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Abstract. We prove that the Bergman kernel function associated to a finitely con-
nected planar domain can be expressed as a rational combination of two independent
Ahlfors maps associated to the domain plus the derivative of one of the maps. Similar
results are shown to hold for the Szegő and Poisson kernels and other objects of po-
tential theory. These results generalize routinely to the case of a relatively compact
domain in a Riemann surface with finitely many boundary components.

1. Introduction. The Bergman kernel associated to an n-connected domain Ω
in the plane such that no boundary component is a point has long been known to
extend to the double of Ω as a meromorphic differential. In this paper, we express
the Bergman, Szegő, and Poisson kernels for Ω in terms of Ahlfors maps and this
point of view reveals information about the complexity of the kernels and about
the obstruction to the extendibility of the kernels to the double as functions. Our
results give rise to some interesting questions in conformal mapping and potential
theory.

To give a precise statement of our main results, we need to introduce some
notation and terminology. Given a point a in Ω, let fa(z) denote the Ahlfors map
associated to (a,Ω), which is a proper holomorphic map of Ω onto the unit disc
(see [2, pages 47-52]). Ahlfors maps can be thought of as substitutes for the absent
Riemann mapping functions in the multiply connected setting and the results of this
paper reinforce this sentiment. Let K(z, w) denote the Bergman kernel associated
to Ω and let S(z, w) denote the Szegő kernel. For a boundary component γj of bΩ,
let ωj denote the harmonic measure function which is harmonic on Ω, has boundary
values of one on γj , and which has boundary values of zero on the other boundary
components. Let F ′j(z) := 2(∂ωj/∂z). Let G(w, z) denote the classical Green’s
function associated to Ω.

Theorem 1.1. Suppose Ω is an n-connected domain in the plane such that no
boundary component is a point. There exist points a and b in Ω and complex
rational functions R and Q of four complex variables such that

K(z, w) = f ′a(z)f
′
a(w)R(fa(z), fb(z), fa(w), fb(w))

and
S(z, w) = S(z, a)S(a, w)Q(fa(z), fb(z), fa(w), fb(w)).
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Furthermore, the functions F ′j can be expressed

F ′j(z) = f ′a(z)R3(fa(z), fb(z))

where R3 is a rational function of two complex variables. There exist n− 1 points
a1, . . . , an−1 in Ω such that the complex derivative of the Green’s function can be
expressed

∂G

∂z
(w, z) = R0(w, z) +

n−1∑
j=1

Rj(z)
∂G

∂z
(w, aj),

where R0(z, w) is a rational combination of S(z, a), fa(z), and fb(z), and S(w, a),
fa(w), and fb(w) and the conjugates of S(w, a), fa(w), and fb(w), and where Rj(z)
is a rational combination of S(z, a), fa(z), and fb(z).

We shall see that most points a and b in Ω satisfy the conditions of Theorem 1.1.

Theorem 1.1 reveals that the familiar formulas which hold in the simply con-
nected case,

S(z, w) =
c S(z, a)S(w, a)

1− fa(z)fa(w)
and K(z, w) =

f ′a(z)f
′
a(w)

π(1− fa(z)fa(w))2
,

where c = 1/S(a, a) and where the Ahlfors map fa(z) is equal to the Riemann
map at a, have direct analogues in the multiply connected setting. (In the simply
connected case, there is no need for a second Riemann map in the formulas because
all Riemann maps are rational combinations of a single Riemann map.)

Although these results sound like pure complex variable results, they have a
bearing on the complexity of the solution operator to the classical Dirichlet problem.
We shall show in the last section of this paper that the classical Poisson kernel can
be expressed as a rational combination of the three functions S(·, a), fa, and fb and
their conjugates plus n− 1 explicit harmonic functions of one variable. In fact, we
shall show that if the boundary of the domain is smooth enough that the Poisson
kernel p(w, z) associated to Ω is related to the Green’s function via the standard
identity,

p(w, z) = − i
π

∂

∂z
G(w, z)T (z),

where T (z) is the complex number of unit modulus which represents the tangent
vector at z to bΩ pointing in the direction of the standard orientation of the bound-
ary, then the result about the Green’s function in Theorem 1.1 yields that p(w, z)
can be written

p(w, z) = R0(w, z) +
n−1∑
j=1

Rj(z)
∂G

∂z
(w, aj),

where R0(z, w) is a rational combination of S(z, a), fa(z), fb(z), S(w, a), fa(w),
and fb(w) and the conjugates of these six functions, and where Rj(z) is a rational
combination of S(z, a), fa(z), and fb(z) and their conjugates.

Theorem 1.1 shall be seen to be a consequence of next two theorems.
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Theorem 1.2. Suppose Ω is an n-connected domain in the plane such that no

boundary component is a point. Let Ω̂ denote the double of Ω. The functions

K(w, z)

f ′a(w)f ′a(z)
and

S(w, z)

S(w, a)S(a, z)

extend to Ω̂×Ω̂ as functions that are meromorphic in w and antimeromorphic in z.

Theorem 1.3. Suppose Ω is an n-connected domain in the plane such that no
boundary component is a point. There exist points a and b in Ω such that the two
Ahlfors maps fa and fb extend meromorphcially to the double of Ω and form a
primitive pair for the field of meromorphic functions on the double of Ω.

The statement in the last theorem means that any meromorphic function on the
double of Ω is a rational combination of fa and fb.

Theorem 1.2 generalizes routinely to the case of a relatively compact domain Ω
in a Riemann surface that has finitely many boundary components, none of which
are points. Indeed, the Bergman kernel on Ω is then viewed as a differential (1, 1)
form K(w, z)dw ∧ dz̄, and if we let α = dfa/fa where fa is an Ahlfors map, then
the proof of Theorem 1.2 given in §3 can be interpreted to yield that

K(w, z)dw ∧ dz̄
α(w) ∧ α(z)

can be viewed as a function on Ω× Ω which extends to Ω̂× Ω̂ to be meromorphic
in w and antimeromorphic in z. The corresponding version of Theorem 1.1 that
follows from this result is that the Bergman kernel associated to Ω is given as

K(w, z)dw ∧ dz̄ = R(fa(w), fb(w), fa(z), fb(z))dfa(w) ∧ dfa(z)

where R is a complex rational function of four variables. We do not give the details
of the more general argument here because it is completely parallel to the argument
in the planar case.

2. Ahlfors maps and the double of a domain. In order to dispense with
repeating a long list of preliminary facts and formulas, I refer the reader to §2 of
the paper [5] and the book [2] which it summarizes.

For the moment, assume that Ω is a bounded n-connected domain in the plane
such that the boundary of Ω is given by n non-intersecting C∞ smooth real analytic

closed curves. Let Ω̂ denote the double of Ω and letR(z) denote the antiholomorphic

involution on Ω̂ which fixes the boundary of Ω. Let Ωr = R(Ω) denote the reflection
of Ω across the boundary. (I like to think of Ωr as being the“top half” of the
double and Ω as being the “bottom half.”) Given a point a in Ω, the Ahlfors
map fa associated to (a,Ω) is a proper holomorphic map of Ω onto the unit disc
which is an n-to-one branched covering map, which extends holomorphically past
the boundary of Ω, and which maps each boundary curve of Ω one-to-one onto the
unit circle (see [2, page 49]). The Ahlfors map fa is given by

fa(z) =
S(z, a)

L(z, a)
3



where S(z, a) is the Szegő kernel associated to Ω and L(z, a) is the Garabedian
kernel (see [2, page 24]). An elementary, but key, fact in what follows is that fa
extends to be a meromorphic function on Ω̂. This is because fa(z) = 1/ fa(z) for
z ∈ bΩ and, since R(z) = z on bΩ, it follows that

fa(z) = 1/ fa(R(z)) for z ∈ bΩ.

The function on the left hand side of this formula is holomorphic on Ω and the
function on the right hand side is meromorphic on Ωr and the two functions extend
continuously to bΩ from opposite sides and agree on bΩ. Hence, the function

given by f(z) on Ω and 1/ f(R(z)) on Ωr is meromorphic on Ω̂ (via a simple local
argument using Morera’s theorem).

Since Ω̂ is a compact Riemann surface, the ring of meromorphic functions on Ω̂
is generated by just two elements known as a primitive pair (see Farkas and Kra [8,
page 249]). We shall now show that we may choose almost any two Ahlfors maps

to serve as a primitive pair for Ω̂. To see that two Ahlfors maps fa and fb form a
primitive pair, it is only necessary to show that fb separates the points in f−1

a (w0)
for some choice of w0 such that the number of points in f−1

a (w0) is equal to the
order of fa (see Ahlfors and Sario [1, pages 321-324]). We shall take w0 to be equal
to zero and we shall take a to be a point in Ω such that the zeroes of the Ahlfors
map fa in Ω are n distinct simple zeroes. All but possibly finitely many a in Ω fall
into this category, see [2, page 105-108]. Let a0 denote a (which is the zero of fa
at a) and let a1, . . . , an−1 denote the other n − 1 zeroes of fa (which are also the
n − 1 zeroes of S(z, a) in Ω). We emphasize that we are thinking of fa and fb as

being defined on Ω̂, and since fa(z) = 1/fa(R(z)) for z ∈ Ωr, it follows that fa has
no zeroes in Ωr. Let Aij denote the set of points b ∈ Ω such that fb(ai) = fb(aj),
i.e., points b where S(ai, b)/L(ai, b) = S(aj, b)/L(aj, b), i.e., where

S(ai, b)

S(aj, b)
=
L(ai, b)

L(aj , b)
.

The function on the left side of this last equality is antiholomorphic in b and the
function on the right is holomorphic in b. Furthermore, the function on the right
is not constant because L(ai, b) has a pole in b at b = ai and L(aj , ai) is non-zero.
Hence, the largest the set Aij can be is a finite union of real analytic one real
dimensional curve segments and points. The set A := ∪i<jAij where fb might
fail to separate the zeroes of fa is at most a finite union of real analytic curve
segments and points. If we choose b in Ω−A, then fa and fb form a primitive pair,
and Theorem 1.3 is proved in the case that Ω has smooth real analytic boundary
components.

We remark here for future use that if fa and fb form a primitive pair for Ω̂,
then any function H(w, z) which is meromorphic in w and antimeromorphic in z

on Ω̂ × Ω̂ can be expressed as a rational combination of fa(w), fb(w), fa(z), and

fb(z).

3. The Bergman kernel and the double of a domain. We shall continue
to assume that Ω is a bounded n-connected domain in the plane such that the
boundary of Ω is given by n non-intersecting C∞ smooth real analytic closed curves,
and we shall use the notation that we set up in the previous section. In particular,
suppose that fa and fb are a primitive pair of Ahlfors maps as constructed in §2.

4



We next prove that the Bergman kernel K(z, w) associated to Ω is such that the
function Φ on Ω×Ω given by

Φ(w, z) :=
fa(w)K(w, z)fa(z)

f ′a(w)f ′a(z)

extends as a single valued function to Ω̂ × Ω̂ which is meromorphic in w and an-
timeromorphic in z. The remark at the end of §2 then yields that there is a complex
rational function R of four complex variables such that

Φ(w, z) = R(fa(w), fb(w), fa(z), fb(z) )

and the proof of the first formula in Theorem 1.1 in the case that Ω has smooth
real analytic boundary will be complete.

Define the function Λ(w, z) via

Λ(w, z) = − 2

π

∂2G(w, z)

∂w∂z

where G(w, z) is the classical Green’s function for Ω (see [2, page 135]). The
function Λ is a classical kernel and is usually denoted in the literature (see [7]) by
L with anywhere between zero and three tildes and/or hats.

The manifold Ω̂× Ω̂ is a union

(Ω×Ω) ∪ (Ω×Ωr) ∪ (Ωr ×Ωr) ∪ (Ωr ×Ω),

of four large open connected sets plus a union of the five lower dimensional sets

(bΩ× Ω) ∪ (bΩ× Ωr) ∪ (bΩ× bΩ) ∪ (Ω× bΩ) ∪ (Ωr × bΩ).

We shall define Φ(w, z) on each of the four large open sets and then show that the
extensions “paste” together continuously along the lower dimensional boundary
sets. The function Φ will be meromorphic in w and antimeromorphic in z on the
large open sets and the only singular points on the lower dimensional sets will be
found along the boundary diagonal {(w, z) ∈ (bΩ × bΩ) : z = w} where Φ has
a simple pole in one variable when the other is held fixed. The Hartogs Theorem
about separate analyticity can then be used locally along a thin open set containing
the lower dimensional sets to show that Φ extends as claimed.

We have already defined Φ(w, z) on Ω×Ω. We define Φ(w, z) on Ω×Ωr to be

fa(w)Λ(w,R(z))fa(R(z))

f ′a(w)f ′a(R(z))
.

We define Φ(w, z) on Ωr ×Ω to be

fa(R(w))Λ(R(w), z)fa(z)

f ′a(R(w))f ′a(z)
.

We define Φ(w, z) on Ωr ×Ωr to be

fa(R(w))K(R(z), R(w))fa(R(z))

f ′a(R(w))f ′a(R(z))
.
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We shall now derive some identities that will be used to show that these definitions
have continuous extensions to the boundaries which match from all sides.

Notice that, because ln |fa(z)|2 = 0 for z ∈ bΩ, we may differentiate ln |f(z(t))|2
with respect to t when z(t) parameterizes the boundary in the standard sense to
obtain

f ′a(z(t))

fa(z(t))
z′(t) + f ′a(z(t))z

′(t)/fa(z(t)) = 0.

Dividing this equation by |z′(t)| reveals that

(3.1)
f ′a(z)

fa(z)
T (z) = −f ′a(z)T (z)/fa(z) for z ∈ bΩ,

where T (z) is the complex unit tangent vector defined via the equation T (z(t)) =
z′(t)/|z′(t)|. This identity will be used in tandem with the identity

(3.2) Λ(w, z)T (z) = −K(w, z)T (z) for w ∈ Ω and z ∈ bΩ,

that is satisfied by the Bergman kernel and the kernel Λ (see [2, page 135]).
Because K and Λ extend smoothly to bΩ × bΩ minus the boundary diagonal,

(3.2) remains valid if w 6= z and w and z are both boundary points. We now assume
that w and z are both boundary points, w 6= z, and we multiply (3.2) by T (w) and
use the identities,

Λ(z, w)T (w) = −K(z, w)T (w)

and Λ(w, z) = Λ(z, w), to obtain

(3.3) T (z)K(z, w)T (w) = T (w)K(w, z)T (z) for z, w in bΩ and z 6= w.

We will now use identities (3.1), (3.2), and (3.3) to finally produce three more
identities that will show that Φ(w, z) satisfies the claimed properties. We first
assume that w is in Ω and z is in bΩ. Divide (3.2) by (3.1) to obtain

Λ(w, z)fa(z)

f ′a(z)
=
K(w, z)fa(z)

f ′a(z)
.

Next, divide by f ′a(w)/fa(w) to obtain

(3.4)
fa(w)Λ(w, z)fa(z)

f ′a(w)f ′a(z)
=
fa(w)K(w, z)fa(z)

f ′a(w)f ′a(z)

for z ∈ bΩ and w ∈ Ω. This identity extends to hold for z and w in bΩ with z 6= w
by continuity. (Note that f ′a and fa are non-vanishing and non-singular on bΩ.)

If we divide (3.3) by (3.1) and by the conjugate of (3.1) with w in place of z, we
obtain

(3.5)
fa(z)K(z, w)fa(w)

f ′a(z)f
′
a(w)

=
fa(w)K(w, z)fa(z)

f ′a(w)f ′a(z)

when w ∈ bΩ and z ∈ bΩ with z 6= w.
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Finally, if we interchange the variables in (3.4) and use the identities Λ(w, z) =

Λ(z, w) and K(w, z) = K(z, w) and then take the conjugate of the whole thing, we
obtain one more identity,

(3.6)
fa(w)Λ(w, z)fa(z)

f ′a(w)f ′a(z)
=
fa(w)K(w, z)fa(z)

f ′a(w)f ′a(z)

for w ∈ bΩ and z ∈ Ω.
We now illustrate how (3.4), (3.5), and (3.6) can be used to show that Φ(w, z)

extends as claimed to Ω̂× Ω̂. For example, suppose that w is a fixed point in Ω and
we want to show that the definitions of Φ(w, z) on {w} × Ω and {w} × Ωr can be
extended antiholomorphically in z across {w}× bΩ. Since R(z) = z on bΩ, formula
(3.4) shows that Φ extends continuously in z to bΩ from both sides and that the
extensions agree there. Hence Φ(w, z) extends antiholomorphically in z across bΩ.
Similarly, if w is a fixed point in Ωr and we want to show that the definitions
of Φ(w, z) on {w} × Ω and {w} × Ωr can be extended antiholomorphically across
{w} × bΩ, replace w in (3.4) by R(w), take the conjugate, and note that R(z) = z
on bΩ to see that Φ extends. If w ∈ bΩ, use (3.5) in to validate the extension in
z. Similar reasoning using (3.6) and the conjugate of (3.5) reveals that Φ(w, z)
extends in w if z is held fixed. The argument is the conjugate of the case when w is
held fixed because of the symmetric properties of the kernels and we omit it. The
statements about the Bergman kernel in Theorems 1.1 and 1.2 are now proved in
case the boundary of Ω is given by smooth real analytic curves.

4. The Szegő kernel and the double of a domain. We shall continue to as-
sume that Ω is a bounded n-connected domain in the plane such that the boundary
of Ω is given by n non-intersecting C∞ smooth real analytic closed curves, and
we shall use the notation that we set up in the previous sections. In particular,
suppose that fa and fb are a primitive pair of Ahlfors maps as constructed in §2.

I proved in [6] that, for fixed points A1 and A2 in Ω, the functions of z of the
form S(z, A1)/S(z, A2) extend as meromorphic functions to the double of Ω. This
is such a short and simple argument that we repeat it here. Write the identity (see
[2, page 24]),

S(z, A) = i L(z, A)T (z),

which holds for A in Ω and z in bΩ, using A = A1 and then A = A2, and then divide
the two resulting formulas to see that S(z, A1)/S(z, A2) is equal to the complex
conjugate of L(z, A1)/L(z, A2) when z ∈ bΩ. Hence, S(z, A1)/S(z, A2) is a mero-
morphic function on Ω which extends continuously up to bΩ, and the conjugate of
L(R(z), A1)/L(R(z), A2) is a meromorphic function on Ωr which extends continu-
ously up to bΩ from the “outside” of Ω and which agrees with S(z, A1)/S(z, A2)

on bΩ. Hence, S(z, A1)/S(z, A2) extends to Ω̂ as a meromorphic function, and
therefore S(z, A1)/S(z, A2) is equal to a rational combination of the primitive pair
fa(z) and fb(z).

I proved in [4] that

(4.1) S(z, w) =
1

1− fa(z)fa(w)

c0S(z, a)S(w, a) +
n−1∑
i,j=1

cijS(z, ai)S(w, aj)

 ,
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where fa is the Ahlfors mapping associated to a point a ∈ Ω and the points
a1, . . . , an−1 are the zeroes of S(z, a) in the z variable. The constants in the formula
are given by c0 = 1/S(a, a), and cij are the coefficients of the inverse matrix to the
non-singular matrix [S(aj, ak)]. The only restriction on the point a is that it be
chosen so that the zeroes of S(z, a) are simple zeroes; this is true for all but finitely
many a in Ω. We shall now assume that this condition is met by the function
fa of our primitive pair. Since S(z, ai)/S(z, a) has been shown to be a rational
combination of fa and fb, it now follows from (4.1) that the function

Ψ(z, w) :=
S(z, w)

S(z, a)S(w, a)

is a rational combination of fa(z), fb(z), and the conjugates of fa(w) and fb(w).
This completes the proof of the formula for the Szegő kernel given in Theorem 1.1
in case the boundary of the domain is given by smooth real analytic curves. It also

shows that Ψ extends to Ω̂×Ω̂ as claimed in Theorem 1.2 because the Ahlfors maps
extend to the double.

5. The case of non-smooth boundary curves. We now suppose that Ω is
merely an n-connected domain in the plane such that no boundary component
is a point. It is well known that there is a biholomorphic mapping ϕ mapping
Ω one-to-one onto a bounded domain Ωa in the plane with smooth real analytic
boundary. The standard construction yields a domain Ωa that is a bounded n-
connected domain with C∞ smooth boundary whose boundary consists of n non-
intersecting simple closed real analytic curves. Let superscript a’s indicate that a
kernel function is associated to Ωa. Kernels without superscripts are associated
to Ω. The transformation formula for the Bergman kernels under biholomorphic
mappings gives

(5.1) K(z, w) = ϕ′(z)Ka(ϕ(z), ϕ(w))ϕ′(w).

It is well known that the function ϕ′ has a single valued holomorphic square root
on Ω (see [2, page 43]). We shall define the Szegő kernel and Garabedian kernel
associated to Ω via the natural transformation formulas,

(5.2) S(z, w) =
√
ϕ′(z) Sa(ϕ(z), ϕ(w))

√
ϕ′(w)

and

(5.3) L(z, w) =
√
ϕ′(z) La(ϕ(z), ϕ(w))

√
ϕ′(w).

The Green’s functions satisfy

(5.4) G(z, w) = Ga(ϕ(z), ϕ(w))

and the functions associated to harmonic measure satisfy

ωj(z) = ωaj (ϕ(z)) and F ′j(z) = ϕ′(z)F aj
′(ϕ(z)),

provided that we stipulate that the boundary components have been numbered so
that ϕ maps the j-th boundary component of Ω to the j-th boundary component
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of Ωa. Finally, the Ahlfors map associated to a point b ∈ Ω is defined to be the
solution to the extremal problem, fb : Ω→ D1(0) with f ′b(b) > 0 and maximal. It
is easy to see that Ahlfors maps satisfy

(5.5) fb(z) = λfaϕ(b)(ϕ(z))

for some unimodular constant λ and it follows that fb(z) is a proper holomorphic
mapping of Ω onto D1(0).

Formulas (5.1) and (5.5) now make it an easy matter to verify that the function
Φ(w, z) defined in §3 satisfies the invariance property

Φ(w, z) = Φa(ϕ(w), ϕ(z)).

Formulas (5.2) and (5.5) reveal that the function Ψ(z, w) defined in §4 also satisfies
the invariance property

Ψ(z, w) = Ψa(ϕ(z), ϕ(w)).

We proved in §3 and §4 that Φa and Ψa are rational combinations of two Ahlfors
maps associated to Ωa. Since Ahlfors maps also pull back under ϕ via (5.5), it
follows that Φ and Ψ are rational combinations of the two corresponding Ahlfors
maps associated to Ω and the proof of the first two formulas in Theorem 1.1 is
complete in the general case of non-smooth boundary.

We remark here that if the Bergman kernel is algebraic, then so is the Ahlfors
map fa (see [5]), and hence there is an irreducible polynomial P (z, w) of two com-
plex variables such that P (z, fa(z)) ≡ 0 on Ω. Differentiate this identity with
respect to z to see that f ′a(z) is a rational function of fa and z. Hence, the for-
mula in Theorem 1.1 reveals that an algebraic Bergman kernel K(z, w) is a rational
combination of fa(z), fb(z), and z and the conjugates of fa(w), fb(w), and w.

6. Other objects of potential theory and Ahlfors maps. We shall now as-
sume that Ω is a bounded n-connected domain in the plane such that the boundary
of Ω is given by n non-intersecting C∞ smooth real analytic closed curves. The
classical functions F ′j satisfy the identity

(6.1) F ′j(z)T (z) = −F ′j(z)T (z)

for z ∈ bΩ (see [2, page 80]). Divide this equation by formula (3.1) to obtain

fa(z)F
′
j(z)

f ′a(z)
=
fa(z)F ′j(z)

f ′a(z)

for z ∈ bΩ, where fa is an Ahlfors map. We may now replace z by R(z) in the right
hand side of this last equation to see that fa(z)F

′
j(z)/f

′
a(z) extends to the double

of Ω as a meromorphic function. Hence, it can be written as a rational combination
of two Ahlfors maps, and the formula for F ′j in Theorem 1.1 is seen to be true in
case Ω has a smooth real analytic boundary. The transformation formulas for F ′j
and the Ahlfors maps in §5 can now be used to show that a formula of the form

fa(z)F
′
j(z)

f ′a(z)
= R4(fa(z), fb(z))
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can be pulled back under conformal mappings; hence the formula is valid on a
general n-connected domain such that no boundary component is a point.

It is interesting to note that when the formulas forK(z, w) and F ′j in Theorem 1.1
are inserted in the identity

K(z, w) = 4πS(z, w)2 +
n−1∑
i,j=1

AijF
′
i (z)F

′
j(w)

(see [7, page 119] or [2, pages 94–96]), we obtain that

S(z, w)2

f ′a(z)f
′
a(w)

= R4(fa(z), fb(z), fa(w), fb(w) )

for some complex rational function R4. This shows that S(z, w)2/(f ′a(z)f
′
a(w))

extends to Ω̂ × Ω̂ as a single valued function which is meromorphic in z and an-
timeromorphic in w. This formula is analogous to the identity

S(z, w) =

√
f ′a(z)

√
f ′a(w)

2π(1− fa(z)fa(w))

which holds in the simply connected case (where fa would be a Riemann map).
We next turn to the study of the Poisson kernel associated to Ω. Notice that

the identity S(w, z) = −iL(w, z)T (z), which holds for w ∈ Ω and z ∈ bΩ, when
multiplied by its conjugate, yields that

(6.2) S(z, w)L(z, w)T (z) = −S(z, w)L(z, w)T (z)

for w in Ω and z ∈ bΩ. A similar identity holds for the derivative of the Green’s
function with respect to z,

(6.3)
∂G

∂z
(w, z)T (z) = −∂G

∂z
(w, z)T (z),

for w ∈ Ω and z ∈ bΩ (see [2, page 134]).
Choose a point a in Ω so that the n − 1 zeroes of S(z, a) in the z variable are

simple zeroes (see [2, page 105-108]) and let a1, . . . , an−1 denote these zeroes. By
choosing a to be sufficiently close to the boundary, we may assume that the aj are
as close to the boundary as we wish. Let γn denote the outer boundary of Ω and
let γj , j = 1, . . . , n−1 denote the inner boundary curves of Ω. We shall show at the
end of this section that the (n−1)× (n−1) matrix [F ′j(ak)] (where j = 1, . . . , n−1
and k = 1, . . . , n− 1) is non-singular.

Define a function H on Ω× Ω via

H(w, z) :=
∂G

∂z
(w, z)− S(z, w)L(z, w)

S(w,w)
.

Notice that H(w, z) is holomorphic in z on Ω−{w}. In fact, we may view H(w, z)
as being holomorphic in z on all of Ω because the singular parts 1/(2π(z − w)) of
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the two functions at z = w in the difference exactly cancel. Furthermore, (6.2) and
(6.3) reveal that H satisfies the identity

(6.4) H(w, z)T (z) = −H(w, z)T (z)

for w ∈ Ω and z ∈ bΩ. We may now divide (6.4) by an instance of (6.2) using w = a
to obtain

(6.5)
H(w, z)

S(z, a)L(z, a)
= H(w, z)/(S(z, a)L(z, a))

for w ∈ Ω and z ∈ bΩ. Define

Qw(z) := H(w, z)/(S(z, a)L(z, a)).

Identity (6.5) shows that Qw extends to the double of Ω as a meromorphic function
of z for each w in Ω and that the extension satisfies

(6.6) Qw(z) = Qw(R(z)).

Notice that, as a function on Ω̂, Qw(z) might have simple poles at the points
a1, . . . , an−1 and the points R(a1), . . . , R(an−1). We shall now subtract off terms to

eliminate the singularities of Qw on Ω̂ and thereby obtain a holomorphic function

on Ω̂, i.e., a constant.
Observe that the function

qj(z) :=
F ′j(z)

S(z, a)L(z, a)

extends to the double of Ω via (6.1) and the same reasoning we used to see that
Qw does. Furthermore, qj also satisfies

(6.7) qj(z) = qj(R(z))

on Ω̂. We now consider the function

M(w, z) := Qw(z)−
n−1∑
j=1

cj(w)qj(z)

where the complex numbers cj(w) are defined to solve the system,

0 = H(w, ak)−
n−1∑
j=1

cj(w)F ′j(ak), k = 1, . . . , n− 1.

These values of cj(w) have been chosen so that M(w, z) has no singularities in z

on Ω. We shall now show thatM(w, z) has no singularities in z in Ωr either, and
it is therefore constant in z.

We now assume that a has been chosen to be close enough to the boundary so
that the aj are close enough to the boundary to fall in coordinate charts with the

11



following properties. There is a chart mapping the unit disc to a neighborhood

of a boundary point of Ω in Ω̂ in such a way that the real line maps into bΩ and
−i/2 gets mapped to aj . In this coordinate, the reflection function R(z) is given
by R(z) = z̄ and we may write (6.6) and (6.7) in the form

Qw(z) = Qw(z) and gj(z) = qj(z).

It follows that, in the special coordinate, the residue of the simple pole of Qw at
−i/2 is the conjugate of the residue of the simple pole of Qw at the reflected point
i/2 which corresponds to R(aj). The same holds for the functions qj .

Notice thatM(w, z) satisfies

M(w, z) = Qw(R(z))−
n−1∑
j=1

cj(w)qj(R(z))

when z ∈ bΩ and so M(w, z) is equal to the conjugate of

(6.8) Qw(R(z))−
n−1∑
j=1

cj(w)qj(R(z)) when z ∈ Ωr.

Because of the fact mentioned above about the conjugate residues in the special
coordinate chart and because cj(w) is given a conjugate in formula (6.8), we may
state that M(w, z) has removable singularities in z at the points R(aj). Hence,

M(w, z) is holomorphic in z on Ω̂, and hence constant. Plugging in z = a reveals
that this constant is zero (by virtue of the pole of L(z, a) at z = a). We have
therefore proved that

∂G

∂z
(w, z) =

S(z, w)L(z, w)

S(w,w)
−
n−1∑
j=1

cj(w)F ′j(z)

where cj(w) is a linear combination of

∂G

∂z
(w, aj)−

S(aj, w)L(aj, w)

S(w,w)
.

Theorem 1.1 yields that S(z, w) can be expressed as a rational combination of
S(z, a), fa(z), and fb(z), and conjugates of S(w, a), fa(w), and fb(w). Since,
fa(z) = S(z, a)/L(z, a), it follows that L(z, a) is a rational combination of S(z, a),
fa(z), and fb(z). Similarly, L(z, ai) = S(z, ai)/fai(z). Since fai(z) is an Ahlfors
map, it extends to the double and is therefore a rational combination of fa and fb.
It follows that L(z, ai) is also a rational combination of S(z, a), fa(z), and fb(z).
Next, the identity (see [4, page 1368]),

L(z, w) =
fa(w)

fa(z)− fa(w)

c0S(z, a)L(w, a) +
n−1∑
i,j=1

c̄ijS(z, ai)L(w, aj)

 ,
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shows that L(z, w) is a rational combination of S(z, a), fa(z), and fb(z), and
S(w, a), fa(w), and fb(w). Finally, since F ′j(z)/(S(z, a)L(z, a)) extends meromor-

phically to Ω̂, it follows that F ′j(z) is a rational combination of S(z, a), fa(z), and
fb(z). We may now state that

∂G

∂z
(w, z) = R0(w, z) +

n−1∑
j=1

Rj(z)
∂G

∂z
(w, aj),

where R0(z, w) is a rational combination of S(z, a), fa(z), and fb(z), and S(w, a),
fa(w), and fb(w) and the conjugates of S(w, a), fa(w), and fb(w), and where Rj(z)
is a rational combination of S(z, a), fa(z), and fb(z).

In case the boundary of Ω is not smooth, note that the functions Qw and qj
are invariant under biholomorphic mappings and so an identity of the form Qw −∑n−1
j=1 cj(w)qj ≡ 0 is also invariant and the arguments above carry over.

When the boundary of Ω is sufficiently smooth, the Poisson kernel p(w, z) is
related to the Green’s function via

p(w, z) = − i
π

∂

∂z
G(w, z)T (z),

and since T (z) = iS(a, z)/L(z, a), our result about the Green’s function yields that
p(w, z) can be written

p(w, z) = R0(w, z) +
n−1∑
j=1

Rj(z)
∂G

∂z
(w, aj),

where R0(z, w) is a rational combination of S(z, a), fa(z), and fb(z), and S(w, a),
fa(w), and fb(w) and the conjugates of these six functions, and where Rj(z) is a
rational combination of S(z, a), fa(z), and fb(z) and their conjugates.

To complete the arguments in this section, we need to prove that the n − 1 by
n− 1 matrix [F ′j(ak)] (where j = 1, . . . , n− 1 and k = 1, . . . , n− 1) is non-singular.
Schiffer proved that the complex linear span F ′ of {F ′j : j = 1, . . . , n− 1} is equal
to the complex linear span of {S(z, a)L(z, aj) : j = 1, . . . , n− 1} (see [2, page 80]).
Since F ′ is an n − 1 dimensional vector space, there is a non-singular matrix M
which describes the change of bases. Let S′(z, a) denote the partial derivative
(∂/∂z)S(z, a) and notice that S′(ak, a) 6= 0 because a has been chosen so that the
zeroes of S(z, a) are simple zeroes. Next, observe that

S(z, a)L(z, aj) =

{
0, if z = ak, k 6= j
1

2πS
′(aj , a), if z = aj,

and hence the matrix [S(ak, a)L(ak, aj)] is non-singular. Since this matrix is related
to [F ′j(ak)] via matrix multiplication by M , it follows that [F ′j(ak)] is non-singular
and the proof of the formulas for the Green’s function and Poisson kernel given
above is complete.

We close by mentioning a tantalizing question that the results of this paper raises
concerning the complexity of the Green’s function. Might it hold that the Green’s
function can be written as

G(w, z) = R(w, z) + ln |Q(w, z)|
13



where R and Q are rational combinations of fa(w), fb(w), fa(z), fb(z), and their
conjugates? The Bergman kernel is a constant times (∂2/∂w∂z̄)G(w, z) and al-
though it might appear at first sight that differentiating the expression above for G
with respect to w and z̄ would lead to terms involving both f ′a and f ′b, the offending
f ′b terms can be eliminated by noting that (3.1) implies that

f ′a(z)fb(z)

fa(z)f ′b(z)

extends to the double of Ω as a meromorphic function. Hence f ′a(z)/f
′
b(z) extends

to the double as a meromorphic function and it follows that

f ′b(z) = f ′a(z)R1(fa(z), fb(z))

where R1 is a complex rational function. One would obtain a formula for the
Bergman kernel which is consistent with the formula in Theorem 1.1.
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