

Define the m-th a-bar derivative Sma (z) of the Szegő kernel in the second
variable a via

Sma (z) =
∂m

∂w̄m
S(z, w)

∣

∣

w=a
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and let S0
a = Sa. The Szegő span is the complex linear span of the functions

Sma as a ranges over points in the domain and m ranges over all nonnegative
integers. It is an easy exercise to see that the Szegő span of the unit disc is the
space of all complex rational functions without poles in the closed unit disc. We
now claim that the classical composition operators studied above are adjoints of
continuous linear operators on the Hardy space of the unit disc that preserve the
Szegő span, i.e., that preserve the space of complex rational functions without
poles in the closed disc. Indeed, formula (1.1) can be differentiated with respect
to ā to see that

C∗

ϕS
1
a = ϕ′(a)S1

ϕ(a).

This computation can be repeated to see that C∗

ϕ maps the Szegő span into itself.
Thus Cϕ is the adjoint of a continuous linear operator that preserves the Szegő
span. Similar reasoning shows that the adjoints of the weighted composition
operators also preserve the Szegő span.

It seems like a rather interesting problem to determine all the continuous
linear operators on the Hardy space that preserve the Szegő span. Among such
operators are the adjoints of generalized composition operators of the following
type studied by Cowen and Gallardo and their students.

Example 1. Suppose that ϕ is the multivalued inverse of a finite Blaschke prod-
uct. (A simple example of such a thing is the multivalued N -th root function.)
This implies that ϕ is a finite-to-finite multivalued holomorphic mapping with
algebraic singularities at perhaps finitely many points. Such maps have a map-
ping degree N . At all but finitely many points in a (finite) set V , we may list
local holomorphic maps {ϕk}

N
k=1 that represent ϕ and that map into the unit

disc. Each function element can be analytically continued around Ω−V to come
back to another function element in the list and all the elements can be reached
in this way from a single element. The points of V are algebraic singularities
for the multivalued functions so obtained. (Also, each |ϕk(z)| tends to one as |z|
tends to one, making ϕ an irreducible proper holomorphic self correspondence of
the disc.)

The operator Cϕ : h 7→
∑N

k=1 h ◦ ϕk is a generalized composition operator.
The sum is a well defined holomorphic function on Ω−V and the points in V are
clearly removable singularities for the sum. At points in V , continuity shows that
the sum is equal to a fixed linear combination of values of h. For example, when
ϕ is given by the multivalued N -th root function, (Cϕh)(z) is equal to the sum
of h(ζ) as the ζ rangle over the N -th roots of z if z 6= 0, and (Cϕh)(0) = N h(0).

For points a in Ω−V , the adjoint satisfies C∗

ϕSa =
∑N

k=1 Sϕk(a). For points a in
V , C∗

ϕSa must also be equal to such a sum by continuity in a and the continuous
nature of algebraic functions at finite valued singular points. In fact, the sum
could be realized as a sum of N terms with some repeated terms corresponding
to points having a local multiplicity. In case ϕ is the N-th root function, C∗

ϕS0 =
NS0. Similar reasoning to that above shows that the sum extends to the disc in
the a variable to be antiholomorphic in a. By differentiating with respect to ā in
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the a variable, it can be seen that C∗

ϕ maps the Szegő span into the Szegő span.
It is also special in that it maps Sa into Σ for each a.

Example 2. A similar interesting example of a weighted composition operator
of a generalized type is described via the multivalued inverse of the function zN

as follows. Let ϕk(z), k = 1, . . . , N , denote the N branches of the N -th root on
Ω− {0}, and let F (w) = wN . The generalized composition operator λ given by

(3.1) λ : h 7→
N
∑

k=1

ϕ′

k(h ◦ ϕk)

is a very interesting operator. Notice the pole-like algebraic singularities that
occur in the weight functions ϕ′

k. Even so, it is not hard to see that zero is
a removable singularity for the sum and the value at zero is a constant times
the (N − 1)-st derivative of h at zero. Indeed, because |ϕ′

k|
2 is the Jacobian

determinant for the local maps viewed as mappings from R
2 to R

2, the operator
λ takes L2(Ω) into itself. Since an isolated singularity of a holomorphic function
that is locally in L2 is removable, we may use the change of variables formula
and the averaging property of analytic functions to see that π times the value of
∑N

k=1 ϕ
′

k(h ◦ ϕk) at zero is equal to

〈
N
∑

k=1

ϕ′

k(h ◦ ϕk), 1〉Ω = 〈h, F ′(1 ◦ F )〉Ω = 〈h,NzN−1〉Ω = π
hN−1(0)

(N − 1)!
,

where 〈u, v〉Ω denotes the L2 inner product with respect to area measure on Ω.
The last equality follows from the orthogonality of the monomials on the unit disc
and Taylor’s formula. (See Chap. 16 of [5] for a complete and careful explanation
of this line of reasoning.) It is straightforward to show that λ preserves the Hardy
space because the branches are C∞ smooth up to the boundary. The adjoint of
λ satisfies

λ∗Sa =
N
∑

k=1

ϕ′

k(a)Sϕk(a)

at points a 6= 0. At a = 0, the adjoint is equal to 1/(N −1)! times the (N −1)-st
derivative of S(z, w) in w̄ evaluated at w = 0, i.e.,

λ∗S0 =
1

(N − 1)!
S
(N−1)
0 .

Note that λ∗ maps the functions Sa into Σ for a 6= 0, but to a higher order func-
tion in the Szegő span at a = 0. The formula for λ∗Sa can also be differentiated
in the a variable to see that λ∗ is an operator on the Hardy space that preserves
the Szegő span and, therefore, λ is the adjoint of an operator on the Hardy space
that preserves the Szegő span.

In the next section, we will see that multivaluedness arises naturally in the de-
scription of adjoints of operators that preserve the Szegő span and that we should
not be surprised to see pole-like algebraic singularities in the weight functions
that appear.
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We remark that generalized composition operators like the two above can
be defined using any irreducible proper holomorphic self correspondence of the

unit disc ϕ to itself. See [2] or [6] for details about proper holomorphic cor-
respondences, and see [22] for where the study of holomorphic correspondences
originated. See also Cowen and Gallardo [12] for more examples and more types
of generalized composition operators.

In order to study operators that preserve the Szegő span, it will be necessary
to allow higher order composition operators of the form

h 7→
dm

dzm
(h ◦ ϕ)

and the corresponding weighted versions multiplied by a holomorphic function
ψ in A−∞(Ω). (We will also be forced to allow ϕ and ψ to be multivalued later.)
Such operators might not be bounded operators on the Hardy space (for ϕ that
map near the boundary of the disc, for example), hence we will also have to leave
the Hardy space. We will now show that the natural spaces on which to study
such operators and their adjoints are A−∞(Ω) and A∞(Ω).

First, we show that the higher order composition operators are continuous
operators on the space A−∞(Ω) of functions that grow at worst as an inverse
power of the distance to the boundary near the boundary. To see this, assume
that ϕ is a holomorphic self map of the unit disc. Let d(z) = 1− |z| denote the
distance to the boundary function. If ϕ(0) = 0, the Schwarz lemma implies that

d(ϕ(z)) ≥ d(z).

If ϕ(0) 6= 0, we can compose with a Möbius transformation to make zero a fixed
point and note that a Möbius transformation distorts the boundary distance via
a small constant, large constant inequality. Hence, there is a positive constant c
such that

d(ϕ(z)) ≥ c d(z).

This inequality implies that d(ϕ(z))−1 is bounded by a constant times d(z)−1.
Hence, h 7→ h◦ϕ is a continuous operator from A−∞(Ω) to itself. Since multipli-
cation by a function in A−∞(Ω) and differentiation are also continuous operators
from A−∞(Ω) to itself, we conclude that the more general composition operators
are too.

Notice that the Szegő span is a space of functions that extend C∞ smoothly
to the boundary and we are studying operators that preserve the span. Hence,
it will not be surprising that we will expect our adjoints to preserve A∞(Ω). We
now make these vague urges precise.

It is well known that the L2 inner product on the boundary extends from
H2(bΩ) × H2(bΩ) to A−∞(Ω) × A∞(Ω) and exhibits these two spaces as being
mutually dual (see [17, 18, 24, 23]). We claim that this fact together with the fact
that composition operators are continuous operators on A−∞(Ω) give an instant
proof that C∗

ϕ maps A∞(Ω) into itself (a fact that is well-known to the experts).
Indeed, if h is in A∞(Ω) and ϕ is a holomorphic self map of the unit disc, then

g 7→ 〈Cϕg, h〉



8 S. R. BELL

is a continuous linear functional on A−∞(Ω). Hence, there is an H in A∞(Ω)
such that

〈Cϕg, h〉 = 〈g,H〉.

Since H2(bΩ) is contained in A−∞(Ω), and since the pairing agrees with the
L2 pairing when g (and Cϕg) have L

2 boundary values, we must conclude that
H = C∗

ϕh and that C∗

ϕ therefore maps A∞(Ω) into itself. Hence, the adjoint in
this more general sense is an extension of the classic adjoint and it makes good
sense to use the same notation for the more general adjoint. The same reasoning
can be used to show that the adjoint of a classic weighted composition operator
preserves A∞(Ω), and in fact, so do the adjoints of our higher order composition
operators when we view the operators as operators on A−∞(Ω) and their adjoints
as operators on A∞(Ω). In this context, the higher order adjoints can also be
shown to preserve the Szegő span.

We now turn to studying operators that preserve A∞(Ω) and the Szegő span.

4. Operators that preserve the Szegő span

We continue to let Ω denote the unit disc. Suppose that Λ is a continuous
linear operator from A∞(Ω) to itself that preserves the Szegő span. This implies
that (ΛSa)(z) is a rational function of z without poles in the closed unit disc for
each point a in the unit disc. Let

H(z, a) = (ΛSa)(z).

Note that H is holomorphic and rational in z for fixed a and antiholomorphic
in a (as can be seen by differentiating under the operator). Also, because Λ is a
continuous operator on A∞(Ω) and the Cs norm of Sa grows at worst as a power
of the distance of a to the boundary, it follows that H(z, a) is the conjugate of a
function in A−∞(Ω) as a function of a for each z in the unit disc.

We will now prove that H(z, a) is a quotient of polynomials in z with co-
efficients that are conjugates of holomorphic functions of a in A−∞(Ω). The
argument is very similar to one used in [7, p. 1366], which is based on an old ar-
gument found in Bochner and Martin [9] to show that a function that is rational
in each variable separately is rational.

We assume that Λ is not the zero operator. Thus, H(z, a) cannot be identically
zero and there is a nonempty open set U ×V in Ω×Ω where H is nonvanishing.
Because H(z, a) is rational in z for each a in V , there are nonnegative integers
M(a) and N(a), and coefficients Ak(a) and Bk(a) such that

(4.1) H(z, a)





N(a)
∑

k=0

Ak(a)z
k



+

M(a)
∑

k=0

Bk(a)z
k = 0.

By insisting that the polynomials in (4.1) have no common factors, we uniquely
specify M(a) and N(a). Because H is nonvanishing, we may divide equation
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(4.1) by a nonzero constant (which depends on a) so that we may assume that

(4.2)

N(a)
∑

k=0

|Ak(a)|
2 +

M(a)
∑

k=0

|Bk(a)|
2 = 1.

The set OM,N of points a in V where M(a) ≤ M and N(a) ≤ N is closed in
V , and since V = ∪OM,N , the Baire category theorem implies that there is a
nonempty open subset of V on which M(a) and N(a) are uniformly bounded.
Call this possibly smaller set V now. By allowing some coefficients to be zero, we
may assume that (4.1) and (4.2) hold with N and M in place of N(a) and M(a)
for all a in V . Let q = N +M + 2. Writing out (4.1) for q points z1, z2, . . . , zq
in U yields a linear system with a nonzero solution by virtue of (4.2). Hence the
determinant of the system is zero, i.e.,

det









H(z1, a) H(z1, a)z1 . . . H(z1, a)z
N
1 1 z1 . . . zM1

H(z2, a) H(z2, a)z2 . . . H(z2, a)z
N
2 1 z2 . . . zM2

...
...

. . .
...

...
...

. . .
...

H(zq, a) H(zq, a)zq . . . H(zq, a)z
N
q 1 zq . . . zMq









≡ 0

We now assume that z1, . . . , zq−1 are distinct points in V and we replace zq by a
variable z in V . If we expand the determinant along the bottom row, we obtain
an equation like (4.1) where the coefficients Ak(a) and Bk(a) are antiholomorphic
functions of a that are conjugates of functions in A−∞(Ω). This equation extends
to hold for all points z and a in the unit disc. If at least one of the coefficients
Bk(a) is not identically zero, our claim follows. If all the Bk are zero, then all
the principal minors corresponding to elements in the bottom row are zero. We
consider each of the principal minors separately and let the zk variable in the
bottom row of each to be a genuine variable z again. We repeat this process on
each until we get a nonvanishing minor. Since H(z, a) is nonvanishing, there are
plenty of 1 × 1 minors of the matrix that are nonzero. Let m be the smallest
positive integer such that the determinant of every m × m submatrix of our
matrix is identically zero, but there is an (m − 1) × (m − 1) submatrix whose
determinant is not identically zero. Let M denote the m×m submatrix (which
must contain a column with the functions H in it because the Vandermonde
determinant is not zero). We can let the last zk variable in the bottom row of
M to be z again and repeat the above argument to conclude that H(z, a) is a
function of the promised form. This completes the proof.

Now that we have determined the form of H(z, a), we turn to expressing our
operator Λ in terms of H. Assume that h is a holomorphic on a neighborhood
of the closed unit disc. We may express h as a limit of linear combination of the
functions Sa via an integral, and then let the sum converge to the integral under
the operator as we did via equation (2.1) in §2 to obtain

(Λh)(z) =

∫

Cr(0)

H(z, w)h(1/w̄)
1

w̄
dw̄.
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We may now let r → 1 as we did in §2 to obtain

(Λh)(z) =

∫

w∈bΩ

h(w)H(z, w) ds,

where the boundary integral is understood in terms of the extension of the L2

pairings to A−∞(Ω) × A∞(Ω) because the conjugate of H(z, w) is in A−∞(Ω)
as a function of w for each z in Ω. Finally, we may take a sequence of hj that
extend holomorphically past the boundary converging in A∞(Ω) to h to show
that integral formula for Λ extends to hold for h in A∞(Ω).

It is interesting to consider operators that preserve the Szegő span in familiar
ways. For example, consider an operator Λ that maps Sa to a constant times the
Szegő kernel based at some point in Ω for each a in Ω. If we write

ΛSw = cwSbw ,

then we may define functions ψ(w) = cw and ϕ(w) = bw. Hence,

H(z, w) =
ψ(w)

2π(1− z ϕ(w))
.

Setting z = 0 shows that ψ is holomorphic and in A−∞(Ω). If we differentiate
with respect to z repeatedly and set z = 0, we see that ψϕk is holomorphic for
each k. If follows that ϕ is holomorphic. Also, ϕ maps into the unit disc, so
the adjoint of Λ must be a classic weighted composition operator with weight
ψ in A−∞(Ω). In order for this composition operator to be bounded in the
Hardy space, we would need to place further conditions on ψ. Since the norm in
L2(bΩ) of Sa is the square root of S(a, a) = (1 − |a|2)−1/(2π), we see from the

identity ΛSa = ψ(a)Sϕ(a) that the the boundary behavior of ψ is controlled by
the L2(bΩ) operator norm of Λ and the boundary behavior of ϕ. If ϕ is a Möbius
transformation (or a finite Blaschke product), then we can deduce that ψ must be
bounded on the unit disc to make Λ (and therefore the adjoint of Λ) bounded on
the Hardy space. If ϕ maps the unit disc into a compact subset of the unit disc,
ψ could merely be a function in the Hardy space and the composition operator
would be bounded on the Hardy space.

A more interesting case to consider is an operator Λ that maps the functions
Sa into Σ in the manner that the adjoint of the operator of Example 2 of §3
does. If one applies partial fractions to H(z, w) (which is rational in z), one
must obtain

(4.3) H(z, w) =
N
∑

k=1

ψk(w)

1− z ϕk(w)
.

As Example 1 and 2 show, it is reasonable to demand that the values of the
ϕk(w) be distinct, except on a discrete set of points were multiplicity leads to
coalescence. Also, Example 2 shows that there can be a discrete set where higher
powers of the terms occur corresponding to higher order terms in the Szegő
span. Note that in Example 2, we leave the space Σ on a discrete set, so we
shall allow for this possibility here. We will now show that the functions ψk and
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ϕk can be seen to be (possibly) multivalued holomorphic functions of a special

type. The functions 1/ϕk(w) are the roots of a polynomial in z with coefficients
that are functions of w that are conjugates of functions in A−∞(Ω). Hence
they are N -valued holomorphic functions with perhaps algebraic singularities at
isolated points in the unit disc. (Rudin’s paper [19] shows how to prove such
things.) Since the ϕk must map into the unit disc, they have no pole-like algebraic
singularities. Hence there is a discrete set of points E in the unit disc such that
the ϕk are holomorphic germs on Ω−E that can be continued at will on Ω−E.
The germs so obtained map into the unit disc. Keeping Example 2 in mind, it
is reasonable to stipulate that, by perhaps enlarging the discrete set E, we may
assume the values of ϕk(w) are N distinct complex numbers for w in Ω−E. We
now wish to do a calculation that shows why we should not expect the functions
ψk to be independent from the ϕk. Pick a point w0 in Ω − E and one of the
functions ϕj such that ϕj is holomorphic and nonvanishing on a neighborhood
of w0 in Ω − E. Since ϕj(w0) is distinct from ϕk(w0) for k 6= j and the point

W0 = 1/ϕj(w0) is a point outside the closed unit disc, we may find a small circle

Cǫ about W0 such that none of the other points 1/ϕk(w0), k 6= j, fall inside Cǫ.

The residue theorem yields that −i times the conjugate of
ψj(w)

ϕj(w)
is equal to

∫

Cǫ

H(z, w) dz

for w near w0. The function of w given by the integral is antiholomorphic in
w near w0. This shows that, locally, the ψk might be holomorphic germs that
depend on the ϕk as we follow paths in Ω − E, and that singularities and mul-
tivaluedness of the ϕk might give rise to the same behavior in the ψj. We now
consider a more sophisticated way to understand this association.

As we did in the simpler case, we may differentiate (4.3) with respect to z and
then set z = 0 to obtain a system,

(4.4)
N
∑

k=1

ψkϕ
m
k = Hm

for m = 0, . . . , N − 1, where the Hm are holomorphic functions in A−∞(Ω). We
may use Cramer’s rule to solve for the ψk to obtain

ψj =
detVj
detV

,

where V is the Vandermonde-type matrix,

V =













1 1 . . . 1
ϕ1 ϕ2 . . . ϕN
ϕ2
1 ϕ2

2 . . . ϕ2
N

...
...

. . .
...

ϕN−1
1 ϕN−1

2 . . . ϕN−1
N













,

and Vj is the matrix obtained from V by replacing the j-th column with the
column (H0, . . . , HN−1)

T . We next expand the determinants in the numerator



12 S. R. BELL

and denominator along the j-column and divide the top and bottom by the
determinant of the (N − 1)× (N − 1) Vandermonde-type matrix obtained from
the ϕk with k 6= j to obtain

ψj =

∑N

k=1 gkHk
∑N

k=1 gkϕ
k
j

,

where the functions gk are symmetric functions of the ϕk with k 6= j that are
holomorphic on Ω − E and have removable singularities at the points in E.
Consequently, each ψj is a well defined holomorphic germ on Ω−E that can be
continued at will around Ω−E. Since the ϕj have at worst algebraic singularities
at points in E, the singularities of ψj at points in E are at worst algebraic singu-
larities. That algebraic pole-like singularities can occur was seen in Example 2
(3.1) of §3.

5. Composition operators on the Bergman space

We close by sketching a course of action to treat composition operators on the
Bergman space in a highly parallel manner to what we have done in the Hardy
space setting. Once again, we let Ω denote the unit disc and ϕ a holomorphic
self map of the unit disc. The composition operator Cϕ is defined the same way
as in the Hardy space setting, but the adjoint is defined by means of the L2(Ω)
inner product,

〈u, v〉 =

∫∫

Ω

u v̄ dA,

where dA denotes area measure, and the composition operator and its adjoint
act on the Bergman space. Let

K(z, w) =
1

π(1− zw̄)2

denote the Bergman kernel of the unit disc and write Ka(z) = K(z, a) as we did
for the Szegő kernel. The adjoint satisfies the identity, C∗

ϕKa = Kϕ(a). If h is
a holomorphic function that extends holomorphically past the boundary of the
unit disc, we wish to approximate h by a finite linear combination of the Bergman
kernel functions Kaj at points aj in Ω by simplifying the approximation given
in [3] (see also [5, Chap. 15]) in the case of the unit disc. We can easily write
down a function ψ such that ψ is real analytic on a neighborhood of the unit
circle, zero on the circle, and ∂ψ/∂z is equal to h on a neighborhood of the circle.
Indeed, if H is a holomorphic antiderivative for h, then ψ can be defined via

ψ(z) = H(z)− χ(z)H(1/z̄)

where χ is a C∞ cut off function that is one near the unit circle and zero on
a large compact subset of the unit disc. The cut off function is chosen so that
H(1/z̄) is antiholomorphic on a neighborhood of the support of χ in the unit
disc.
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The complex Green’s identity reveals that, if g is holomorphic on a neighbor-
hood of the closure of the unit disc, then

∫∫

Ω

∂ψ

∂z
ḡ dz ∧ dz̄ =

∫∫

Ω

∂

∂z
(ψ ḡ) dz ∧ dz̄ =

∫

bΩ

ψ ḡdz̄,

and this last integral is zero because ψ vanishes on the boundary. Hence, ∂ψ/∂z
is orthogonal to holomorphic functions that extend past the boundary, which
are dense in the Bergman space. Hence, ∂ψ/dz is orthogonal to the Bergman
space and h is equal to the Bergman projection of h − (∂ϕ/∂z). Note that
Φ := h − (∂ϕ/∂z) is a compactly supported function in C∞

0 (Ω), and, in fact,
Φ = H(1/z̄)(∂χ/∂z). We may now approximate h as a sum of Bergman kernels
as follows.

h(z) =

∫∫

Ω

K(z, w)h(w) dA =

∫∫

Ω

K(z, w)

(

h(w)−
∂ψ

∂w

)

dA

=

∫∫

Ω

K(z, w)Φ(w) dA =

∫∫

Ω

K(z, w)H(1/w̄)
∂χ

∂w
dA,

and we may approximate this integral by a Riemann sum
∑

cjKaj where the
points in the Riemann sum run over the compact set containing the support of
Φ. The approximation yields a sum that is holomorphic on a neighborhood of
the closure that can be made uniformly close to h on a bigger disc Dρ(0) for
some ρ > 1.

We next apply C∗

ϕ to the Riemann sum and take the limit of Riemann sums
converging back to the original integral to obtain the formula

(5.1) (C∗

ϕh)(z) = lim
∑

cjKϕ(aj) =

∫∫

Ω

K(z, ϕ(w))H(1/w̄)
∂χ

∂w
dA.

This formula can be used as the starting point to prove a parallel line of results for
the adjoints of composition operators on the Bergman space via their action on
the Bergman kernel. For example, it can be read off that the adjoint preserves the
space of holomorphic functions that extend holomorphically past the boundary
in the Bergman space setting, a well known fact.

Similar arguments and estimates to those used to analyze the adjoint in the
Hardy space setting can be used in the Bergman space setting. Indeed, the L2

inner product with respect to area also extends to A−∞(Ω)×A∞(Ω) and exhibits
these two spaces as being mutually dual (see Korenblum [17, 18] or see chapter 30
of [5] for an alternate proof). As in the Hardy space setting, it can be seen that
the adjoint in the Bergman space setting maps A∞(Ω) to itself, another known
fact.

It is important to mention that the complex Green’s formula can be undone
in (5.1) to obtain Cowen and Gallardo’s formula,

(C∗

ϕh)(z) =

∫∫

Ω

K(z, ϕ(w))h(w) dA.
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We have shown that this formula is valid when z ∈ Ω and h extends past the
boundary. Density and convergence theorems can be used to show that the
formula is valid in more generality, as shown by Cowen and Gallardo.

The examples of composition operators based on multivalued mappings given
in §3 are also bounded operators on the Bergman space. The Bergman span can
be defined in a way completely analogous to the Szegő span, and the adjoints of
the examples of §3 can be seen to preserve the Bergman span. On the unit disc,
the Bergman span is the space of all rational functions with at worst residue free
poles outside the closure of the unit disc. The same reasoning used in §3 and §4
can be used to show that an operator Λ on A∞(Ω) that preserves the Bergman
span is given by

(Λh)(z) =

∫∫

Ω

H(z, w)h(w) dA,

where H(z, w) = (ΛKw)(z) is a quotient of polynomials in z with coefficients
that are conjugates of holomorphic functions in A−∞(Ω). The function H(z, w)
is rational in z with at worst residue free poles outside the closure of the unit
disc, is antiholomorphic in w, and the conjugate of H(z, w) is in A−∞(Ω) as a
function of w for each z in the disc.

6. Composition operators between double quadrature domains

We have seen the relevance of the extendibility of the Schwarz function and
its derivative in our deliberations. For this reason, it would be interesting to
consider composition operators associated to mappings between double quadra-
ture domains. On a double quadrature domain, the Szegő span contains, not
only the complex polynomials, but the set of all complex rational functions with
poles outside the closure of the domain. Also, functions in the Szegő span are
algebraic functions that are rational in z and z̄ when restricted to the boundary.
Hence, adjoints of composition operators that preserve the Szegő span would
map rational functions with poles outside the closure of one domain to algebraic
functions on the other that are rational functions of z and z̄ on the boundary.
Consequently, the results of §4 seem likely to generalize to this setting. Since
smooth finitely connected domains are biholomorphic to nearby double quadra-
ture domains, such domains might take the place of the unit disc in the simply
connected case.
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