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METRIC, AND THE OBJECTS OF COMPLEX ANALYSIS AND

POTENTIAL THEORY IN MULTIPLY CONNECTED DOMAINS

STEVEN R. BELL

Abstract. It is proved that the family of Ahlfors extremal mappings of a
multiply connected region in the plane onto the unit disc can be expressed
as a rational combination of two fixed Ahlfors mappings in much the same
way that the family of Riemann mappings associated to a simply connected
region can be expressed in terms of a single such map. The formulas reveal
that this family of mappings extends to the double as a real analytic function
of both variables. In particular, the infinitesimal Carathéodory metric will be
expressed in strikingly simple terms. Similar results are proved for the Green’s
function, the Poisson kernel, and the Bergman kernel.

1. Introduction

Let fb denote the Riemann mapping function associated to a point b in a simply
connected planar domain Ω 6= C. Everyone knows that fb is the solution to an
extremal problem; it is the holomorphic map h of Ω into the unit disc such that
h′(b) is real and as large as possible. Everyone also knows that all the maps fb can
be expressed in terms of a single Riemann map fa associated to a point a ∈ Ω via

fb(z) = λ
fa(z)− fa(b)

1− fa(z)fa(b)

where the unimodular constant λ is given by

λ =
f ′a(b)

|f ′a(b)| .

In this paper, I shall prove that the solutions to the analogous extremal problems
on a finitely multiply connected domain in the plane, the Ahlfors mappings, can
be expressed in terms of just two fixed Ahlfors mappings. Many similarities with
the formula above in the simply connected case will become apparent and I will
explore some of the algebraic objects that present themselves. A byproduct of these
considerations will be that the infinitesimal Carathéodory metric on a multiply
connected domain is a rather simple rational combination of two Ahlfors maps and
one of their derivatives. I will explain an outlook which reveals a natural way to
view the extremal functions involved in the definition of the Carathéodory metric

“off the diagonal” in such a way that they extend to Ω̂× Ω̂ where Ω̂ is the double
of Ω.
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Research supported by NSF grant DMS-0072197.

1



2 STEVEN R. BELL

I will also investigate the complexity of the classical Green’s function and Bergman
kernel associated to a multiply connected domain. In particular, it is proved in §6
that if Ω is a finitely connected domain in the plane such that no boundary compo-
nent is a point, then there exist two Ahlfors maps fa and fb associated to Ω such
that the Bergman kernel for Ω is given by

K(w, z) =
f ′a(w)f ′a(z)

(1 − fa(w)fa(z))2

 N∑
j,k=1

Hj(w)Hk(z)

 ,

where the functions Hj are rational combinations of the two Ahlfors maps fa and fb.
Future avenues of research include the problem of extending these results to finite
Riemann surfaces and the problem to determine the way the rational functions that
arise in these formulas depend on the domain.

2. The smooth case

To get started, we shall assume that Ω is a bounded n-connected domain in the
plane with C∞ smooth boundary consisting of n non-intersecting curves. (Later,
we shall consider general n-connected domains such that no boundary component
is a point.) Let S(z, w) denote the Szegő kernel associated to Ω (see [2] or [8] for
definitions and standard terminology in what follows).

Fix a point a in Ω so that the n−1 zeroes a1, . . . , an−1 of S(z, a) in the z-variable
are distinct simple zeroes. (That such points a form an open dense subset of Ω was
proved in [3].) Let a0 be equal to a. I proved in [4, Theorem 3.1] that the Szegő
kernel can be expressed in terms of the n + 1 functions of one variable, S(z, a),
fa(z), and S(z, ai), i = 1, . . . , n− 1 via the formula

S(z, w) =
1

1− fa(z)fa(w)

n−1∑
i,j=0

cijS(z, ai)S(w, aj)(2.1)

where fa(z) denotes the Ahlfors map associated to (Ω, a) and the coefficients cij
are given as the coefficients of the inverse matrix to the n×n matrix [S(aj , ak)]. A
similar formula for the Garabedian kernel was proved in [5],

L(z, w) =
fa(w)

fa(z)− fa(w)

n−1∑
i,j=0

cijS(z, ai)L(w, aj),(2.2)

where the constants cij are the same as the constants in (2.1).
Given a point w ∈ Ω, the Ahlfors map fw associated to the pair (Ω, w) is a

proper holomorphic mapping of Ω onto the unit disc. It is an n-to-one mapping
(counting multiplicities), it extends to be in C∞(Ω), and it maps each boundary
curve of Ω one-to-one onto the unit circle. Furthermore, fw(w) = 0, and fw is the
unique function mapping Ω into the unit disc maximizing the quantity |f ′w(w)| with
f ′w(w) > 0. The Ahlfors map is related to the Szegő kernel and Garabedian kernel
via (see [2, page 49])

fw(z) =
S(z, w)

L(z, w)
.(2.3)

When equations (2.1) and (2.2) are substituted into (2.3), we obtain the mon-
strosity
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fw(z) =
fa(z)− fa(w)

fa(w)(1 − fa(z)fa(w) )

∑n−1
i,j=0 cijS(z, ai)S(w, aj)∑n−1
i,j=0 cijS(z, ai)L(w, aj)

.

Next, divide the numerator and the denominator of the second quotient in this
expression by S(z, a)S(w, a) and multiply the whole thing by one in the form of

S(w, a)/S(w, a) to obtain

fw(z) =
fa(z)− fa(w)

fa(w)(1 − fa(z)fa(w) )

∑n−1
i,j=0 cij

S(z,ai)
S(z,a) S(w, aj)/S(w, a)∑n−1

i,j=0 cij
S(z,ai)
S(z,a) L(w, aj)/S(w, a)

 S(w, a)

S(w, a)
.

It is not hard to show that fa(z) and quotients of the form S(z, ai)/S(z, a) and

L(z, ai)/S(z, a) extend to the double Ω̂ of Ω as meromorphic functions (see [6, p.
6]). Since the argument is quick and simple, we give it here. Let R(z) denote the

antiholomorphic reflection function on Ω̂ which maps Ω into the reflected copy of Ω.
Note that fa(z) is equal to 1/fa(z) on bΩ, which is equal to 1/fa(R(z)) there. Hence,

the holomorphic function fa(z) on Ω and the meromorphic function 1/fa(R(z)) on

the complement of Ω in Ω̂ both extend continuously up to bΩ and have the same
values there. Hence fa extends meromorphically to the double. Similar reasoning
can be applied to the quotients as follows. The Garabedian kernel is related to the
Szegő kernel via the identity

1

i
L(z, a)T (z) = S(a, z) for z ∈ bΩ and a ∈ Ω,(2.4)

where T (z) denotes the complex number of unit modulus pointing in the tan-
gent direction at z ∈ bΩ chosen so that iT (z) represents an inward pointing
normal vector to the boundary. Hence, S(z, ai)/S(z, a) is equal to the conju-
gate of L(z, ai)/L(z, a) on the boundary and the same reasoning used above for
fa shows that S(z, ai)/S(z, a) extends to the double meromorphically. Similarly
L(z, ai)/S(z, a) is equal to the conjugate of S(z, ai)/L(z, a) on the boundary and
this shows that L(z, ai)/S(z, a) extends to the double meromorphically.

It is proved in [7] that it is possible to choose a second Ahlfors map fb so that

fa and fb generate the field of meromorphic functions on Ω̂. (Such a pair is called
a primitive pair, see [1] and [9]). Hence, we have now shown that there exists a
rational function on C6 such that

fw(z) = λ(w)R(fa(z), fb(z), fa(w), fb(w), fa(w), fb(w))(2.5)

where λ(w) is the unimodular function given by

λ(w) = S(w, a)/S(w, a).

This formula is very reminiscent of the formula for the Riemann maps mentioned
at the beginning of this paper. It now becomes irresistible to drop the factor λ(w)
from equation (2.5) and to define a function F (z, w) via

F (z, w) = fw(z)/λ(w).

Let us call this function the alternatively normalized Ahlfors map. Under this
normalization, the map z 7→ F (z, w) has a derivative at w with extremal modulus,
however the argument of the derivative is − argλ(w) there instead of zero. This
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family of extremal maps has the astonishing feature that it extends in a unique way

to Ω̂ × Ω̂ as a complex rational function of fa(z), fb(z), and fa(w), fb(w), fa(w),

fb(w). Furthermore, this extension is meromorphic in z and real analytic in w. One
might also glimpse some semblance of an analogue of a Möbius function in these
deliberations and we shall come back to this point later in the paper.

Another important consequence of formula (2.5) is that the infinitesimal Carathéo-
dory metric can be expressed in terms of two Ahlfors maps. In fact, it is shown in
[7, p. 344] that the quotient f ′b(z)/f ′a(z) extends to be meromorphic on the dou-
ble of Ω and is therefore a rational combination of fa(z) and fb(z). Hence, if we
differentiate (2.5) with respect to z and take the modulus of the expression, we
obtain that |f ′w(z)| is given by |f ′a(z)| times the modulus of a rational function of

fa(z), fb(z), fa(w), fb(w), fa(w), and fb(w). We have shown that the infinitesimal
Carathéodory metric is given by ρ(z)|dz| where

ρ(z) = |f ′a(z)|
∣∣∣Q(fa(z), fb(z), fa(w), fb(w), fa(w), fb(w))

∣∣∣ ,
where Q is a rational function on C6.

Many questions present themselves at this point. The formula above for the
infinitesimal Carathéodory metric almost looks exact. Might there exist special
multiply connected domains where the Carathéodory metric could be computed as
easily as it is in the unit disk? Another natural question to ask is whether or not
similar formulas hold for finite Riemann surfaces. Ahlfors mappings are available
in this setting, but the relationship between these maps and the kernel functions
used in the proof in the planar case are not as straightforward. New methods of
proof would have to be discovered.

3. The nonsmooth case

Suppose that Ω is merely an n-connected domain in the plane such that no
boundary component is a point. It is well known that there is a biholomorphic
mapping φ mapping Ω one-to-one onto a bounded domain Ωa in the plane with
smooth real analytic boundary. The standard construction yields a domain Ωa
that is a bounded n-connected domain with C∞ smooth boundary whose boundary
consists of n non-intersecting simple closed real analytic curves. Let subscript or
superscript a’s indicate that a kernel function or mapping is associated to Ωa.
Kernels without sub or superscripts are associated to Ω. It is well known that
the function φ′ has a single valued holomorphic square root on Ω (see [2, p. 43]).
We define the Szegő kernel and Garabedian kernel associated to Ω via the natural
transformation formulas,

S(z, w) =
√
φ′(z) Sa(φ(z), φ(w))

√
φ′(w)

and

L(z, w) =
√
φ′(z) La(φ(z), φ(w))

√
φ′(w).

The Ahlfors map associated to a point b ∈ Ω is defined to be the solution to the
extremal problem, fb : Ω → D1(0) with f ′b(b) > 0 and maximal. It is easy to see
that Ahlfors maps satisfy

fb(z) = λfaφ(b)(φ(z))
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for some unimodular constant λ and it follows that fb(z) is a proper holomorphic
mapping of Ω onto D1(0). It also follows that fb(z) is given by S(z, b)/L(z, b) just
as in the smooth case. Now it is easy to see that all the quotients that appeared in
the proofs of the results of §2 are invariant under φ and the proofs carry over line
for line. We may now state the following theorem.

Theorem 3.1. Suppose that Ω is an n-connected domain in the plane such that no
boundary component is a point. There exist two points a and b in Ω such that the
alternatively normalized Ahlfors map F (z, w) associated to Ω is a complex rational

function of fa(z), fb(z), and fa(w), fb(w), fa(w), fb(w). Furthermore, the family
of Ahlfors mappings is given by formula (2.5) and the infinitesimal Carathéodory
metric is given by ρ(z)|dz| where

ρ(z) = |f ′a(z)|
∣∣∣Q(fa(z), fb(z), fa(w), fb(w), fa(w), fb(w))

∣∣∣ ,
where Q is a rational function on C6.

4. What is a Möbius transformation?

Here is one way to “invent” Möbius transformations. Let p(z) denote an irre-
ducible polynomial of one variable with no zeroes in the unit disc, i.e., let p(z) = z−b
where |b| > 1. Notice that p(1/z̄) is equal to p(z) on the unit circle. Let q(z) denote
the polynomial obtained by multiplying the conjugate of p(1/z̄) by the power of z
needed to clear the poles in the unit disc, i.e., q(z) = 1−zb̄. Since |q(z)| = |z̄p(1/z̄)|,
it follows that |q(z)| = |p(z)| on the unit circle. Notice that q(z)/p(z) is a Möbius
transformation (let b = 1/ā to make it look more standard).

It is shown in [7] that every proper holomorphic mapping of a smooth n-connected
domain Ω onto the unit disk can be expressed as a rational combination of two
Ahlfors maps fa and fb associated to points a and b in Ω. It is an interesting prob-
lem to determine just exactly which rational functions arise in this manner, and it
is tempting to call some of these rational functions Möbius transformations. Here
is one way to construct such a rational function. Let ∆2 denote the unit bidisc.
Let p(z, w) denote an irreducible polynomial of two variables with no zeroes in
the closure of ∆2. Notice that p(1/z̄, 1/w̄) is equal to p(z, w) on the distinguished
boundary of ∆2. Suppose N is the degree of p(z, w) in z and M is the degree in w.
Let q(z, w) be the polynomial given by zNwM times the conjugate of p(1/z̄, 1/w̄).
Since q(z, w) and p(z, w) have the same modulus on the distinguished boundary of
∆2, and since |zNwM | = 1 there, it follows that the modulus of q(z, w)/p(z, w) is
also one there. It follows that, if it is not constant, q(fa(z), fb(w))/p(fa(z), fb(w))
is a proper holomorphic mapping of Ω onto the unit disc.

More generally, the same construction can be carried out if p(z, w) is an ir-
reducible polynomial on C2 which does not vanish on the portion of the curve
z 7→ (fa(z), fb(z)) inside the closed unit bidisc. Can any proper map from Ω to the
unit disc be expressed in a similar manner, perhaps as some kind of combination
of these basic maps?

5. The Poisson kernel extends nicely to the double

Of course the Poisson kernel extends to the double by simple reflection. Here we
show that it extends nicely in both variables and in terms of some special functions
with geometric meaning.
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Assume that Ω is a bounded n-connected domain in the plane with C∞ smooth
boundary consisting of n non-intersecting curves. Let γ1, . . . , γn−1 denote the inner
curves and let γn denote the outer curve.

The classical Poisson kernel for Ω is related to the normal derivative of the
Green’s function via

p(z, w) =
1

2π

∂

∂nw
G(z, w) z ∈ Ω, w ∈ bΩ,

where (∂/∂nw) denotes the normal derivative in the w variable. It is a standard
fact that we may rewrite this last formula (see [2, pages 134-136]) in the form

p(z, w) = − i
π

∂

∂w
G(z, w)T (w).

It is proved in [4, p. 1367] (see also [6, p. 12] for an easier proof) that the derivative
of the Green’s function Gw(z, w) := ∂

∂w
G(z, w) is given by

Gw(z, w) = π
S(w, z)L(w, z)

S(z, z)
+ iπ

n−1∑
j=1

(ωj(z)− λj(z))uj(w),(5.1)

where the functions λj(z) are given by

λj(z) =

∫
w∈γj

|S(w, z)|2
S(z, z)

ds,

the functions ωj(z) are the harmonic measure functions, and the functions uj are
a basis for the linear span F ′ of the functions F ′j := 2(∂ωj/∂z) normalized so that

δkj =

∫
γk

uj(w) dw.

We now show that the principal term S(w,z)L(w,z)
S(z,z) in the expression for Gw(z, w)

has the interesting property that it extends to the double of Ω in the z variable as
a real analytic function that is a rational combination of two Ahlfors maps fa(z)
and fb(z) and their conjugates. Indeed, if we substitute equations (2.1) and (2.2)
into this expression, we obtain that

S(w, z)L(w, z)

S(z, z)
= T1(z, w)T2(z, w)(5.2)

where

T1(z, w) =
(1− |fa(z)|2)fa(z)

(fa(w)− fa(z))(1− fa(w)fa(z) )

and

T2(z, w) =

(∑n−1
i,j=0 cijS(w, ai)S(z, aj)

)(∑n−1
i,j=0 cijS(w, ai)L(z, aj),

)
∑n−1
i,j=0 cijS(z, ai)S(z, aj)

.

The first term extends to the double as a real analytic function because fa does.
If we divide the numerator and denominator of the second term by |S(z, a)|2,
we observe that the numerator is a linear combination of functions which are
given as products of L(z, an)/S(z, a) times the conjugate of S(z, am)/S(z, a) times
S(w, aq)S(w, ak). As mentioned previously, the functions S(z, am)/S(z, a) and
L(z, an)/S(z, a) extend meromorphically to the double, and hence can be expressed
as rational functions of two Ahlfors maps fa(z) and fb(z). The denominator is a
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linear combination of functions given as the product of L(z, an)/S(z, a) times the
conjugate of S(z, am)/S(z, a). Hence, it has these properties, too, in the z variable.

We have shown that, for fixed w, the function of z given by S(w, z)L(w, z)/S(z, z)
is a rational combination of two Ahlfors maps fa(z) and fb(z) and their conjugates.

We now claim that functions of the form

S(w, aq)S(w, ak)/f ′a(w)

extend meromorphically to the double of Ω. Indeed, since identity (2.4) yields
that S(w, aq)S(w, ak)T (w) is equal to the conjugate of −L(w, aq)L(w, ak)T (w)
for w in the boundary and since T (w)f ′a(w)/fa(w) is equal to the conjugate of
−T (w)f ′a(w)/fa(w), we may use similar reasoning to that in [5, p. 202] and divide
these two expressions to see that S(w, aq)S(w, ak)fa(w)/f ′a(w) extends meromor-
phically to the double. Since fa(w) extends to the double, the claim is proved.
Now, if we were to divide the large expression for S(w, z)L(w, z)/S(z, z) above by
f ′a(w), we would deduce that

S(w, z)L(w, z)

f ′a(w)S(z, z)

is a rational combination of the two functions fa(w) and fb(w), and the four func-
tions fa(z) and fb(z) and their conjugates.

It is proved in [6] that there exist n− 1 points wj in Ω such that the functions

(ωk(z)− λk(z))

are linear combinations of functions of z of the form

Gw(z, wj)− π
S(wj , z)L(wj , z)

S(z, z)
.

The function Gw(z, wj) is harmonic in z on Ω−{wj} and vanishes on the boundary.
Hence, it extends to the double as a harmonic function with two singular points.
The function S(wj , z)L(wj, z)/S(z, z) has been shown to extend to the double.
Since F ′j(w)T (w) is equal to the conjugate of −F ′j(w)T (w) on the boundary, the
same reasoning used above yields that functions of the form

F ′j(w)/f ′a(w)

extend meromorphically to the double of Ω. We may now state that Gw(z, w)
is given as f ′a(w) times a rational combination of the two functions fa(w) and
fb(w), and the four functions fa(z) and fb(z) and their conjugates plus a linear
combination of the functions Gw(z, wj) times rational combinations of fa(w) and
fb(w). In symbols,

Gw(z, w) = f ′a(w)R0(fa(w), fb(w), fa(z), fb(z), fa(z), fb(z) )

+ f ′a(w)

n−1∑
j=1

Gw(z, wj)Rj(fa(w), fb(w))

where the functions R0 and Rj are rational. All the functions that comprise
Gw(z, w) extend nicely to the double except f ′a(w).

The results of this section can be generalized to n-connected domains with non-
smooth boundaries in the same way as in §3, but we shall not do this here.
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6. Linearizing the Green’s function and Bergman kernel

In the simply connected case, the Green’s function is related to a Riemann map
f(z) by the very simple formula

G(z, w) = ln

∣∣∣∣∣ f(z)− f(w)

1− f(z)f(w)

∣∣∣∣∣ .
In the multiply connected setting, the Green’s function is also related to Ahlfors
maps, but it is not clear if the Green’s function can be expressed naturally in terms
of maps. We saw some tantalizing evidence in the last section that there might
be such an expression. In this section, I give some further evidence which leads
me to believe that maybe such an expression exits. This evidence fits nicely into
the subject matter of this paper because a genuine Möbius transformation is a key
ingredient.

Suppose that Ω is a multiply connected domain with C∞-smooth boundary and
let f(z) denote an Ahlfors map associated to (Ω, a) that has simple zeroes. Let
L(z, w) denote the function

ln

∣∣∣∣∣ f(z)− f(w)

1− f(z)f(w)

∣∣∣∣∣ .
We want to investigate the boundary behavior of the quotient G(z, w)/L(z, w) as
z and w are both allowed to approach the boundary. First assume that z is a fixed
point in Ω and let w approach the boundary. Both the numerator and the denomi-
nator extend C∞ smoothly in w to the boundary and the Hopf Lemma reveals that
both terms vanish to first order along the boundary. Hence, the quotient extends
C∞-smoothly up to the boundary in w and the limit is given (by L’Hôpital’s rule)
as the quotient of the normal derivatives (∂/∂nw) in the w variable. Recall that

∂

∂nw
G(z, w) = −2iGw(z, w)T (w).

Since L is also a real valued harmonic function that vanishes on the boundary, the
same reasoning that yields this identity can be applied to the normal derivative of
L(z, w) to obtain

∂

∂nw
L(z, w) = −2iLw(z, w)T (w) =

f ′(w)(1 − |f(z)|2)T (w)

i(f(w)− f(z))(1− f(z)f(w))
.

Notice the similarity of this expression with T1(z, w) in formula (5.2). We may now
divide these two normal derivatives and use (5.1) and (5.2) to obtain that

(∂/∂nw)G(z, w)

(∂/∂nw)L(z, w)
=
if(z)

f ′(w)
T2(z, w) + T3(z, w)

where

T2(z, w) =

(∑n−1
i,j=0 cijS(w, ai)S(z, aj)

)(∑n−1
i,j=0 cijS(w, ai)L(z, aj),

)
∑n−1
i,j=0 cijS(z, ai)S(z, aj)

.

and

T3(z, w) =
i(f(w)− f(z))(1− f(z)f(w))

f ′(w)(1 − |f(z)|2)

n−1∑
j=1

iπ (ωj(z)− λj(z))uj(w).
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Although this formula is painful to look at, a moment of suffering reveals that the
right hand side can be written as a sum of simple terms to yield that

(∂/∂nw)G(z, w)

(∂/∂nw)L(z, w)
=
∑
j

µj(z)hj(w)(6.1)

where each of the functions µj extend to the double as real analytic functions and
each of the functions hj(w) extend to the double as meromorphic functions. (Note
that here we have used the fact proved earlier that uj/f

′ extends to the double as
a meromorphic function.) I view this formula as a linearization or polarization of
the Poisson kernel. I take this opportunity to state a theorem.

Theorem 6.1. Suppose that Ω is a bounded finitely connected domain in the plane
with C∞ smooth boundary. The Green’s function associated to Ω satisfies an iden-
tity of the form

∂

∂w
G(z, w) =

∂

∂w
L(z, w)

∑
j

µj(z)hj(w)

where each µj extends to be real analytic on the double of Ω and each hj extends
to be meromorphic on the double of Ω.

We note that we have proved this identity when z is in Ω and w is in the boundary
of Ω, but since the functions of w in the expression are all meromorphic, the identity
extends to hold for all w in Ω.

We now continue to deal with equation (6.1) and we assume that w is back in
the boundary and we let the z variable tend to a boundary point other than w to
obtain

(∂2/∂nz∂nw)G(z, w)

(∂2/∂nz∂nw)L(z, w)
=

(∂2/∂z̄∂w)G(z, w)

(∂2/∂z̄∂w)L(z, w)
=
if(z)

f ′(w)
T2(z, w) + T4(z, w),

where T2(z, w) is as above, but T4(z, w) is given by

T4(z, w) =
i(f(w) − f(z))(1− f(z)f(w))

f ′(w)

n−1∑
j=1

νj(z)uj(w),

where νj(z) is equal to the limit of iπ (ωj(z)− λj(z)) /(1−|f(z)|2) as z tends to the
boundary. Since (∂2/∂z̄∂w)G(z, w) is equal to K(w, z) and since (∂2/∂z̄∂w)L(z, w)
is equal to

f ′(w)f ′(z)

(1− f(w)f(z))2
,

we deduce that

K(w, z) =
f ′(w)f ′(z)

(1− f(w)f(z))2

∑
j

σj(z)Hj(w)


where the sum is finite and each function Hj(w) extends to be meromorphic on the
double of Ω. We may assume that this sum has been collapsed so that the functions
Hj(w) are linearly independent on Ω. We can now exploit the hermitian property
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of the Bergman kernel to easily deduce that the σj functions are actually linear
combinations of the conjugates of the Hj . Hence, we have proved that

K(w, z) =
f ′(w)f ′(z)

(1 − f(w)f(z))2

 N∑
j,k=1

Hj(w)Hk(z)

 .

We have only shown that this identity holds on the boundary, but it is clear that
it extends to the inside of the domain because all the functions that appear in the
identity are meromorphic. We can now use the fact proved in [7] that the field of
meromorphic functions on the double is generated by two Ahlfors maps to be able
to state that the functions Hj are rational combinations of two Ahlfors maps. We
have operated under the assumption that Ω has smooth boundary. Finally, if Ω
does not have smooth boundary, we can map to a domain with smooth boundary
and use the fact that the terms in the expression for K(z, w) transform under
biholomorphic mappings to obtain the following theorem.

Theorem 6.2. Suppose that Ω is a finitely connected domain in the plane such
that no boundary component is a point. There exist two points a and b in Ω such
that the Bergman kernel associated to Ω is given by

K(w, z) =
f ′a(w)f ′a(z)

(1 − fa(w)fa(z))2

 N∑
j,k=1

Hj(w)Hk(z)

 ,

where the functions Hj are rational combinations of the two Ahlfors maps fa and
fb.

There are many interesting questions that present themselves at this point. The
rational functions that appear in the formula in Theorem 6.2 most likely satisfy
an invariance property under biholomorphic mappings and have algebraic geomet-
ric significance. The functions λj have many interesting properties. I wonder if
they might be expressible as rational combinations of two Ahlfors maps and their
conjugates. I also wonder if the Green’s function can be shown to have similar
finite complexity to all the other kernel functions that have been studied in this
paper, modulo some logarithmic expressions. It is also a safe bet that many of the
results in this paper extend to the case of finite Riemann surfaces. I leave these
investigations for the future.
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