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Abstract. We shall show that the Szegő and Bergman kernels associated to a
finitely connected domain in the plane are generated by only three holomorphic func-
tions of one complex variable of the form H(z) = S(z, A) where S(z, w) is the Szegő
kernel and A is a fixed point in the domain. Many other important functions of poten-
tial theory and conformal mapping theory will be shown to be rational combinations
of the same three basic functions.

1. Introduction. I showed in [4] that the Bergman and Szegő kernels associated
to an n-connected domain in the plane are generated by n + 1 basic holomorphic
functions of one complex variable. I also showed that the Poisson kernel is generated
by finitely many functions of one complex variable plus n − 1 harmonic functions
of one complex variable. Here we shall show that the Szegő and Bergman kernels
associated to an n-connected domain in the plane such that no boundary compo-
nent is a point are generated by only three holomorphic functions of one complex
variable. We also show that the Poisson kernel is a rational combination of the same
three holomorphic functions plus n− 1 explicit harmonic functions of one complex
variable. Furthermore, many other functions of potential theory and conformal
mapping theory, including the classical functions F ′j = 2(∂ωj/∂z), j = 1, . . . , n− 1,
will be shown to be rational combinations of the three basic functions.

To be more precise, suppose that Ω is an n-connected domain in the plane such
that no boundary component is a point. For the purpose of this introduction,
assume that the boundary of Ω consists of n non-intersecting C∞ smooth closed
curves γj, j = 1, . . . , n. (Later, we shall show how to totally eliminate all assump-
tions about boundary smoothness.) Let S(z, w) denote the Szegő kernel associated
to Ω and let K(z, w) denote the Bergman kernel. We shall show that there exist
three points A1, A2, and A3 in Ω such that the Szegő and Bergman kernels are
generated by the three functions S(·, Aj), j = 1, 2, 3, in the sense that K(z, w)
and S(z, w) are given as rational combinations of S(z, A1), S(z, A2), and S(z, A3)
and the conjugates of S(w,A1), S(w,A2), and S(w,A3). Furthermore, the Poisson
kernel p(z, w) associated to Ω can be written

R0(z, w) +
n−1∑
k=1

Rk(w)hk(z),

where R0(z, w) is a rational combination of S(z, Aj) and S(w,Aj), j = 1, 2, 3, and
the conjugates of these six functions, and where Rk(w) is a rational combination of
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S(w,Aj), j = 1, 2, 3, and their conjugates, and where the hk are explicit harmonic
functions of one variable that extend C∞ smoothly up to the boundary.

The points A1, A2, and A3 are not particularly special. In fact, the set of points
(A1, A2, A3) with the properties above is open and dense in Ω×Ω×Ω, and it can
be said that the results above are true for a generic choice of A1, A2, and A3.

For a generic choice of A1, A2, and A3, we shall also show that there is a
holomorphic polynomial P (z, w) of two complex variables such that

P (
S(z, A1)

S(z, A3)
,
S(z, A2)

S(z, A3)
) ≡ 0

for z ∈ Ω, and it follows from this that S(z, A1)/S(z, A2) is an algebraic function
of S(z, A2)/S(z, A3). Therefore, S(z, A1) is an algebraic function of S(z, A2) and
S(z, A3). When this result is combined with the results mentioned above, we deduce
that the Szegő kernel S(z, w) is a rational combination of algebraic functions of
S(z, A2) and S(z, A3) and the conjugates of algebraic functions of S(w,A2) and
S(w,A3). The same is true of the Bergman kernel.

The starting point for all of these results is the formula

(1.1) S(z, w) =
1

1− fa(z)fa(w)

c0S(z, a)S(w, a) +
n−1∑
i,j=1

cijS(z, ai)S(w, aj)


that I proved in [4] which expresses the Szegő kernel in terms of an Ahlfors mapping
fa(z) associated to a point a ∈ Ω and the n other functions of one variable given
by S(z, a), and S(z, ai), i = 1, . . . , n − 1. The points a1, . . . , an−1 are the zeroes
of S(z, a) in the z variable and the constants in the formula are given by c0 =
1/S(a, a), and cij are the coefficients of the inverse matrix to the non-singular
matrix [S(aj , ak)]. (The only restriction on the point a is that it be chosen so that
the zeroes of S(z, a) are simple zeroes; this is true for all but finitely many a in
Ω. We shall define the Ahlfors map and relate the zeroes of the Ahlfors map to
the zeroes of the Szegő kernel and the pole of the Garabedian kernel in the next
section.)

We take a moment here to sketch the main ideas used in the proofs of our
results. We shall prove that for fixed points Ai and Aj in Ω, the functions of z of
the form S(z, Ai)/S(z, Aj) extend as meromorphic functions to the double of Ω.
Furthermore, for a generic choice of points A1, A2, and A3 in Ω, the extensions of
the two functions

S(z, A1)

S(z, A3)
and

S(z, A2)

S(z, A3)

form a primitive pair for the double of Ω (see Farkas and Kra [9, page 249]) in
the sense that they generate the field of meromorphic functions on the double
of Ω. We shall show that the Ahlfors map fa extends to the double of Ω as a
meromorphic function. Since S(z, a)/S(z, A3) and S(z, aj)/S(z, A3) extend to the
double as meromorphic functions, it follows that the n+ 1 functions that appear in
formula (1.1) can all be expressed as rational combinations of the three functions
S(z, A1), S(z, A2), and S(z, A3). Hence S(z, w) can be expressed as a rational
combination of S(z, A1), S(z, A2), and S(z, A3) and the conjugates of S(w,A1),
S(w,A2), and S(w,A3). We shall show that this conclusion remains valid if Ω is
merely an n-connected domain such that no boundary component is a point.
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The Bergman kernel K(z, w) is related to the Szegő kernel via the identity

(1.2) K(z, w) = 4πS(z, w)2 +
n−1∑
i,j=1

AijF
′
i (z)F

′
j(w),

where the functions F ′i (z) are classical functions of potential theory described as
follows ([8, page 119], or see also [2, pages 94–96]). The harmonic function ωj
which solves the Dirichlet problem on Ω with boundary data equal to one on the
boundary curve γj and zero on γk if k 6= j has a multivalued harmonic conjugate.
The function F ′j(z) is a globally defined single valued holomorphic function on Ω
which is locally defined as the derivative of ωj + iv where v is a local harmonic
conjugate for ωj . The Cauchy-Riemann equations reveal that F ′j(z) = 2(∂ωj/∂z).
We note here that, although F ′j is locally the derivative of a holomorphic function,
it is not the derivative of a holomorphic function defined on all of Ω; the prime in
the notation is traditional. We shall also show that the functions F ′j(z) are rational
combinations of S(z, A1), S(z, A2), and S(z, A3) and, hence, it shall follow that
the Bergman kernel is a rational combination of S(z, A1), S(z, A2), and S(z, A3)
and the conjugates of S(w,A1), S(w,A2), and S(w,A3). We shall show that this
conclusion remains valid when Ω is only assumed to be an n-connected domain such
that no boundary component is a point (with absolutely no assumptions made about
boundary regularity).

In §5 we shall apply similar ideas to analyze formula (7.5) from [4] which relates
the Poisson kernel to the Szegő kernel to prove the claim made above about the
complexity of the Poisson kernel. In the last section of the paper, we study the field
of meromorphic functions on Ω generated by the functions of z given by {S(z, a) :
a ∈ Ω}. Our main results above show that this field is equal to the field generated
by the three functions S(z, A1), S(z, A2), and S(z, A3) for a generic choice of the
points A1, A2, and A3 in Ω. We show that this field contains an astounding variety
of objects of potential theory and conformal mapping, including all the major kernel
functions and all proper holomorphic mappings from Ω onto the unit disk. Other
finitely generated function fields and rings with similar universal properties will be
described.

Before we proceed, we take a moment to state our main results carefully.

Theorem 1.1. Suppose that Ω is an n-connected domain in the plane such that
no boundary component is a point. There exist three points A1, A2, and A3 in
Ω such that K(z, w) and S(z, w) are given as rational combinations of S(z, A1),
S(z, A2), and S(z, A3) and the conjugates of S(w,A1), S(w,A2), and S(w,A3).
The functions F ′j(z) are rational combinations of S(z, A1), S(z, A2), and S(z, A3),
and so is every proper holomorphic map of Ω onto the unit disc. The Green’s
function G(z, w) associated to Ω satisfies

∂G

∂w
(z, w) = r0(z, w) +

n−1∑
k=1

rk(w)hk(z),

where r0(z, w) is a rational combination of S(w,A1), S(w,A2), and S(w,A3) and
S(z, A1), S(z, A2), and S(z, A3) and the conjugates of S(z, A1), S(z, A2), and
S(z, A3), and where rk(w) is a rational combination of S(w,A1), S(w,A2), and
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S(w,A3), for each k, and where hk(z) is an explicit harmonic function of z given
by

Gw(z, wk)− S(z, wk)L(z, wk)

S(wk, wk)
,

where wk is a fixed point in Ω.

If the boundary of Ω is smooth enough that the Poisson kernel p(z, w) associated
to Ω is related to the Green’s function via the standard identity

p(z, w) = − i
π

∂

∂w
G(z, w)T (w)

(see §2 for the definition of T ), then Theorem 1.1 will yield that the Poisson kernel

can be written as R0(z, w) +
∑n−1
k=1 Rk(w)hk(z), where the functions R0(z, w) and

Rk(w) are as we described above.

2. Some preliminary facts. Assume that Ω is an n-connected domain in the
plane such that no boundary component is a point, and that the boundary of Ω
consists of n non-intersecting C∞ smooth closed curves γj , j = 1, . . . , n. Suppose
that γj is parameterized in the standard sense by zj(t), 0 ≤ t ≤ 1. Let T (z) be the
C∞ function defined on bΩ such that T (z) is the complex number representing the
unit tangent vector at z ∈ bΩ pointing in the direction of the standard orientation
(meaning that iT (z) represents the inward pointing normal vector at z ∈ bΩ). This
complex unit tangent vector function is characterized by the equation T (zj(t)) =
z′j(t)/|z′j(t)|.

The Szegő kernel S(z, w) associated to Ω is holomorphic in the first variable and

antiholomorphic in the second on Ω × Ω and hermitian, i.e., S(w, z) = S(z, w).
Furthermore, the Szegő kernel is in C∞((Ω× Ω)− {(z, z) : z ∈ bΩ}) as a function
of (z, w) (see [2, page 100]). The Garabedian kernel L(z, w) is related to the Szegő
kernel via the identity

(2.1)
1

i
L(z, a)T (z) = S(a, z) for z ∈ bΩ and a ∈ Ω.

For fixed a ∈ Ω, the kernel L(z, a) is a holomorphic function of z on Ω− {a} with
a simple pole at a with residue 1/(2π). Furthermore, as a function of z, L(z, a)
extends to the boundary and is in the space C∞(Ω − {a}). In fact, L(z, w) is in
C∞((Ω × Ω) − {(z, z) : z ∈ Ω}) as a function of (z, w) (see [2, page 102]). Also,
L(z, a) is non-zero for all (z, a) in Ω×Ω with z 6= a and L(a, z) = −L(z, a) (see [2,
page 49]).

Given a point a ∈ Ω, the Ahlfors map fa associated to the pair (Ω, a) is a proper
holomorphic mapping of Ω onto the unit disc. It is an n-to-one mapping (counting
multiplicities), it extends to be in C∞(Ω), and it maps each boundary curve one-
to-one onto the unit circle. Furthermore, fa(a) = 0, and fa is the unique function
mapping Ω into the unit disc maximizing the quantity |f ′a(a)| with f ′a(a) real and
positive. The Ahlfors map is related to the Szegő kernel and Garabedian kernel via
(see [2, page 49])

(2.2) fa(z) =
S(z, a)

L(z, a)
.
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Note that f ′a(a) = 2πS(a, a) 6= 0. Because fa is n-to-one, fa has n zeroes. The
simple pole of L(z, a) at a accounts for the simple zero of fa at a. The other n− 1
zeroes of fa are given by the (n−1) zeroes of S(z, a) in Ω−{a}. Let a1, a2, . . . , an−1

denote these n − 1 zeroes (counted with multiplicity). I proved in [3] (see also [2,
page 105]) that, as a tends to a boundary curve γj, the n − 1 zeroes a1, . . . , an−1

become distinct simple zeroes which separate and tend toward the n − 1 distinct
boundary components of Ω which are different from γj. Formula (1.1) is valid for
any point a ∈ Ω such that the zeroes of S(z, a) in the z variable are distinct simple
zeroes.

If Ω is merely an n-connected domain in the plane such that no boundary com-
ponent of Ω is a point, then it is well known that there is a biholomorphic mapping
Φ mapping Ω one-to-one onto a bounded domain Ωa in the plane with real ana-
lytic boundary. The standard construction yields a domain Ωa that is a bounded
n-connected domain with C∞ smooth boundary whose boundary consists of n non-
intersecting simple closed real analytic curves. Let superscript a’s indicate that a
kernel function is associated to Ωa. Kernels without superscripts are associated
to Ω. The transformation formula for the Bergman kernels under biholomorphic
mappings gives

(2.3) K(z, w) = Φ′(z)Ka(Φ(z),Φ(w))Φ′(w).

It is well known that the function Φ′ has a single valued holomorphic square root
on Ω (see [2, page 43]). To avoid a discussion of the meaning of the Cauchy
transform and the Szegő projection in non-smooth domains, we shall opt to define
the Szegő kernel associated to Ω to be the function on Ω ×Ω given by the natural
transformation formula,

(2.4) S(z, w) =
√

Φ′(z) Sa(Φ(z),Φ(w))
√

Φ′(w).

Similarly, the Garabedian kernel is defined via

(2.5) L(z, w) =
√

Φ′(z) La(Φ(z),Φ(w))
√

Φ′(w).

(When Ω has C2 smooth boundary, the map Φ extends C1 up to the boundary and
these formulas are classical.) The Green’s functions satisfy

(2.6) G(z, w) = Ga(Φ(z),Φ(w))

and the functions ωj associated to harmonic measure satisfy

ωj(z) = ωaj (Φ(z)) and F ′j(z) = Φ′(z)F aj
′(Φ(z)).

Finally, the Ahlfors map associated to a point b ∈ Ω is defined to be the solution
to the extremal problem, fb : Ω→ D1(0) with f ′b(b) > 0 and maximal. It is easy to
see that the Ahlfors map satisfies

fb(z) = λfaΦ(b)(Φ(z))

for some unimodular constant λ and it follows that fb(z) is a proper holomorphic
mapping of Ω onto D1(0). Furthermore, the transformation formula (2.4) yields
that fb(z) is given by S(z, b)/L(z, b), and it can be verified that formula (1.1) holds
in this more general setting. Furthermore, the transformation formulas reveal that
(1.2) is also valid for Ω.
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3. The Szegő kernel and the double of a domain. We now suppose that Ω is
an n-connected domain in the plane such that no boundary component is a point.
For the moment, we further assume that the boundary of Ω consists of n non-

intersecting real analytic C∞ smooth closed curves. Let Ω̂ denote the double of Ω

and let R(z) denote the antiholomorphic involution on Ω̂ which fixes the boundary

of Ω. Let Ω̃ = R(Ω) denote the reflection of Ω in Ω̂ across the boundary. It is easy

to see that an Ahlfors map fa extends to be a meromorphic function on Ω̂ because
f(z) = 1/ f(z) for z ∈ bΩ and, since R(z) = z on bΩ, it follows that

fa(z) = 1/ fa(R(z)) for z ∈ bΩ.

The function on the left hand side of this formula is holomorphic on Ω and the

function on the right hand side is meromorphic on Ω̃ and the two functions extend
continuously to bΩ from opposite sides and agree on bΩ. Hence, the function given

by fa(z) on Ω and 1/ fa(R(z)) on Ω̃ is meromorphic on Ω̂.
We shall now prove that for fixed points A1 and A2 in Ω, functions of z of the

form S(z, A1)/S(z, A2) extend as meromorphic functions to the double of Ω. In-
deed, if we write the conjugate of formula (2.1), first using a = A1 and then a = A2,
and divide the two resulting formulas, we see that S(z, A1)/S(z, A2) is equal to the
complex conjugate of L(z, A1)/L(z, A2) when z ∈ bΩ. Hence, S(z, A1)/S(z, A2) is a
meromorphic function on Ω which extends continuously up to bΩ, and the conjugate

of L(R(z), A1)/L(R(z), A2) is a meromorphic function on Ω̃ which extends contin-
uously up to bΩ from the “outside” of Ω and which agrees with S(z, A1)/S(z, A2)

on bΩ. Hence, S(z, A1)/S(z, A2) extends to Ω̂ as a meromorphic function.
Choose A1 in Ω so that the n−1 zeroes of S(z, A1) in the z variable are distinct

and simple. Choose A3 ∈ Ω so that the n − 1 zeroes of S(z, A3) are distinct and
simple and such that no zero of S(z, A3) is a zero of S(z, A1). That this is possible
follows from the fact mentioned in §2 that the zeroes of the Szegő kernel separate
into distinct simple zeroes that tend to different boundary components as A3 tends
to the boundary.

We now wish to show that it is possible to choose a point A2 so that the

meromorphic extensions of S(z, A1)/S(z, A3) and S(z, A2)/S(z, A3) to Ω̂ form a

primitive pair for Ω̂ (meaning that they generate the field of meromorphic func-
tions on the double of Ω, see Farkas and Kra [9, page 249]). Let b1, . . . , bn−1

denote the zeroes of S(z, A1). Let G(z) denote the meromorphic extension of

S(z, A1)/S(z, A3) to Ω̂. The order of G(z) as a meromorphic function on Ω̂ is
n because S(z, A1)/S(z, A3) has n − 1 zeroes in Ω and no zeroes on bΩ, and the

conjugate of L(R(z), A1)/L(R(z), A3) has exactly one zero at R(A3) in Ω̃. For
a fixed point A2 in Ω, let H(z) be defined to be the meromorphic extension of

S(z, A2)/S(z, A3) to Ω̂.
We shall now prove that A2 can be chosen so that G(z) and H(z) form a primitive

pair. To do this, we need only show that H(z) separates the n points in Ω̂ where
G(z) vanishes, i.e., the points b1, . . . , bn−1, and R(A3) (see [1, page 321-324]). Of
course, we shall choose A2 to be unequal to A3, and so it follows that H(R(A3)) = 0.
Hence, our problem reduces to showing that H separates the points b1, . . . bn−1 with
non-zero values.

Let Si denote the set of points w in Ω where S(bi, w) = 0. Since the Szegő
kernel is not identically zero in w (see [2, page 49]), and since S(bi, w) extends
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antiholomorphically to a neighborhood of Ω, it follows that Si is a finite set. Let
S0 = ∪n−1

i=1 Si. (Think of S0 as being the set of A2 where H(bi) might not be non-
vanishing for i = 1, . . . , n − 1.) By choosing A2 ∈ Ω − S0, we are assured that
H(bj) 6= 0 for j = 1, . . . , n− 1.

Let Sij denote the the set of points w in Ω such that S(bi, w) = cijS(bj, w) where
cij = S(bi, A3)/S(bj, A3) is a non-zero constant in C. (Think of Sij as being the
set of points A2 such that H might not separate bi from bj .) We shall now show
that Sij is a finite set.

The complex linear span of the set of functions of z given by S := {S(z, w) : w ∈
Ω} is dense in H2(bΩ) because if h(z) is a function in H2(bΩ) that is orthogonal to
all the functions in the spanning set, then h(w) = 0 for all w ∈ Ω by the reproducing
property of the Szegő kernel. Hence, it follows that any complex polynomial can be
uniformly approximated on a compact subset of Ω by functions in S. Let P be a
polynomial of one complex variable such that P (bi) 6= cijP (bj). Since it is possible
to choose linear combinations of functions in the spanning set S which converge
uniformly on compact subsets of Ω to P , it follows that the function of w given
by S(bi, w)− cijS(bj , w) cannot be identically zero in w on Ω. Since this function

extends to be holomorphic on a neighborhood of Ω as a function of w, it follows
that Sij is a finite set. Hence, the set

{A3} ∪ S0 ∪ (∪i<jSij)

of points A2 such that H(z) might fail to separate the n points R(A3), b1, . . . , bn−1

as a function of z, is at most a finite subset of Ω. We assume from now on that A2

is not in this finite set.
We now have functions G and H as defined above which form a primitive pair.

We showed above that quotients of the form S(z, a)/S(z, A3) and S(z, aj)/S(z, A3)
where a and aj are the points appearing in formula (1.1) extend as meromorphic

functions to Ω̂. We also showed that fa(z) extends meromorphically to Ω̂. It
follows that the n+1 functions that appear in formula (1.1) can all be expressed as
rational combinations of G(z) and H(z), and hence, they are rational combinations
of S(z, A1), S(z, A2), and S(z, A3). It follows that S(z, w) can be expressed as
a rational combination of S(z, A1), S(z, A2), and S(z, A3) and the conjugates of
S(w,A1), S(w,A2), and S(w,A3).

Finally, we must show how to eliminate the boundary smoothness assumption.
Formula (2.4) reveals that quotients of the form S(z, b)/S(z, B) are invariant under
biholomorphic changes of variables. To be precise, if Φ : Ω1 → Ω2 is biholomorphic,
then

S1(z, b)

S1(z, B)
= c

S2(Φ(z), b′)

S2(Φ(z), B′)

where c is a non-zero constant and b′ = Φ(b) and B′ = Φ(B). Since any n-connected
domain in the plane such that no boundary component is a point can be mapped
biholomorphically to an n-connected domain with smooth real analytic boundary
curves, the remarks at the end of §2 reveal that the formulas required in the proof
above carry over to this more general setting. In particular, rational identities
between quotients of the form S(z, b)/S(z, B) on the smooth domain give rise to
similar identities on the non-smooth domain, and the proof given above carries over
word for word.
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4. The harmonic measure functions and the Bergman kernel. Assume
again that Ω is an n-connected domain in the plane such that no boundary com-
ponent is a point and that the boundary of Ω consists of n non-intersecting C∞

smooth closed curves. Let F ′ denote the vector space of functions given by the com-
plex linear span of the set of functions {F ′j(z) : j = 1, . . . , n−1} mentioned in §2. It
is a classical fact that F ′ is n−1 dimensional. As above, choose a point a ∈ Ω such
that the n− 1 zeroes of S(z, a) are simple and denote these zeroes by a1, . . . , an−1.
Notice that S(z, ai)L(z, a) is in C∞(Ω) because the pole of L(z, a) at z = a is
cancelled by the zero of S(z, ai) at z = a. A theorem due to Schiffer ([10], see also
[2, page 80]) states that the set of n−1 functions {S(z, ai)L(z, a) : i = 1, . . . , n−1}
form a basis for F ′. This result will allow us to see that the functions in F ′ are
also in the field R generated by the three functions S(z, A1), S(z, A2), and S(z, A3)
produced in §3. Indeed, the Ahlfors map fa(z) was shown to extend to the double
of Ω in §3 and so fa(z) is in R. Since fa(z) = S(z, a)/L(z, a) and since we know
that S(z, a) is in R, it follows that L(z, a) in is R. Finally, since S(z, ai) is in R,
we see that S(z, ai)L(z, a) is in R and it follows that F ′ ⊂ R.

We may now deduce from (1.2) that K(z, w) is generated by S(z, A1), S(z, A2),
and S(z, A3) and the conjugates of S(w,A1), S(w,A2), and S(w,A3). The remarks
made at the ends of §2 and §3 reveal that this result remains valid even if Ω is
only assumed to be an n-connected domain such that no boundary component is a
point.

5. The Poisson kernel. Assume again that Ω is an n-connected domain in the
plane such that no boundary component is a point and that the boundary of Ω
consists of n non-intersecting C∞ smooth closed curves. Let the point a be chosen
(as above) such that the n−1 zeroes a1, . . . , an−1 of S(z, a) are distinct and simple.
It is proved in [4, pp. 1358–1362] that the Poisson kernel p(z, w) associated to Ω is
given by

p(z, w) = 2Re

S(z, w)L(w, a)

L(z, a)
−
n−1∑
j=1

µj(w)

∫
ζ∈γj

S(z, ζ)L(ζ, a)

L(z, a)
ds

(5.1)

+
|S(w, a)|2
S(a, a)

+
n−1∑
j=1

(ωj(z)− λj(a))µj(w)

where λj(a) is a constant given by∫
ζ∈γj

|S(ζ, a)|2
S(a, a)

ds

and the µj are functions given by

µj(w) =
n−1∑
k=1

BjkS(ak, w)S(w, a)

where the constants Bjk are given explicitly in [4]. Furthermore, the µj satisfy

δkj =

∫
γk

µj ds

8



(where δkj denotes the Kronecker delta).
Formula (5.1) together with results of §3 show that the Poisson kernel is given as

a rational combination of S(z, A1), S(z, A2), and S(z, A3) and S(w,A1), S(w,A2),
and S(w,A3) and their conjugates, plus the n− 1 holomorphic functions of z given
by

νj(z) :=

∫
ζ∈γj

S(z, ζ)L(ζ, a)

L(z, a)
ds

and their conjugates, plus the n−1 harmonic functions ωj(z). We shall now work to
reduce this list of functions to only three holomorphic functions and n−1 harmonic
functions of one variable.

It is also shown in [4, p. 1362] that

(5.2) p(a, w) =
|S(w, a)|2
S(a, a)

+
n−1∑
j=1

(ωj(a)− λj(a))µj(w)

where µj and λj are defined as above. This formula was proved in a rather round
about fashion in [4]. Since I am going to use it as the cornerstone of my proof here,
and since it can be proved from first principles rather easily, I take the liberty of
giving a quick proof of it here. Let G(z, w) denote the classical Green’s function
associated to Ω, i.e., the unique function such that G(z, w) + log |z − w| extends
to be harmonic in z on Ω for each w ∈ Ω and such that G(z, w) extends up to the
boundary in z with zero boundary values for each w ∈ Ω. The Poisson kernel is
related to the normal derivative of the Green’s function via

p(z, w) =
1

2π

∂

∂nw
G(z, w) z ∈ Ω, w ∈ bΩ,

where (∂/∂nw) denotes the normal derivative in the w variable. We may rewrite
this last formula in the form

(5.3) p(z, w) = − i
π

∂

∂w
G(z, w)T (w).

Let us use subscript w’s to denote the partial derivative (∂/∂w) and subscript w̄’s
to denote the partial derivative (∂/∂w̄). Since the Green’s function vanishes as a
function of w on bΩ when z ∈ Ω, the tangential derivative of the Green’s function
in the w variable is zero. Let ζ(s) denote a parametrization of bΩ with respect to
arc length s. We may write

0 =
d

ds
G(z, ζ(s)) =

∂G

∂ζ
(z, ζ(s))ζ ′(s) +

∂G

∂ζ̄
(z, ζ(s))ζ ′(s),

and, from this, we can deduce that

(5.4) Gw(z, w)T (w) = −Gw̄(z, w)T (w) = −Gw(z, w)T (w)

for w ∈ bΩ and z ∈ Ω. Notice that Gw(a, w) is holomorphic as a function of w on
Ω−{a} and has a simple pole in the w variable at w = a with residue 1/2. Formula
(2.1) implies that the function

H(a, w) := π
S(w, a)L(w, a)

S(a, a)
9



also satisfies

(5.5) H(a, w)T (w) = −H(a, w)T (w)

for w ∈ bΩ and a ∈ Ω. Furthermore, since L(w, a) has a simple pole at w = a
with residue 1/(2π) and S(a, a) 6= 0, it follows that H(a, w) has a simple pole in
the w variable at w = a with residue 1/2. We may combine (5.4) and (5.5) to see
that Gw(a, w)−H(a, w) may be viewed as a holomorphic function of w in C∞(Ω)
satisfying

(5.6) (Gw(a, w)−H(a, w))T (w) = −(Gw(a, w)−H(a, w))T (w)

for w ∈ bΩ, and a ∈ Ω. It is known (see [2, p. 79-81]) that holomorphic functions
that satisfy an identity like (5.6) are in the finite dimensional subspace of L2(bΩ) of
functions which are orthogonal to both holomorphic functions and antiholomorphic
functions and, as such, are given by h(w)T (w) for some h ∈ F ′. Hence, we may
state that there exist constants cj(a) such that

(5.7) Gw(a, w) = H(a, w) +
n−1∑
j=1

cj(a)F ′j(w).

It is well known that the matrix of periods

Akj =

∫
γk

F ′j(w) dw

is non-singular (see [2, pp. 81-82]), and so we may choose a basis {uj}n−1
j=1 for F ′

such that

δkj =

∫
γk

uj(w) dw.

Using this new basis, we may write

(5.8) Gw(a, w) = H(a, w) +
n−1∑
j=1

bj(a)uj(w).

To determine the constants bj(a), we integrate (5.8) against −(i/π)ωk(w)T (w) ds
and use (5.3) and the most basic property of the Poisson kernel to obtain

ωk(a) = −i
∫
w∈γk

S(w, a)L(w, a)

S(a, a)
dw − (i/π)bj(a),

and hence,

bj(a) = iπ

(
ωk(a) + i

∫
w∈γk

S(w, a)L(w, a)

S(a, a)
dw

)
.

We can use (2.1) in the form −iL(w, a) dw = S(w, a)ds to transform this last
equation into

bj(a) = iπ (ωk(a)− λk(a)) .
10



We next multiply (5.8) by −(i/π)T (w) and use (5.3) and (2.1) to obtain

(5.9) p(a, w) =
|S(w, a)|2
S(a, a)

+
n−1∑
j=1

(ωk(a)− λj(a))uj(w)T (w).

Finally, it is easily verified that the functions uj(w)T (w) in (5.9) are equal to the
functions µj(w) appearing in (5.2) and the proof of (5.2) is complete.

Notice that (5.8) can now be written

(5.10) Gw(a, w) = π
S(w, a)L(w, a)

S(a, a)
+ iπ

n−1∑
j=1

(ωk(a)− λk(a))uj(w).

This is the formula that we shall use most directly in what follows.
We remark here that it is easy to see that the functions λj(a) are in C∞(Ω) and

are such that λj(a) = 1 for a ∈ γj and λj(a) = 1 for a ∈ γk, k 6= j. Indeed, notice
that (2.1) can be used to write

(5.11) λj(a) =
1

iS(a, a)

∫
w∈γj

S(w, a)L(w, a) dw.

The Residue Theorem can be used to transform this last equation to

λj(a) =
1

iS(a, a)

[
2πi

2π
S(a, a)−

∫
w∈Ω−γj

S(w, a)L(w, a) dw

]

= 1− 1

iS(a, a)

∫
w∈Ω−γj

S(w, a)L(w, a) dw(5.12)

Since 1/S(a, a) is a function in C∞(Ω) that vanishes on bΩ (see [4, p. 1344]),
formula (5.11) shows that λj is smooth up to γk if k 6= j and vanishes on γk and
formula (5.12) shows that λj is smooth up to γj and is equal to one there.

We may now begin the proof that the Poisson kernel can be written as

R0(a, w) +
n−1∑
j=1

Rj(w)hj(a),

where R0(a, w) is a rational combination of S(a,A1), S(a,A2), S(a,A3), S(w,A1),
S(w,A2), and S(w,A3) and the conjugates of these six functions, and where Rj(w)
is a rational combination of S(w,A1), S(w,A2), and S(w,A3) and their conjugates
for j = 1, . . . , n− 1, and where the functions hj(a) are harmonic on Ω and extend
smoothly up to the boundary. The plan of the proof is as follows. We shall show
that there exist points w1, w2, . . . , wn−1 in Ω such that det[uj(wk)] 6= 0. Then we
shall plug w = wk into (5.10) for k = 1, . . . , n − 1 to obtain a system. Solving
that system for the functions (ωj(a)−λj(a)) reveals that these functions are linear
combinations of the functions of a given by Gw(a, wk) and

S(wk, a)L(wk, a)

S(a, a)
11



for k = 1, . . . , n− 1. We shall plug this information into (5.2) and note that all the
terms on the right hand side besides the Green’s function terms have been expressed
as rational combinations of the three basic Szegő kernel functions to deduce that
the Poisson kernel can be written as R0(a, w) +

∑n−1
j=1 Rj(w)Gw(a, wj) where R0

and Rj are functions of the desired form. Finally, since

S(a, wj)L(a, wj)

S(wj , wj)

has exactly the same singularity in a at wj that Gw(a, wj) has, we may add and
subtract this expression from Gw(a, wj) and set hj(a) to be equal to the harmonic
function

Gw(a, wj)−
S(a, wj)L(a, wj)

S(wj , wj)
,

which is in C∞(Ω), to be able to write p(a, w) = R0(a, w) +
∑n−1

j=1 Rj(w)hj(a) as
desired.

To prove there exist points w1, w2, . . . , wn−1 in Ω such that det[uj(wk)] 6= 0,
it will suffice to prove that there exist points such that det[F ′j(wk)] 6= 0 because
{uj} and {F ′j} are both bases for F ′. Suppose that det[F ′j(wk)] ≡ 0 for all w =

(w1, . . . , wn−1) in Ωn−1 ⊂ Cn−1. Now think of the first n − 2 variables as being
fixed and let wn−1 vary. Expand the determinant along the bottom row to obtain
a linear relation

0 =
n−1∑
j=1

cj(w1, . . . , wn−2)F ′j(wn−1)

where cj(w1, . . . , wn−2) is the determinant of an (n − 2) × (n − 2) submatrix of
[F ′j(wk)]. Because the F ′j are linearly independent on Ω, we conclude that each cj
must be zero. Now think of w1, . . . , wn−1 as being variables again. We have reduced
our problem to showing that no determinant of an (n− 2)× (n− 2) submatrix of
[F ′j(wk)] can vanish identically. We can repeat the argument above until we get
down to the 1× 1 submatrices of [F ′j(wk)], and it is clear that these cannot be zero

on Ω because none of the F ′j can be identically zero. This completes the proof of
the existence of the wk (and shows, in fact, that there is a dense open set of w in
Ωn−1 that have the desired property).

If we choose w1, . . . , wn−1 as above and solve the linear system obtained by
plugging w = wk into (5.10) for k = 1, . . . , n − 1, we see that (ωj(a)− λj(a)) is a
linear combination of Gw(a, wk) and S(wk, a)L(wk, a)/S(a, a) for k = 1, . . . , n− 1.

Let hj(a) = Gw(a, wj)− S(a, wj)L(a, wj)/S(wj, wj). Since the singular part of
Gw(a, wj) is 1/(a− wj) and since this agrees with the principal part of

S(a, wj)L(a, wj)/S(wj , wj)

at a = wj , we may view hj as a harmonic function on Ω that is in C∞(Ω). This
completes the last detail of the plan of the proof mentioned above and we may
consider our result proved in case the boundary is smooth. To finish the proof of
Theorem 1.1 in case the boundary is not smooth, we only need to check that identity
(5.10) is invariant under biholomorphic mappings, but this follows immediately from
the transformation formulas given at the end of §2.
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6. Finitely generated function fields and rings important to potential
theory. Suppose that Ω is an n-connected domain in the plane such that no bound-
ary component is a point. Let S denote the field of meromorphic functions on Ω
generated by the functions of z given by {S(z, a) : a ∈ Ω}. Our main results above
show that this field is equal to the field generated by the three functions S(z, A1),
S(z, A2), and S(z, A3) for a generic choice of the points A1, A2, and A3 in Ω. We
have shown that this field contains many objects of potential theory and conformal
mapping, including the functions of z given by K(z, a) where K(z, w) denotes the
Bergman kernel and a is any point in Ω. Furthermore, S also contains the func-
tions F ′1, . . . , F

′
n−1 associated to the harmonic measure functions. We now note

that formulas (1.1) and (1.2) reveal that S also contains the functions of z given by

∂m

∂w̄m
K(z, w) and

∂m

∂w̄m
S(z, w)

where m is a positive integer and w is any fixed point in Ω. It follows from this via
Theorem 2 of [6] that S contains all proper holomorphic mappings from Ω onto
the unit disk (see also [5,7]). The field generated by S together with conjugates
of functions in S is generated by only three elements plus their conjugates, and it
contains all functions mentioned above plus all functions of the form {p(a, z) : a ∈
Ω} where p(a, z) denotes the Poisson kernel.

Another interesting field is the field of all algebraic functions of functions in
{S(z, a) : a ∈ Ω}. The results of §3 show that this field is equal to the set of all
algebraic functions of just two elements S(z, A1) and S(z, A2). Of course this field
also contains all the other functions of potential theory contained by S.

The techniques of §3 can also be applied to the Bergman kernel. Indeed, the
Bergman kernel satisfies the identity

(6.1) Λ(w, z)T (z) = −K(w, z)T (z) for w ∈ Ω and z ∈ bΩ

(see [2, page 135]) where Λ is a classical kernel function given by

Λ(z, w) = − 2

π

∂2G(z, w)

∂z∂w
.

Using identity (6.1) for the Bergman kernel in place of (2.1) for the Szegő kernel
allows us to reason exactly as above to deduce that there is a dense open subset of
points (A1, A2, A3) in Ω×Ω×Ω such that the field of meromorphic functions on the
double of Ω is generated by a primitive pair of functions given as the meromorphic
extensions to the double of the two functions

K(z, A1)

K(z, A3)
and

K(z, A2)

K(z, A3)
.

Let K0(z, w) denote the Bergman kernel K(z, w) and let Km(z, w) denote the
function (∂m/∂w̄m)K(z, w). It was proved in [5] that there exists a finite subset A
of Ω and a positive integer N such that the Bergman kernel K(z, w) is given as a
rational combination of functions from the finite set of functions of z,

{Km(z, b) : b ∈ A, 0 ≤ m ≤ N},
13



and the finite set of functions of w,

{Km(w, b) : b ∈ A, 0 ≤ m ≤ N}.

It was also proved in [5] that functions of the form Km(z, b)/f ′a(z) extend mero-
morphically to the double of Ω, where fa denotes the Ahlfors map associated to
a point a in Ω. Hence, it follows that K(z, A3)/f ′a(z) is a rational combination of
K(z, A1)/K(z, A3) and K(z, A2)/K(z, A3) and therefore, that f ′a(z) is a rational
combination of K(z, A1), K(z, A2), and K(z, A3). It now follows that all the func-
tions of the form Km(z, b) are rational combinations of K(z, A1), K(z, A2), and
K(z, A3), and since these functions generate the Bergman kernel, it follows that
K(z, w) is a rational combination of K(z, A1), K(z, A2), and K(z, A3), and the
conjugates of K(w,A1), K(w,A2), and K(w,A3). It was also proved in [5] that the
functions F ′1, . . . , F

′
n−1 are rational combinations of functions of the form Km(z, b),

and we may also state now that F ′1, . . . , F
′
n−1 are rational combinations of K(z, A1),

K(z, A2), and K(z, A3).
The same techniques that we applied to the Szegő kernel can also be applied

to the Bergman kernel to show that K(z, A1) is an algebraic function of K(z, A2)
and K(z, A3). Hence, it follows that the Bergman kernel K(z, w) is an algebraic
function of K(z, A2) and K(z, A3) and the conjugates of K(w,A2) and K(w,A3).
It is interesting to note that the field of all algebraic functions of functions in
{K(z, a) : a ∈ Ω} is equal to the set of all algebraic functions of just two elements
K(z, A2) and K(z, A3), and that this field does contain the functions of z given by
S(z, w). Hence, the field of algebraic functions of functions in {K(z, a) : a ∈ Ω} is
equal to the field of algebraic functions of functions in {S(z, a) : a ∈ Ω}.

We have shown that the field K of meromorphic functions on Ω generated by set
of functions of z given by {K(z, w) : w ∈ Ω} contains many objects of conformal
mapping and potential theory. It appears not to be as universal as the field S,
however, because although (1.2) shows that K contains S(z, w)2, I haven’t been
able to show that it contains S(z, w).
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