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Abstract. We give a new proof of Dennis Hejhal’s theorem on the nonde-
generacy of the matrix that appears in the identity relating the Bergman and
Szegő kernels of a smoothly bounded finitely connected domain in the plane.
Mergelyan’s theorem is at the heart of the argument. We explore connections
of Hejhal’s theorem to properties of the zeroes of the Szegő kernel and propose
some ideas to better understand Hejhal’s original theorem.

To celebrate the legacy of Harold S. Shapiro

1. Introduction

Dennis Hejhal, in a remarkable tour de force that filled a volume of the Memoirs
of the AMS [11], proved, among many other things, that the matrix of coefficients
[λij] that appears in the identity relating the Bergman kernelK(z, w) to the Szegő
kernel S(z, w),

(1.1) K(z, w) = 4πS(z, w)2 +
n−1∑

i,j=1

λijF
′

i (z)F
′

j(w),

in a bounded n-connected smoothly bounded domain in the plane is nondegen-
erate and, in fact, positive definite. Hejhal’s proof of this result used a great deal
of machinery from analysis and geometry, including key use of theta functions
on Riemann surfaces. The purpose of this paper is to give a rather short proof of
the nondegeneracy of the matrix that uses only Mergelyan’s theorem and basic
properties of the Bergman and Szegő kernel functions. We also explore how these
results are connected to properties of the zeroes of the Szegő kernel.

The authors stumbled upon this application of Mergelyan’s theorem after their
work on double quadrature domains [6], which turns out to be a subject closely
connected to Hejhal’s theorem. This work sprouted from the influential works
of Harold Shapiro and his many collaborators, including [1], [14], and [15]. Both
of us have greatly benefited from Harold’s mentorship and generosity and so it
seems fitting to offer this work in a volume in his honor. (We must also mention
here that Avci’s Stanford Thesis [2] also played an important role in our studies.)

We tried to give a new proof also of Hejhal’s full result, that the matrix is
positive definite, but could achieve this only in a few special cases (connectivity
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two and three). In our attempts we however learned a great deal about alter-
nate arguments and how Hejhal’s result fits in the grand scheme of things. We
could not resist including some of these observations here, giving this paper an
expository component. It has been a great subject to ruminate upon!

2. Preliminaries

The transformation identities for the Bergman and Szegő kernels and the har-
monic measure functions yield that the nondegeneracy of the matrix [λij] in
equation (1.1) is invariant under conformal changes of variables. Hence, we
may always suppose that the domain Ω under study is a bounded domain in C

bounded by n > 1 nonintersecting smooth real analytic curves.

We now set up some definitions and notation that we will use throughout the
paper.

We denote the boundary of Ω by bΩ and provide it with the standard ori-
entation. Let γn denote the outer boundary curve of Ω, and denote the inner
boundary curves by γj, j = 1, . . . , n− 1.

The double Ω̂ of Ω is a compact Riemann surface of genus n − 1 obtained

by using the Schwarz reflection principle to glue a copy Ω̃ of Ω to Ω along the

boundary of Ω, using the function z as a chart on Ω and z̄ as a chart on Ω̃.

We now define curves that go around the n−1 handles of Ω̂. Let σj be a curve
in Ω that starts on the outer boundary γn and ends on γj for j = 1, . . . , n − 1.
The curves σj can be defined so that their closures do not intersect. Note that,
in this case, Ω− ∪n−1

j=1σj is a simply connected domain. Let βj denote the curve

on Ω̂ that first follows σj in Ω, and then follows the copy of −σj in Ω̃ to connect

back to the starting point. We think of βj as going around the j-th handle of Ω̂
and we note that the n− 1 curves γj, j = 1, . . . , n − 1, together with the n− 1
curves βj form a homology basis for the double.

The Bergman kernel K(z, w) is the kernel for the orthogonal projection of
L2(Ω) onto its closed subspace of holomorphic functions in L2. The Szegő kernel
S(z, w) is the kernel for the orthogonal projection of L2(bΩ) onto its subspace
consisting of L2 boundary values of holomorphic functions. We refer the reader
to the classic books [7, 9, 12] for the basic facts about these kernels and to [4]
for a treatment of the subject very much in line with the approach of this paper.
In fact, this paper fills in a missing chapter of [4].

The functions F ′

j(z) appearing in equation (1.1) are given by

(2.1) F ′

j(z) = 2
∂ωj

∂z
,

where ωj is the harmonic function on Ω that has boundary values equal to one on
γj and equal to zero on the other boundary curves. The notation is traditional;
F ′

j is locally the derivative of the holomorphic function with real part ωj, but it
is not globally the derivative of a holomorphic function on Ω.
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We let Λ(z, w) denote the complimentary kernel to the Bergman kernel which
satisfies

(2.2) K(z, w) dz = −Λ(z, w) dz

for z in bΩ and w ∈ Ω. (Our choice of symbols for the kernel functions follows
[4]. In the literature, the kernels are often denoted by only K and L with
various tildes or hats.) The identity (2.2) yields that the holomorphic one-form
K(z, w) dz on Ω extends to the double as a meromorphic one-form κw by setting
it equal to the conjugate of −Λ(z, w) dz on the backside of Ω in the double and
using the identity to connect the definitions at the boundary. Let G(z, w) denote
the classical Green’s function (with singular behavior − ln |z − w| near z = w).
Since K and Λ are related to the Green’s function via

K(z, w) = −
2

π

∂2

∂z∂w̄
G(z, w)(2.3)

Λ(z, w) = −
2

π

∂2

∂z∂w
G(z, w),

it follows that the periods of κw about each βj vanish (if w does not fall on any
of the σj), i.e.,

(2.4)

∫

βj

κw = 0

for j = 1, . . . , n − 1. This very important fact, due to Schiffer and Spencer
[16], will be an essential ingredient in the proof in the next section. We briefly
explain the result here to make this paper self contained. Using the definition
∂
∂z

= 1
2

(
∂
∂x

− i ∂
∂y

)
and writing out

∫
σj

∂G
∂z

dz yields that the real part of the

integral is given by 1
2

∫
σj

∂G
∂x

dx + ∂G
∂y

dy, and so the integral is pure imaginary

because G vanishes at the endpoints of σj, which fall on the boundary of Ω.
Since G is real valued, the conjugate of ∂G/∂z is equal to ∂G/∂z̄, and the
conjugate of the integral is equal to

∫
σj

∂G
∂z̄

dz̄. Hence,

0 =

∫

σj

∂G

∂z
dz +

∫

σj

∂G

∂z̄
dz̄,

and multiplying by −2/π, differentiating with respect to w̄, and using (2.2)
yields the result. (The three minus signs, one from the conjugate of a pure
imaginary integral, one from (2.2), and one from the opposite direction of the
curve, guarantee that the integrals cancel.)

We refer the reader to the standard references for the basic properties ofK and
Λ. We only note here that K(z, w) is holomorphic in z and antiholomorphic in

w, Λ(z, w) is holomorphic in both variables off the diagonal, K(w, z) = K(z, w),
Λ(z, w) = Λ(w, z), Λ(z, w) has a double pole in z at w with principal part
1
π
(z−w)−2. BothK(z, w) and Λ(z, w) extend holomorphically past the boundary

in z for fixed w in Ω, K(z, w) is C∞-smooth on Ω×Ω minus the diagonal {(z, z) :
z ∈ bΩ} and Λ(z, w) is in C∞ on Ω× Ω minus the diagonal {(z, z) : z ∈ Ω}.
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The Garabedian kernel L(z, w) is the complimentary kernel to the Szegő kernel
and satisfies the identity

(2.5) S(z, w)dsz =
1

i
L(z, w) dz

for z in bΩ and w ∈ Ω, where dsz represents the element of arc length on the
boundary. Squaring this formula yields that

(2.6) S(z, w)2 dz̄ = −L(z, w)2 dz

for z in bΩ and w ∈ Ω and this shows that the holomorphic one-form S(z, w)2 dz
extends to be a meromorphic one-form σw on the double by defining it to be the
conjugate of −L(z, w)2 dz on the back side of Ω in the double. The key assertion
for the paper is that we can take linear combinations of σw that have β-periods
being anything we like, and this will imply the non-degeneracy of the λ-matrix.
To be precise, we have the following theorem, to be proved in Section 3.

Theorem 2.1. The linear span of
{(∫

β1

σw, . . . ,

∫

βn−1

σw

)
: w ∈ Ω

}

is dense in C
n−1. As a consequence, the matrix [λij ] is non-singular.

To continue describing background material, we note that L(z, w) = −L(w, z)
and that L(z, w) has a simple pole in z at w with principal part

1

2π

1

(z − w)
.

The Szegő and Garabedian kernels have extension, holomorphicity and antiholo-
morphicity, and smoothness properties analogous to those of K and Λ, respec-
tively. Finally, L(z, w) has the important property that L(z, w) 6= 0 if z 6= w in
Ω.

The function 4πL(z, w)2 is like Λ(z, w) in that it has a double pole in z at w
with principal part

1

π

1

(z − w)2
.

(The vanishing of the residue term follows from the fact that
∫
bΩ

L(z, w)2 dz
is equal to minus the conjugate of

∫
bΩ

S(z, w)2 dz, which is zero by Cauchy’s
theorem.)

Standard proofs of identity (1.1) use the fact that the one-form

(K(z, w)− 4πS(z, w)2) dz

is equal to minus the conjugate of

(Λ(z, w)− 4πL(z, w)2) dz
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on the boundary, which is also a holomorphic one-form because the poles cancel
out, and so the given one-form extends to the double as a holomorphic one-form
Hw. Note that we may write

Hw = κw − 4πσw,

where it is understood that the double poles cancel out. Such holomorphic one-
forms are well-known to be generated by the (n−1) holomorphic one-forms that
are equal to F ′

j(z) dz on Ω and equal to minus the conjugate of F ′

j(z) dz on the
back side, j = 1, . . . , n−1. (See [4, p. 135] for a more elementary proof of (1.1).)

Identity (1.1) shows that the complex linear span of the functions of z given
by

K(z, w)− 4πS(z, w)2

as w ranges over Ω is at most an n − 1 dimensional vector space W . We will
prove Hejhal’s theorem in the next section by showing that W has to be at least
n−1 dimensional because the β-periods of linear combinations of Hw as w ranges
over Ω can be made to be anything we like.

The motivation for the proof in the next section is that the terms K(z, w) dz
do not contribute to the value of the β-periods of the extension Hw of (K(z, w)−
4πS(z, w)2) dz to the double, and the terms L(z, w)2 dz can be used to manip-
ulate the value of the β-periods to be anything we like. At the heart of this
result is a density theorem for the Garabedian kernel. Given a point a in Ω,
let L0(z, a) denote the Garabedian kernel L(z, a) and let Lm(z, a) denote the
derivative ∂m

∂wmL(z, w) evaluated at w = a. Similarly, use a superscript m to in-
dicate differentiation of the Szegő kernel with respect to w̄ when w is the second
variable in S(z, w). We will show that the “Garabedian span at a”, which is
the complex linear span of the functions Lm(z, a) as m ranges over the natural
numbers, can be used to approximate functions on the curves σj that will lead to
elements in the linear span of Hw as w ranges over Ω with arbitrary β-periods.
The “Szegő span at a” is the complex linear span of the functions Sm(z, a) as m
ranges over the natural numbers.

3. Proof that [λij ] is nonsingular

We continue to assume that Ω is a bounded domain bounded by n > 1 nonin-
tersecting smooth real analytic curves, and we use the notations and definitions
of the previous section.

The inspiration for the new proof we are about to give comes from the proof
of Lemma 5.1 in [6], and is yet another reason to view Mergelyan’s theorem as
the theorem that is just too good to be true.

Because the argument needed from Lemma 5.1 of [6] is short after all the
machinery we have set up, we include it here for completeness. Given a small
ǫ > 0, let V denote the set of points in C that are a distance less than or equal
to ǫ from bΩ. We will shrink ǫ as needed in what follows; keep in mind that V
depends on ǫ. For j = 1, . . . , n−1, let ϕj be a continuous function on the closure
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of σj that is equal to zero on V ∩ σj. Thus, ϕj is zero near both endpoints of
σj. We assume that ǫ is small enough that a large open subset of each curve σj

is not contained in V .

One version of Mergelyan’s theorem states that, given a compact set K in
the complex plane such that C − K has only finitely many components and a
complex valued continuous function ϕ on K that is holomorphic in the interior
of K, there is a rational function with possible poles only in C − K that is as
close in the uniform norm as desired to ϕ on K. (See Exercise 1 of Chapter 20
in Rudin [13] or Greene and Krantz [8, p. 374].)

Let
K = V ∪

(
∪n−1

j=1σj

)
,

and let U = Ω −K. Note that U is a simply connected domain contained in Ω
if ǫ is small enough. By Mergelyan’s theorem, there is a rational function r(z)
with possible poles only in C−K that is as close in the uniform norm as desired
to zero on V and ϕj on each σj . As in Stein and Shakarchi [17, p. 63] (and as
in many proofs of Runge’s theorem) we may slide the poles of r(z) that fall in Ω
to a single point a in U ⊂ Ω. Let N denote the order of the pole of r(z) at a.

The proof hinges on the following application of the residue theorem,

(3.1)
2π

2πi

∫

bΩ

r(w)L(w, z) dw = r(z)−
N−1∑

m=0

cmL
m(z, a)

for z ∈ Ω not equal to a. Note that we have used the facts that the principal
part of L(w, z) is

1

2π

1

(w − z)

as a function of w and that the only pole of r(w) is a pole of order N at a.
The coefficients cm only depend on the principal part of r(z) at a. This identity
will allow us to approximate r(z) on K by functions in the Garabedian span at
a. Indeed, using identity (2.5) reveals that the left hand side of the equation is
equal to ∫

bΩ

S(z, w)r(w) dsw,

where dsw denotes arc length measure in the w-variable, and this integral is equal
to the Szegő projection of r(w) at the point z. Since r(w) can be taken to be
arbitrarily C∞ close to the zero function on the boundary, and since the Szegő
projection is a continuous operator from C∞(bΩ) to itself (see [4, p. 15]), the left
member of (3.1) is uniformly small in z on Ω. Thus L(z) ≈ r(z) on Ω for the

approximating element L(z) =
∑N−1

m=0 cmL
m(z, a) in the Garabedian span at a.

In particular, L(z) ≈ 0 on bΩ, L(z) ≈ ϕj(z) on σj.

For a fixed k we now let ϕj ≡ 0 for j 6= k and let ϕk be a continuous function
on σk that is zero on σk∩V and such that

∫
σk
ϕk(z)L(z, a) dz = 1. (Keep in mind

that L(z, a) is nonvanishing on Ω − {a}.) We now claim that, for the element
L(z) in the Garabedian span constructed above, L(z)L(z, a) has integrals with
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respect to dz that are close to zero along σj, j 6= k, and close to one along σk.
Differentiating identity (2.5) m-times with respect to w and then multiplying it
by (2.5) and setting w equal to a reveals that

Sm(z, a)S(z, a) dz̄ = −Lm(z, a)L(z, a) dz.

Hence, there is an element S(z) in the Szegő span at a such that

(3.2) S(z)S(z, a) dz̄ = L(z)L(z, a) dz,

and because the function L(z)L(z, a) on the right hand side is small on the
boundary of Ω, the function S(z)S(z, a) must also be small, and consequently also
small on Ω. Taking the conjugate of (3.2) reveals that the one-form S(z)S(z, a) dz
extends to the double as a meromorphic one-form sa by setting it equal to the
conjugate of L(z)L(z, a) dz on the back side. Our construction shows that the
βj periods of sa are close to zero for j 6= k and the βk period is close to one.

The next step in the proof is to show that there are linear combinations of the
holomorphic one-forms Hw as w ranges over Ω that have β-periods close to the β-
periods of the meromorphic one-form sa constructed above. Since the β-periods
of κw are all zero, it will suffice to find linear combinations of the meromorphic
one-forms σw that have β-periods close to the β-periods of sa. This turns out
to be a rather elementary exercise due to the following observations. For small
complex h,

L1(z, a)L(z, a) ≈
L(z, a+ h)− L(z, a)

h
· L(z, a)

≈
L(z, a+ h)− L(z, a)

h
·
L(z, a+ h) + L(z, a)

2
,

and this last term is a linear combination of the squares L(z, a+h)2 and L(z, a)2.
(Note that L0(z, a)L(z, a) = L(z, a)2 is a square; that’s why we skipped it.) Next,

L2(z, a)L(z, a) ≈
L1(z, a+ h)− L1(z, a)

h
L(z, a)

≈
L(z,a+h+k)−L(z,a+h)

k
− L(z,a+k)−L(z,a)

k

h
L(z, a),

which can be pulled apart into linear combinations of terms of the form

[L(z, a+ h1)− L(z, a+ h2)] · L(z, a)

that can be approximated by

[L(z, a+ h1)− L(z, a+ h2)] ·

(
L(z, a+ h1) + L(z, a+ h2)

2

)
,

which again is a linear combination of squares. This process can be continued to
all higher order terms.

We may now state that there are linear combinations of the holomorphic one-
forms Hw as w ranges over a small disc Dǫ(a) ⊂ Ω with β-periods close to
any prescribed set of values. We must conclude that the linear span is n − 1
dimensional, and that therefore, the matrix [λij ] must be nonsingular. Notice
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that we above constructed linear combinations of the one-forms σw (for w running
over Ω) which have β-periods essentially equal to those of sa and hence generating
a dense set of period vectors in C

n−1. Therefore Theorem 2.1 is now proved.

By showing that [λij] is nonsingular, we have proved that the family of func-
tions of z of the form

n−1∑

i,j=1

λijF
′

i (z)F
′

j(w)

spans an n − 1 dimensional vector space of functions of z as w ranges over any
disc Dǫ(a) ⊂ Ω. This implies also that the vectors

(F ′

1(w), F
′

2(w), . . . , F
′

n−1(w))

must span C
n−1 as w ranges over Dǫ(a).

4. Hejhal’s theorem in the two-connected case

We now turn to showing directly (without using Theorem 2.1) the positivity
of the matrix [λij] when Ω is two-connected, i.e., that λ11 > 0. Since there is
only one function F ′

1 and one constant λ11 in (2.2), we will drop the subscripts.

It was proved in [5] (see also [4, p. 149]) that, for a in one of the boundary
curves of Ω, the Szegő kernel S(a, w) has exactly one zero in Ω− {a} in w at a
point b in the other boundary curve of Ω. Hence, (1.1) yields that

(4.1) K(a, b) = λF ′(a)F ′(b).

Multiply this equation by T (a)T (b) to obtain

(4.2) T (a)K(a, b)T (b) = λF ′(a)T (a)F ′(b)T (b).

Now the positivity of λ follows from the following two consequences of the
Hopf maximium principle (Hopf lemma):

(4.3) T (a)K(a, b)T (b) < 0,

(4.4) F ′(a)T (a)F ′(b)T (b) < 0.

In terms of the outward normal derivatives of the Green’s function and of the
harmonic measure ω these two inequalities express, via (2.3), (2.1), that

∂2G(a, b)

∂na∂nb

> 0,

∂ω(a)

∂na

·
∂ω(b)

∂nb

< 0.

The first inequality actually holds for any two a, b ∈ bΩ, a 6= b, and with Ω
of arbitrary connectivity. It expresses that the Poisson type kernel p(z, a) =

− 1
2π

∂G(z,a)
∂na

(z ∈ Ω) attains its minumum value (namely zero) at any point on

the boundary (for example z = b) with a strictly negative slope. Similarly, the
second inequality says that ω has strictly positive (negative) normal derivative
on a boundary component on which it takes its maximum (minimum) value.
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Using that the complex number −iT (a) can be identified with the outward
normal vector of bΩ at a and that 2∂u/∂z̄ can be identified with the gradient
when u is a real-valued function, it follows that if u is constant on bΩ then

−2i
∂u

∂z
(a)T (a) is real and equals

∂u

∂na

.

Using then (2.1) and (2.3) the inequalities (4.3), (4.4) follow easily.

We remark that for the Szegő kernel one has

T (a)S(a, b)2T (b) ≤ 0,

where equality can be attained (something we have already used). The proof

follows on using S(a, b)T (a) = iL(a, b) and L(a, b) = −L(b, a), whereby the

inequality becomes L(a, b)L(a, b) ≥ 0.

5. Suita’s proof that K(a, a)− 4πS(a, a)2 > 0

In the general n-connected setting, we have shown that the matrix [λij] is
nonsingular, and we have also proved that it is positive definite in the 2-connected
case. We became enthralled with the idea of setting up an induction via a
homotopy argument to deduce Hejal’s complete result that the matrix is positive
definite in general, but we have not been able to complete the argument. In our
quest to find a shorter, simpler proof of Hejhal’s result, we hoped to use Suita’s
[18] beautiful and short proof that

K(a, a)− 4πS(a, a)2 > 0

as a key step. Since Suita’s result is very much in the spirit of this paper and
since we have set up the tools and notation necessary to describe it, we include
Suita’s proof here in case our readers are inspired to someday complete the plan
of our proof.

Consider the multi-valued function

F (z) = exp(−G(z, a)− iG∗(z, a))

where G∗(z, a) represents a multi-valued harmonic conjugate for the Green’s
function G(z, a). Note that, because G(z, a) = − ln |z − a|+ ua(z), where ua(z)
is the harmonic function that solves the Dirichlet problem with boundary data
ln |z−a|, the multi-valued function F is bounded in modulus by a constant times
|z − a| near z = a. In fact,

|F (z)|2 = exp(−2G(z, a)) = |z − a|2 exp(−2ua(z))

is a single-valued function that is in C∞(Ω) and is C∞-smooth up to the boundary
and equal to one there. The Cauchy-Riemann equations yield that the complex
derivative of an analytic function u+ iv is ux− iuy = 2∂u/∂z. Thus, the complex
derivative of the locally defined analytic function F (z) is given by

F ′(z) = −2
∂G(z, a)

∂z
exp(−G(z, a)− iG∗(z, a)) = −2

∂G(z, a)

∂z
F (z)
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and so, using the shorthand notation G = G(z, a),

|F ′(z)| = 2

∣∣∣∣
∂G

∂z

∣∣∣∣ exp(−G).

Since the complex conjugate of ∂G
∂z

is ∂G
∂z̄
, we may also write

|F ′(z)|2 = 4
∂G

∂z

∂G

∂z̄
exp(−2G).

Now it is clear that, even though F might be multi-valued, the quotient F ′/F is
equal to −2∂G

∂z
and is a single-valued analytic function on Ω−{a} with a simple

pole at a. Using these facts we have collected, we may compute
∫

Ω

|F ′(z)|2 dxdy = 4

∫

Ω

∂G

∂z

∂G

∂z̄
e−2G

(
1

2i
dz̄ ∧ dz

)
=

= −2i

∫

Ω

∂

∂z̄

(
−
1

2
e−2G∂G

∂z

)
dz̄ ∧ dz = i

∫

bΩ

e−2G∂G

∂z
dz =

= i

∫

bΩ

∂G

∂z
dz = i

∫

bΩ

(
−

1

2(z − a)
+ regular

)
dz = π.

Next, let

f(z) =
S(z, a)

L(z, a)

be the Ahlfors map, which is an n-to-one branched covering map of Ω onto the
unit disc that is C∞-smooth up to the boundary (see [4, Chap. 13]). It is the
solution of the extremal problem to maximize the modulus of the derivative at a
among all analytic functions that map Ω into the unit disc, normalized so that
the derivative at a is real and positive. Well known properties of f include that
f(a) = 0, f ′(a) = 2πS(a, a), |f | < 1 on Ω, and |f | = 1 on bΩ.

Suita’s proof of the inequality is a fiendishly clever comparison of the Ahlfors
map to the mapping F , which can be thought of as a multi-valued substitute
for the Riemann map in the multiply connected setting. (The Ahlfors map can
also be thought of as a non-one-to-one substitute for the Riemann map in the
multiply connected case.)

Write f(z) = (z − a)g(z) and note that g(z) is an analytic function on Ω that
is nonzero at a, has (n− 1) zeroes (counted with multiplicity) in Ω−{a}, and is
C∞-smooth up to the boundary. We now have

ln

∣∣∣∣
f(z)

F (z)

∣∣∣∣
2

= 2 ln |g(z)|+ 2ua(z)).

Note that |f | = |F | = 1 on bΩ. So ln
∣∣∣ f(z)F (z)

∣∣∣
2

is a harmonic function on Ω minus

the finitely many zeroes of g in Ω, where it tends to minus infinity, and it equals
zero on the boundary of Ω. Since g must have at least one zero in Ω, it follows

from the maximum principle that ln | f(z)
F (z)

| < 0 in Ω. Hence

(5.1) |f(z)| < |F (z)| for z ∈ Ω− {a}.
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The combination

h(z) := f(z)
F ′(z)

F (z)
=

S(z, a)

L(z, a)

F ′(z)

F (z)
= −2

S(z, a)

L(z, a)

∂G(z, a)

∂z

is analytic in Ω if we set h(a) = f ′(a) = 2πS(a, a). Therefore

2πS(a, a) = h(a) =

∫

Ω

h(z)K(z, a) dxdy,

and so, using (5.1),

4π2S(a, a)2 ≤

∫

Ω

|h(z)2| dxdy ·

∫

Ω

|K(z, a)|2 dxdy

=

∫

Ω

∣∣∣∣
f(z)

F (z)

∣∣∣∣
2

|F ′(z)|2 dxdy ·K(a, a)

<

∫

Ω

|F ′(z)|2dxdy ·K(a, a) = πK(a, a).

Now the desired inequality is proved.

6. The three-connected case

Suita’s result allows us to deduce Hejhal’s theorem from rather basic facts in
the case n = 3. The matrix [λij] is easily seen to be hermitian (it is in fact real
and symmetric). Hence it is diagonalizable and we may introduce a new basis
U ′

k(z) for the linear span of the functions F ′

j which are linear combinations of the
F ′

j with real coefficients such that

K(z, w)− 4πS(z, w)2 =
2∑

i=1

µiU
′

i(z)U
′

i(w).

We know that the µi (the eigenvalues of [λij]) are real and nonzero (because
[λij] is nonsingular). We now consider the zeroes of the U ′

k. Since U ′

k(z)T (z) =

−U ′

k(z)T (z) on the boundary, the generalized argument principle, that allows
zeroes on the boundary that are counted with a factor of one-half in front, shows
that each U ′

k(z) has either one zero in Ω or two zeroes on the boundary.

Now, Suita’s result yields that

µ1|U
′

1(a)|
2 + µ2|U

′

2(a)|
2 > 0

for any point a in Ω. Choosing a to be the zero of U ′

2, in case that zero is in Ω,
shows that µ1 is necessarily positive. If instead U ′

2 has two zeroes on the boundary
it still follows, by sliding such a zero a little into Ω, that µ1 cannot be strictly
negative. This is because U ′

1(a) 6= 0 at any a with U ′

2(a) = 0 (not all holomorphic
differentials in a basis can vanish at the same point). Invoking Theorem 2.1 we
then actually have µ1 > 0 again. Similarly µ2 > 0. This completes the proof.
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7. Wishful thinking

We have feelings and urges about Hejhal’s theorem that we’d like to share
here. Hejhal’s proof of the positive definiteness of the lambda matrix was long
and technical and used theta functions in a key way. We would like to come up
with alternative ways of understanding the result, ways that might be quicker
and more elementary. One potentially easier way to understand the proof might
involve a homotopy argument. As a smoothly bounded n-connected domain
varies in a C∞ way, the kernel functions and lambda coefficients vary in a C∞

way, too. Because we have shown that the matrix is nonsingular, an eigenvalue
of the matrix could not pass through zero to change sign under smooth pertur-
bations. We have shown the 1 × 1 matrix in the 2-connected case is positive
definite. If we could show that there is just one n-connected domain for which
the matrix is positive definite, then all n-connected domains must share that
property since they are all smoothly homotopic. Our idea is to let one of the
holes in an n-connected domain shrink down to a point, perhaps heading off to
the outer boundary curve as a shrinking circle. If one understood the asymptotic
behavior of the kernel functions in the limit under this process, then perhaps one
could deduce the positive definiteness of an n-connected domain near the limiting
domain from knowing the result in the (n− 1)-connected case. The 2-connected
case would start the induction process. In fact, understanding the asymptotic
behavior of the Szegő kernel is all that would be needed, as we now explain.

Let dFj denote the holomorphic 1-form that is F ′

j(z)dz on Ω and −F ′

j(z)dz on
the backside of the double. Because F ′

j = 2∂ωj/dz, it is easy to check that the
β-periods of dFj are given by two times the delta function, i.e.,

∫

βk

dFj = 2δkj.

Let κw and σw denote the 1-forms that we introduced in §2. Recall that the
β-periods of κw are zero. Hence, when we take the β-periods of the identity
(1.1), we get a formula that only involves the Szegő kernel, the λ coefficients,
and the function F ′

j . Taking this idea further, let κ denote the (1, 1)-form gotten
from extending dz K(z, w) dw̄ to the double cross the double and let σ denote
the (1, 1)-form gotten by extending dz S(z, w)2 dw̄. Our observations about the
β-periods reveal the known (compare equation (30), p.231, in [10]) formula

4π

∫

βi

∫

βj

σdz dw̄ = −4λij

when i 6= j. For the case i = j, we let β̃i denote a curve obtained from sliding βi

along the i-th handle some distance. In this case, we have

4π

∫

βi

∫

β̃i

σdz dw̄ = −4λii.

This shows, strangely enough, that the λ matrix only depends on the Szegő
kernel! Hence, if we understood the asymptotic behavior of the Szegő kernel as
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a circular hole shrinks away to nothing as it heads toward the outer boundary,
we might be able to reduce Hejhal’s complete result in the n-connected case to
the (n− 1)-connected case to complete our wished for induction.

Using the Kerzman-Stein integral formula for the Szegő kernel as in [4, p. 153-
157] seemed like a promising way to deduce that the kernel functions of the
shrinking hole domains converge in a strong sense to the kernel functions of
the lower-connectivity limit domain. Assuming the shrinking hole is circular
simplifies some of the arguments because the Kerzman-Stein kernel is zero for
(z, w) on the same circular boundary curve. A different idea would be to use slit
models for domains Ω having a hyperelliptic double and use explicit formulas,
due to Barker [3], for the Szegő kernel for such domains. But alas, the needed
results eluded us. We happily continue to ruminate upon it.

Data availability statement: This research does not depend on data.
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