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Abstract. It is well known that a domain in the plane is a quadrature do-
main with respect to area measure if and only if the function z extends mero-
morphically to the double, and it is a quadrature domain with respect to
boundary arc length measure if and only if the complex unit tangent vector
function T (z) extends meromorphically to the double. By applying the Cauchy
integral formula to z̄, we will shed light on the density of area quadrature do-
mains among smooth domains with real analytic boundary. By extending z̄

and T (z) and applying the Cauchy integral formula to the Szegő kernel, we
will obtain conformal mappings to nearby arc length quadrature domains and
even domains that are like the unit disc in that they are simultaneously area
and arc length quadrature domains. These “double quadrature domains” can
be thought of as analogues of the unit disc in the multiply connected setting
and the mappings so obtained as generalized Riemann mappings. The main
theorems of this paper are not new, but the methods used in their proofs are
new and more constructive than previous methods. The new computational
methods give rise to numerical methods for computing generalized Riemann
maps to nearby quadrature domains.

1. Introduction

The Riemann mapping theorem states that any simply connected domain in
the plane that is not equal to the whole plane is biholomorphic to the unit disc,
which is a well known quadrature domain with respect to both area measure
and boundary arc length measure, i.e., a double quadrature domain. This classic
theorem was generalized in [6] to state that any finitely connected domain Ω in
the plane, Ω 6= C, is biholomorphic to a double quadrature domain. Furthermore,
if the domain is a bounded domain bounded by finitely many nonintersecting
Jordan curves, the mapping function can be taken to be arbitrarily close to the
identity in the uniform topology up to the boundary. If the boundary curves are
C∞ smooth, the mapping can be taken to be arbitrarily close to the identity in
C∞(Ω). If the boundary curves are further assumed to be smooth real analytic
curves, the mapping extends holomorphically past the boundary and can be
taken to be close to the identity on a neighborhood of the closure of the domain.
The proofs of these theorems given in [6] are rather long and use ideas from
Riemann surface theory as well as regularity properties of the Bergman and Szegő

2010 Mathematics Subject Classification. 30C20; 30C40; 31A35.
Key words and phrases. Bergman kernel, Szegő kernel, double quadrature domains.
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projections. The double quadrature domains that arise in the proofs are one point
double quadrature domains like the unit disc. (The quadrature identities can and
will involve derivatives if the target domain is not a disc). In this paper, we relate
these problems to the Cauchy integral formula in such a way that the proofs can
be greatly shortened and simplified to the point where they could be included in
a textbook on the subject. The constructive methods in our proofs give rise to
potential numerical methods for finding the conformally equivalent quadrature
domains. See [8] for recent advances in the study of quadrature domains and
why they are useful.

It is interesting to note that a bounded domain is an area quadrature domain
if and only if the boundary values of z̄ are equal to the values of a meromorphic
function on the double restricted to the boundary, and it is an arc length quad-
rature domain if and only the complex unit tangent vector function T (z) is equal
to the values of a meromorphic function on the double restricted to the bound-
ary. We deduce many of our results by applying the Cauchy integral formula to
holomorphic extensions of z̄ and T (z) from the boundary. It will be surprising
to see how many different ways there are to obtain nearby quadrature domains
of various kinds, yielding several different computational methods.

2. The Cauchy integral and the Schwarz function

In this paper, we will always suppose the Ω is a bounded domain in C bounded
by finitely many nonintersecting smooth real analytic curves.

For a function u in C∞(Ω), the Cauchy integral formula (or Pompeiu’s formula)
is

(2.1) u(z) =
1

2πi

∫

bΩ

u(w)

w − z
dw +

1

2πi

∫∫

Ω

∂u
∂w̄

(w)

w − z
dw ∧ dw̄.

Taking u(z) = z̄ in the formula yields

(2.2) z̄ =
1

2πi

∫

bΩ

w̄

w − z
dw +

1

2πi

∫∫

Ω

1

w − z
dw ∧ dw̄.

Define Q(z) to be the function given by the boundary integral and λ(z) to be the
function given by the double integral. Note that Q(z) is a holomorphic function
on Ω that extends holomorphically past the boundary (since w̄ is real analytic
in a neighborhood of the boundary, see [4, p. 49]). Hence, it follows that λ(z),
being equal to z̄−Q(z) is a complex valued harmonic function on Ω that extends
harmonically to an open set containing Ω. We will show that, on the boundary,
λ(z) can be well approximated in C∞ by a holomorphic rational function, and
we will use this to show that the domain can be well approximated by an area
quadrature domain.

Since the boundary is real analytic, there exists a Schwarz function S(z) that
is holomorphic on a neighborhood of the boundary and satisfies z̄ = S(z) on the
boundary (see Davis [7], Shapiro [11], or Aharonov and Shapiro [1]). To make
this paper self-contained, we will briefly show how to produce S(z). Since the



CAUCHY INTEGRAL, QUADRATURE DOMAINS, RIEMMANN MAPS 3

boundary is real analytic, there is a parametrization ζ(t) of the boundary that
is real analytic in the real variable t, i.e., ζ(t) is equal to a power series in t.
Locally, we may let t wander off the real line into a disc centered at a point on
the real axis of the complex plane. We obtain a holomorphic function ζ(τ) of τ
that agrees with ζ(t) when τ = t is real. Since ζ ′(t) is nonvanishing, ζ(τ) has a
local holomorphic inverse ζ−1(z). The Schwarz function is given locally near the

boundary by ζ( ζ−1(z) ).

Suppose now that S(z) is holomorphic on the set of points that fall within a
distance δ > 0 of the boundary. Let χ be a function in C∞(C) that is equal
to one on a neighborhood of the boundary of Ω and that has compact support
inside the set of points within a distance of δ of the boundary of Ω. We may
think of χ(z)S(z) as a function in C∞

0 (C) that is holomorphic on a neighborhood
of the boundary of Ω or as a function restricted to Ω that is holomorphic near the
boundary. Since S(z) = z̄ on the boundary, note that if we let u(z) = χ(z)S(z),
then u(z) = z̄ on the boundary and Ψ := (∂/∂z̄)(χS) = S(z)(∂χ/∂z̄) is in
C∞

0 (Ω).

We now apply the Cauchy integral formula to the function u(z) = χ(z)S(z)
and, since Ψ has compact support, let z go to the boundary to obtain

(2.3) z̄ = Q(z) +
1

2πi

∫∫

Ω

Ψ(w)

w − z
dw ∧ dw̄.

for z ∈ bΩ. Note that the double integral is equal to λ(z) on the boundary.
Because Ψ is smooth and has compact support in Ω, we may approximate the
integral by a (finite) Riemann sum when z is in the boundary to obtain a ra-
tional function R(z) with simple poles in Ω that is as uniformly close to λ(z)
on a neighborhood of the boundary (and consequently C∞ close on bΩ). As we
continue, we will assume that this approximation is as close as we need to meet
various conditions.

Assume now that, in addition to having a smooth real analytic boundary, Ω is
also simply connected. We may solve the Dirichlet problem with boundary data
λ(z)−R(z) to obtain a small harmonic function v given as v = h(z)+H(z) where
h(z) and H(z) are holomorphic functions on Ω that extend holomorphically to
an open set containing Ω. The functions h and H can be made as close to zero
on an open set containing Ω as desired by choosing R(z) to be close enough
to λ(z). We will give explicit formulas for h and H at the end of this section
that will make this point very clear. The formulas will also yield a method for
computing h and H. However, for the time being, to see that h and H are small,
note that standard elliptic theory yields a solution to the Dirichlet problem v
that is harmonic and close to zero on a neighborhood of the closure of Ω. We
may decompose v as h + H where h and H are holomorphic since Ω is simply
connected. Now, since h′ = ∂v/∂z and H ′ = ∂v/∂z, which are both close to
zero, we may replace h and H by appropriate antiderivatives that are close to
zero on a neighborhood of the closure of Ω.
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We may now write

(2.4) z̄ −H(z) = Q(z) +R(z) + h(z)

for z in the boundary. We can make z −H(z) as close to the identity as desired
by improving the approximation by R(z). Let S be equal to the meromorphic
function on the right hand side of the identity and let f(z) = z−H(z). We may
assume that f(z) is a biholomorphic mapping that is as close to the identity on
a neighborhood of the closure of Ω as desired. We now claim that f maps Ω to
an area quadrature domain. Indeed, let F = f−1 and note that z = f(F (z)) on
f(Ω). For z in the boundary of f(Ω), we may write

z̄ = S(F (z)),

and we see that the meromorphic function on the right is the Schwarz function for
f(Ω) and that it extends meromorphically to f(Ω). This shows that f(Ω) is an
area quadrature domain. (Alternatively, equation (2.4) shows that f extends to
the double of Ω as a meromorphic function and Gustafsson’s theorem [9] yields
that f(Ω) is a quadrature domain.) Note that the points in the quadrature
identity for the domain f(Ω) are the images under f of the points used in the
Riemann sum approximation to the integral. Since the resulting poles are simple
poles, the quadrature identity does not involve any derivatives.

It is interesting to note that we could approximate the rational function R(z)
on a neighborhood of the boundary by a rational function ρ(z) that has a single
higher order pole at a point a in Ω. The same construction using ρ(z) in place
of R(z) would produce an area quadrature domain with a one point quadrature
identity at the point f(a) involving the value at f(a) and derivatives at f(a). Avci
[2] proved that a simply connected one-point arc length quadrature domain must
also be an area quadrature domain. (An alternate proof of this fact appears in
[6].) Hence, we have shown how to approximate by a double quadrature domain,
a stronger form of generalized Riemann mapping theorem.

We now assume that Ω is a finitely multiply connected domain bounded by
n > 1 smooth real analytic nonintersecting curves. Let γn denote the outer
boundary curve, and denote the inner boundary curves by γj, j = 1, . . . , n − 1.
The argument above in the simply connected domain case breaks down when we
try to solve the Dirichlet problem with boundary data λ− R because not every
harmonic function can be written as a holomorphic plus an antiholomorphic
function. To get around this point, we let b1, . . . , bn−1 be points in the interiors
of the bounded components of the complement of Ω, one per component, bj being
inside γj, j = 1, . . . , n − 1. A harmonic function u on Ω can be expressed as a
sum

h+H

on Ω, where h and H are holomorphic, if and only if the n−1 periods of u around
the inner boundary curves vanish. Since the periods of ln |z−bj| are independent,
this means that, given a harmonic function u on Ω, there are uniquely determined
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constants cj such that holomorphic functions h and H exist on Ω such that

u−
n−1∑

j=1

cj ln |z − bj| = h+H.

A real analytic function µ(z) restricted to a real analytic curve can be holomor-
phically extended to a neighborhood of the curve via the complexified parametri-
zation that we used to construct the Schwarz function above. Indeed, µ(ζ(t)) is
given by a convergent power series p(t) and h(z) = p(ζ−1(z)) is the holomorphic
function that locally extends the function from the curve to the complex plane.
By shrinking the neighborhood of the curve, we obtain a unique single valued
holomorphic extension.

Let σkj(z) be a holomorphic function defined on a neighborhood of the curve
γk that is equal to the real analytic function ln |z − bj| along γk. By adding up
C∞ cut off functions times the σkj over all k, we may obtain a function σj(z)
in C∞(Ω) that is holomorphic near the boundary and equal to ln |z − bj| on γk,
k = 1, . . . , n. If we now apply the Cauchy integral formula to σj, we obtain that
the boundary values of σj are given by

ln |z − bj| = Qj(z) +
1

2πi

∫∫

Ω

Ψj(w)

w − z
dw ∧ dw̄,

where Qj is holomorphic on Ω and Ψj has compact support. Since the periods
of Qj are zero, we may approximate the area integral by a Riemann sum to get
a rational function of z with periods close to the periods of ln |z − bj|. Hence,
since the periods of ln |z− bj| are independent, there are n− 1 rational functions
rj with only simple poles in Ω such that the periods of the rj are independent.

Now we may repeat the argument we used in the simply connected case. When
we get to equation (2.3), we obtain a rational function R(z) such that λ(z)−R(z)
is as close to zero in C∞(bΩ) as desired. We may now state that there are
holomorphic functions h(z) and H(z) that extend holomorphically to an open
set containing Ω, that are close to zero in C∞(Ω), and small constants ǫj such
that

λ(z)−R(z) = h(z) +H(z) +
n−1∑

j=1

ǫjrj(z).

Finally, we may complete the argument by noting that

z̄ −H(z) = Q(z) +R(z) + h(z) +
n−1∑

j=1

ǫjrj(z)

on the boundary. As before, the holomorphic mapping f(z) = z − H(z) can
be made close to the identity, mapping the domain to a nearby area quadrature
domain.

It is an interesting extension of the ideas in this section to replace the function
z̄ in the Cauchy integral formula by F (z) where F is a biholomorphic mapping
from the domain Ω to another domain with real analytic boundary. The Schwarz
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function gets replaced by a holomorphic extension of F (z) to a neighborhood of
the boundary. The arguments can be repeated, line by line, to show that F can
be closely approximated by a mapping F (z) − H(z) that maps Ω to an area
quadrature domain. As before, if we replace the rational functions R(z) and
rj(z) by rational functions ρ(z) and ρj(z) with higher order poles at a single
point a in the domain, we obtain a biholomorphic mapping to a one point area
quadrature domain that approximates F (Ω).

We now give the promised formula for h and H in the simply connected case.
The formula will make more sense and look cleaner if we first formalize a way to
obtain the Riemann sum that produces the rational function R(z). Let θ(z) be
a C∞ real valued nonnegative radially symmetric function compactly supported
in the unit disc such that 1 =

∫
C
θ dA, and, for ǫ > 0, let θǫ(z) = (1/ǫ2)θ(z/ǫ) be

the usual approximation to the identity. Note that the averaging property for
holomorphic functions implies that

h(z) =
i

2

∫∫

Ω

h(w)θǫ(z − w) dw ∧ dw̄

if h is holomorphic on Ω and z is a point in Ω farther than a distance of ǫ from
the boundary.

For ψ and ϕ in C∞

0 (C), define the convolution,

(ψ ∗ ϕ)(z) = i

2

∫∫

C

ψ(z − w)ϕ(w) dw ∧ dw̄.

Since Ψ ∈ C∞

0 (Ω) and θǫ is an approximation to the identity, it follows that
θǫ ∗Ψ converges to Ψ in C∞(Ω) as ǫ→ 0. By approximating this convolution by
a Riemann sum, we can obtain a function

Ψǫ(z) =
N∑

k=1

ckθǫ(z − ak)

in C∞

0 (Ω) that is as close to Ψ in C∞(Ω) as desired. Define our new rational
approximation to

λ(z) =
1

2πi

∫∫

Ω

Ψ(w)

w − z
dw ∧ dw̄

on the boundary via

R(z) =
1

2πi

∫∫

Ω

Ψǫ(w)

w − z
dw ∧ dw̄ =

1

π

N∑

k=1

ck
z − ak

.

Let λǫ = Ψ−Ψǫ. We think of λǫ as a compactly supported smooth “foam func-
tion” since it resembles a solid minus “bubbles” that closely fill out its interior.
Note that, when restricted to the boundary, λ(z)−R(z) is given by

λ(z)−R(z) =
1

2πi

∫∫

Ω

λǫ(w)

w − z
dw ∧ dw̄,
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where λǫ has compact support, and so the Poisson extension of λ(z)−R(z) to Ω
will be given by an integral with respect to w of the Poisson extension of 1/(w−z)
in the z variable. The Poisson extension of 1/(w− z) to Ω as a function of z for
fixed w in Ω is equal to

1

w − z
− 2Gw(w, z),

where G(w, z) is the Green’s function for Ω, which, if g(z) denotes a Riemann
mapping of Ω onto the unit disc is given by

G(w, z) = Ln

∣∣∣∣∣
g(z)− g(w)

1− g(z) g(w)

∣∣∣∣∣ .

A straightforward calculation shows that the Poisson extension of 1/(w − z) is
therefore equal to

(
1

z − w
− g′(w)

g(z)− g(w)

)
+

(
g′(w) g(z)

1− g(z) g(w)

)
.

Let K1(z, w) denote the function in the first set of large parentheses, and let
K2(z, w) denote the second. Note that K1(z, w) is holomorphic in z and w on
Ω×Ω and K2(z, w) is antiholomorphic in z and holomorphic in w on Ω×Ω. The
functions h and H are given by

h(z) =
1

2πi

∫∫

Ω

K1(z, w)λǫ(w) dw ∧ dw̄,

and

H(z) =
1

2πi

∫∫

Ω

K2(z, w)λǫ(w) dw ∧ dw̄.

It is interesting to note that the mapping z −H(z) to a nearby area quadrature
domain can be expressed in terms of a Riemann map and a foam function. We
now explore the formula for H further to understand it better and to come up
with a completely new way to find mappings to nearby area quadrature domains.
First, we splitH into two parts,H = H1+H2, guided by the fact that λǫ = Ψ−Ψǫ.
Recall that Ψ(z) = S(z)(∂/∂z̄)χ(z). Define

H1(z) =
1

2πi

∫∫

Ω

g(z) g′(w)

1− g(z) g(w)
Ψ(w) dw ∧ dw̄

=
g(z)

2πi

∫∫

Ω

∂

∂w̄

(
g′(w)

1− g(z) g(w)
χ(w)S(w)

)
dw ∧ dw̄

= −g(z)
2πi

∫

bΩ

g′(w)

1− g(z) g(w)
w̄ dw.

If we let G denote the inverse of the Riemann map g, we may further manipulate
this last integral to obtain

H1(z) = −g(z)
2πi

∫

C1(0)

1

1− g(z) ζ
G(ζ) dζ,
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where C1(0) denotes the unit circle parametrized in the standard sense. Next,
note that ζ = 1/ ζ̄ on the unit circle and

dζ =
−1

ζ̄2
dζ̄,

and use the residue theorem to obtain

H1(z) =
g(z)

2πi

∫

C1(0)

1

ζ̄(ζ̄ − g(z))
G(ζ) dζ̄ = g(z)

z −G(0)

g(z)
= z −G(0).

We now turn to studying

H2(z) =
1

2πi

∫∫

Ω

g(z) g′(w)

1− g(z) g(w)
Ψǫ(w) dw ∧ dw̄.

Because of the definition of Ψǫ in terms of the functions θǫ(z − ak), and because
of the averaging property for holomorphic functions and the fact that dw∧dw̄ =
−2i dA, we see that

H2(z) =
−1

π

N∑

k=1

ck
g(z) g′(ak)

1− g(z) g(ak)
,

and we conclude that H2(z) is a rational function of g(z) that closely approx-
imates −H1(z) = G(0) − z. Let a = G(0). We may now conclude that our
mapping f(z) to a nearby area quadrature is given by

f(z) = z −H(z) = z −H1(z)−H2(z) = z − (z − a)−H2(z) = a−H2(z),

whereH2(z) is a rational function of g(z). Hence, the inverse of the Riemann map
from our area quadrature domain to the unit disc f ◦G is a rational function, as
expected, and we have revealed a way to compute that rational function. These
observations lead us to a another new way to map a simply connected domain
to a nearby area quadrature domain, as we now explain.

The residue theorem showed that

z = a+
g(z)

2πi

∫

C1(0)

G(ζ)

ζ(ζ − g(z))
dζ,

where a = G(0), and we can use the facts that ζ = 1/ ζ̄ on the unit circle and
dζ = (−1/ζ̄2)dζ̄ to obtain

z = a− g(z)

2πi

∫

C1(0)

G(1/ζ̄)

(1− ζ̄g(z))
dζ̄.

If Ω is a simply connected domain bounded by a smooth real analytic Jordan
curve, then the Riemann map g and its inverse G extend holomorphically past
the boundaries, and we may slide the unit circle in the integral to a smaller circle
Cr(0) to obtain

z = a− g(z)

2πi

∫

Cr(0)

G(1/ζ̄)

(1− ζ̄g(z))
dζ̄,
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and finally, we may approximate this integral by a Riemann sum to obtain a
rational function of g(z) that approximates the function z uniformly on a neigh-
borhood of the closure of Ω. The image of Ω under this map is an area quadrature
domain because the inverse of its Riemann map is a rational function (see [12]).
Another way to conclude that the image of Ω is an area quadrature is to note
that g extends meromorphically to the double because g(z) = 1/ g(z) on the
boundary, and consequently the mapping from Ω, being a rational function of
g also extends to the double, and Gustafsson [9] showed that this condition is
equivalent to the image being an area quadrature domain.

Being able to slide the curve in the last integral from C1(0) to a smaller circle
is highly related to the fact that the unit disc is a double quadrature domain
with a Schwarz function S(ζ) = 1/ζ and a unit tangent function T (ζ) = iζ that
extend holomorphically to a neighborhood of the unit circle and meromorphically
to the disc. We apply similar reasoning in the next section when we wish to
approximate a domain by an arc length quadrature domain. We will also return
to the problem of approximating by an area quadrature domain in the finitely
connected setting with yet another way to generate such maps.

3. The Cauchy integral and arc length quadrature domains

In this section, we show how to construct nearby arc length quadrature do-
mains to a smooth domain bounded by real analytic curves. The techniques
are grounded on results presented in [6] about Szegő coordinates and arc length
quadrature domains, but they are simpler and more constructive. The simplifi-
cations were inspired by observations made in [5] about a simplified and more
constructive way to show that the Szegő span is dense in the space of holomor-
phic functions that are smooth up to the boundary on the unit disc. All of these
results spring from the early papers by Gustafsson [10] on arc length quadrature
domains in the multiply connected setting, by Shapiro and Ullemar [12] in the
simply connected case, and the kernel function outlook of Avci in [2].

To begin, suppose that Ω is a finitely connected bounded domain bounded
by smooth real analytic nonintersecting curves. Since the complex unit tangent
vector function T (z) is a real analytic function on the boundary, there is a holo-
morphic extension τ(z) of it to a neighborhood of the boundary. As mentioned
in §2, the Schwarz function S(z) also extends to a neighborhood of the bound-
ary. Hence, there is a neighborhood U of the boundary were both S(z) and τ(z)
are holomorphic. Note that, on the boundary, S(z) = z̄ and the element of arc
length ds can be written as

ds = T (z) dz̄ =
1

τ(z)
dz̄,

since τ(z) = T (z) is unimodular on the boundary. We remark that, since S(z) =

z̄ on the boundary, it follows that S ′(z)T (z) = T (z) on the boundary. Hence,

S ′(z) = T (z)2 on the boundary and we conclude that S ′(z) = 1/τ(z)2 on our
neighborhood of the boundary.
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Suppose F (z) is a biholomorphic mapping of Ω to another domain with real
analytic boundary. Then F extends holomorphically past the boundary. We
now show how to closely approximate F by another holomorphic mapping that
maps Ω to an arc length quadrature domain. (If we want to find an arc length
quadrature domain that is close to Ω, we simply take F (z) to be the identity
function z.)

The technique we are about to describe uses the easy half of the fact proved in
[6] that a conformal mapping takes Ω to an arc length quadrature domain if and
only if the derivative of the map is the square of a function in the Szegő span of
Ω. Let S(z, w) denote the Szegő kernel associated to Ω and write Sa(z) = S(z, a)
to emphasize that S(z, a) is a holomorphic function of z when a is held fixed in
Ω. Since F ′ is nonvanishing on a neighborhood of the closure of Ω, and since F
is biholomorphic, it is well known that there is a holomorphic branch of a square
root of F ′ on Ω that extends holomorphically past the boundary (see [4, p. 53]

for a proof). We choose one of the two branches and denote it by
√
F ′.

Suppose h is a holomorphic function that extends holomorphically to a neigh-
borhood of the closure of Ω. We now show how to closely approximate h by an
element of the Szegő span via a method that is considerably more elementary
than an older method using the Szegő projection in [3]. Since the Szegő kernel
reproduces holomorphic functions, we may write

h(z) =

∫

w∈bΩ

S(z, w)h(w) ds =

∫

w∈bΩ

S(z, w)h(S(w) )
1

τ(w)
dw̄

for z in Ω. Since S(z, w) is antiholomorphic in w and extends antiholomorphically
past the boundary in w for each fixed z in Ω, all the functions in the integral
are antiholomorphic on a neighborhood of the boundary and we may slide the
boundary curve inward a small distance ǫ > 0 to a curve γǫ. (Note that ǫ does
not depend on z.) We may then approximate the integral

(3.1) h(z) =

∫

γǫ

S(z, w)h(S(w) )
1

τ(w)
dw̄

by a Riemann sum to see that h(z) can be approximated uniformly on a neigh-
borhood of the closure of Ω by a term

N∑

k=1

ckSak(z)

in the Szegő span.

Because the argument is more straightforward in the simply connected case, we
assume for the moment that Ω is simply connected. To approximate our mapping
F by a mapping that takes Ω to an arc length quadrature, we let h(z) =

√
F ′(z)

in the argument above to get an element s(z) of the Szegő span that is close to h.
If s(z) is sufficiently close to h, then if will be nonvanishing on a neighborhood
of the closure of Ω and s(z)2 will have a holomorphic antiderivative f(z) on a
neighborhood of the closure of Ω that is uniformly close to F on that set, and if
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the approximations are taken sufficiently close, f will be a conformal mapping
to a domain with real analytic boundary that is as close as desired to the image
of Ω under F . Since f ′ is equal to the square of the element s(z) of the Szegő

span, it follows that Ω̃ = f(Ω) is an arc length quadrature domain. Indeed, to

see this, notice that if g is in the Hardy space associated to Ω̃, then
∫

bΩ̃

g ds =

∫

bΩ

|f ′|(g ◦ f) ds =
∫

bΩ

s(z) s(z)g(f(z)) ds,

and since ∫

bΩ

Sak(z) s(z)g(f(z)) ds

evaluates s(z)g(f(z)) at ak, we obtain a quadrature identity on Ω̃ involving the
points f(ak) as ak run over the points on γǫ used in the Riemann sum. If we had
taken F (z) to be the function z, then f ′ would be close to one and f(Ω) would
be close to Ω.

We now wish to show how to modify our approximation in the simply con-
nected case above to obtain a one point arc length quadrature domain instead.
Notice that the residue theorem yields that

N∑

k=1

ckSak(z) =

∫

bΩ

S(z, w)R(w) dw̄,

where R(w) is a holomorphic rational function in w given by

R(w) = − 1

2πi

N∑

k=1

ck
w − ak

.

We may approximate R(w) on the neighborhood of the boundary given by points
within a distance of ǫ/2 of the boundary by a rational function

ρ(w) =
M+1∑

k=1

bk
(w − a)k

with a single higher order pole at a point a inside γǫ. Let

Sm
a (z) =

∂m

dw̄m
S(z, w)

∣∣∣∣
w=a

.

Note that
M∑

k=0

βkS
k
a(z) =

∫

bΩ

S(z, w)ρ(w) dw̄,

where the higher order Cauchy formula yields that βk = −2πi bk+1/k!.

To see that

σ(z) :=
N∑

k=1

ckSak(z)−
M∑

k=0

βkS
k
a(z)
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can be made uniformly small on a neighborhood of the closure of Ω, notice that

σ(z) =

∫

bΩ

S(z, w)
(
R(w)− ρ(w)

)
dw̄,

and we may slide the integral along the boundary curves inside the domain to
a curve γ within a distance of ǫ/4 of the boundary. By approximating R by ρ
on γ, and by noting the S(z, w) is holomorphic in z and antiholomorphic in w
on a neighborhood of bΩ× γ in C×C, we see that σ(z) can be made uniformly
small on a neighborhood of the closure of Ω. In this way, we get approximations
in C∞(Ω). (Another way to see this is to write

σ(z) =

∫

bΩ

S(z, w)
(
R(w)− ρ(w)

)
τ(w) ds,

and therefore, σ is seen to be equal to the Szegő projection of a function that
can be made uniformly small in C∞ of the boundary. Since the Szegő projection
is a continuous operator from C∞ of the boundary to C∞(Ω) (see [4, p. 15]),
we may approximate via such a higher order term in the Szegő span.) Using
this approximation in place of our original s(z), we may obtain a one point arc
length quadrature domain as the image. As mentioned earlier, Avci [2] proved
that a simply connected one-point arc length quadrature domain must also be
an area quadrature domain. Hence, we have found another way to approximate
by a double quadrature domain.

As in the area quadrature domain case of §2, finding a nearby arc length
quadrature domain in the multiply connected case is more technical, but all the
tools needed to handle it are on the table. We refer the reader to [6] for the
details. Results there also show how to find a nearby double quadrature domain.

We close this section by showing how the new method for approximating a
function by linear combinations of the Szegő kernel has a bearing on the problem
of approximating a domain by an area quadrature domain. Suppose that Ω is a
bounded domain bounded by finitely many smooth nonintersecting real analytic
curves, and for a fixed point a in Ω, let La(z) = L(z, a) denote the Garabedian
kernel associated to a, which is related to the Szegő kernel via the identity

(3.2) S(z, a) =
1

i
L(z, a)T (z)

for z in the boundary. The Garabedian kernel extends holomorphically past the
boundary in z, has a simple pole in z at z = a with residue 1/(2π), and is
nonvanishing on Ω− {a}. The function

(z − a)La(z)

has a removable singularity at z = a and extends holomorphically past the
boundary. We my therefore approximate it uniformly on a neighborhood of the
closure of Ω by an element σ(z) in the Szegő span. Since identity (3.2) shows that
terms of the form S(z, b)/L(z, a) are equal to the conjugate of L(z, b)/S(z, a) on
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the boundary, it follows that σ(z)/La(z) extends meromorphically to the double
of Ω. Now

a+ σ(z)/La(z)

is a function that extends meromorphically to the double and extends to be
holomorphic on a neighborhood of the closure of Ω that can be made as close
to the identity mapping as desired. If we construct such a map that is one-to-
one on a neighborhood of the closure, we obtain a mapping to a nearby area
quadrature domain by Gustafsson’s theorem [9]. It is interesting to note that, if
we replace the function z − a by F (z) − F (a) in this argument, where F (z) is
a biholomorphic mapping that extends holomorphically past the boundary, we
obtain a mapping that approximates F taking Ω to a smooth area quadrature
domain.

4. Simplified proofs of two key density lemmas

The fact proved in §3 that a holomorphic function that extends holomorphi-
cally past the boundary of a domain bounded by real analytic curves can be
approximated uniformly on a neighborhood of the closure by linear combina-
tions of functions of z of the form S(z, a), where S(z, a) denotes the Szegő kernel
associated to the domain, has a cousin that is equally useful and equally relevant
to quadrature domain theory. The cousin is obtained by changing the kernel
from Szegő S(z, a) to Bergman K(z, a). In this section, we show how the proof
given in §3 can be modified to give a new proof of the cousin. Before we do
that, we remark that, since a bounded domain with C∞ smooth boundary is
conformally equivalent to a domain with real analytic boundary via a conformal
mapping that extends C∞ smoothly to the boundary, and since holomorphic
functions that extend holomorphically past the boundary are dense in the space
of holomorphic functions that extend C∞ smoothly up to the boundary, the
transformation formulas for the Szegő and Bergman kernels under conformal
mappings can be used to show that the density of the linear combinations of
kernel functions on domains with real analytic boundaries that we prove here
imply the density in the space of holomorphic functions that are C∞ smooth up
to the boundary on C∞ smooth domains. These methods yield simpler proofs
of the density lemmas than were given in [3] and [4] (in Chapter 9 for the Szegő
kernel and p. 173 for the Bergman kernel), which use regularity properties of the
Szegő projection and Bergman projection.

Suppose now that Ω is a bounded simply connected domain bounded by a
smooth real analytic Jordan curve. Let Kw(z) = K(z, w) denote the Bergman
kernel associated to Ω. If h is a holomorphic function on a neighborhood of
the closure of Ω, we wish to approximate h uniformly on a domain containing
the closure of Ω by linear combinations of the Bergman kernel as we did in §3
with the Szegő kernel. The Schwarz function S(z) associated to Ω extends to be
holomorphic on a neighborhood of the boundary and S(z) = z̄ on the boundary.
There is a holomorphic function H, also holomorphic on a neighborhood of the
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closure such that h(z) = H ′(z) there. Let 〈·, ·〉Ω denote the L2 inner product
with respect to area measure dA in the form

〈u, v〉Ω =

∫∫

Ω

u v dA =

∫∫

Ω

u(w) v(w) (
i

2
dw ∧ dw̄).

We now use the reproducing property of the Bergman kernel

h(z) = 〈h,Kz〉Ω
to write

h(z) =

∫∫

Ω

h(w)Kz(w) (
i

2
dw ∧ dw̄)

=

∫∫

Ω

∂

∂w

[
H(w)Kz(w)

]
(
i

2
dw ∧ dw̄)

=
i

2

∫

bΩ

H(w)Kz(w) dw̄

=
i

2

∫

bΩ

H(S(w) )Kz(w) dw̄.

Since the integrand of the last integral is antiholomorphic, we may slide the
boundary curve inward and approximate the integral by a finite Riemann sum,
thereby approximating h uniformly on a neighborhood of the closure of Ω by a
function in the Bergman span.

Suppose now that Ω is a bounded domain bounded by N ≥ 1 smooth real
analytic nonintersecting curves. If h is a holomorphic function on a neighborhood
of the closure of Ω, there is a holomorphic function H, also holomorphic on a
neighborhood of the closure, and complex constants cj such that

h(z) = H ′(z) +
N−1∑

j=1

cjF
′

j(z),

where F ′

j = 2(∂ωj/∂z) is 2 times the derivative of the harmonic measure function
ωj that is harmonic on Ω, one on the j-th inner boundary curve γj, and zero on
the rest of the boundary curves. Now,

h(z) = 〈h,Kz〉Ω =

∫∫

Ω

h(w)Kz(w) (
i

2
dw ∧ dw̄)

=

∫∫

Ω

∂

∂w

[(
H(w) + 2

N−1∑

j=1

cjωj(w)

)
Kz(w)

]
(
i

2
dw ∧ dw̄)

=
i

2

∫

bΩ

H(w)Kz(w) dw̄ + i

N−1∑

j=1

cj

∫

γj

Kz(w) dw̄

=
i

2

∫

bΩ

H(S(w) )Kz(w) dw̄ + i

N−1∑

j=1

cj

∫

γj

Kz(w) dw̄
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and because the integrands of all the integrals are antiholomorphic, we may slide
the boundary curves inward and approximate the integrals by finite Riemann
sums.

These density theorems are closely connected to the problems of approximat-
ing domains by area quadrature domains, arc length quadrature domains, and
double quadrature domains, and they can be taken as the starting point of the
theory (see [6] and Chapter 22 of [4]). We now demonstrate yet another way
to approximate a domain by a nearby area quadrature domain. Step one is to
approximate the function 1 by a linear combination κ0(z) =

∑N

k=1 ckK(z, ak) in
the Bergman span. Step two is to approximate zκ0(z) by another linear combina-
tion κ1(z) of the same kind. Now f(z) = κ1(z)/κ0(z) is a holomorphic function
close to the identity map. We claim that it extends meromorphically to the dou-
ble, and therefore maps the given domain to a nearby area quadrature domain.
Indeed, the identity

K(z, a)T (z) = −Λ(z, a)T (z)

that relates the Bergman kernel to the complementary kernel Λ(z, a) (see [4,
p. 186]) shows that κ1/κ0 is equal to the conjugate of a quotient of similar
functions λ1/λ0 on the boundary where the function λ0 is gotten from κ0 by
replacing each ck by ck and the Bergman kernel K(z, ak) by Λ(z, ak). Similarly
for λ1. Since Λ(z, a) is holomorphic in z on Ω−{a} with a double pole at z = a,
this shows that f(z) extends meromorphically to the double and f(Ω) is therefore
an area quadrature domain. It seems that ways to approximate by quadrature
domains are as abundant as quadrature domains themselves.
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