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Abstract. We will demonstrate a new way to understand that quadrature
domains are dense in the realm of smoothly bounded planar domains. The new
outlook has the virtue of possibly generalizing to several complex variables,
and we propose an avenue of research for the study of quadrature domains in
several variables.

1. Introduction

Quadrature domains in the plane share many of the properties of the unit disc.
The boundaries are algebraic curves and the Bergman and Szegő kernel functions
associated to them are algebraic functions, and every finitely connected domain
such that no boundary component is a point is biholomorphic to a quadrature
domain. The ground breaking work of Aharonov and Shapiro [1] and Gustafsson
[11] started an avalanche of results on these fascinating and useful domains. (See
[12] for the current state of research.) Gustafsson proved that quadrature do-
mains are dense in the category of domains bounded by finitely many continuous
curves, and this result has been generalized to the C∞-smooth category in [8, 9].
This density theorem opens the door to methods for “zipping” the classical ker-
nel functions of complex analysis and potential theory down to very small data
sets (see [8]). The change of variables given by the density theorem also yields
a new way to understand Bergman coordinates and representative domains (see
[10]). The purpose of this paper is to demonstrate an alternate way of looking
at the density theorem that generalizes nicely to several complex variables. We
shall also debate about what the correct definition of quadrature domain should
be in several complex variables and make a conjecture about a class of domains
that we shall call “one point Quadrature domains.”

In this paper, by quadrature domain in the plane, we will mean a bounded
domain Ω such that there exist finitely many points {wj}N

j=1 in the domain and
non-negative integers nj such that complex numbers cjk exist satisfying

∫
Ω

h dA =
N∑

j=1

nj∑
k=0

cjkh
(k)(wj)

for every function h in the Bergman space H2(Ω) of square integrable holomor-
phic functions on Ω. Here, dA denotes Lebesgue area measure.
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If Ω is a bounded domain in the plane, then the Bergman space of holomorphic
functions in L2(Ω) and the associated Bergman kernel K(z, w) are well under-
stood. Let K0(z, w) denote K(z, w) and let Km(z, w) = ∂m

∂w̄m K(z, w). Let K
denote the complex linear span of all functions h(z) of z of the form Km(z, a)
as a ranges over Ω and m ranges over all non-negative integers. We shall call K
the Bergman span associated to Ω. If U is an open subset of Ω, let KU denote
the complex linear span of functions of z from {K(z, a) : a ∈ U}, and given
a point a in Ω, let Ka denote the complex linear span of functions of z from
{Km(z, a) : m = 0, 1, 2, . . .}.

The following theorem is well known.

Theorem 1.1. A bounded domain is a quadrature domain if and only if the
constant function h(z) ≡ 1 belongs to the Bergman span associated to the domain.

We will prove in this paper that, if a bounded domain is a quadrature domain,
then not only are the constant functions in the Bergman span, but so are all
complex polynomials. (In fact, so are derivatives of rational functions with no
poles in the closure of the domain, i.e., rational functions with poles of order 2
or higher outside the closure of the domain.) Hence, the following silly theorem
is true.

Theorem 1.2. A bounded domain is a quadrature domain if and only if the
complex polynomials belong to the Bergman span associated to the domain.

In the last section of this paper, we propose that this last theorem might not
be as silly in several complex variables, and should perhaps be the definition
of quadrature domain in several complex variables. We also make a conjecture
about “one point” Quadrature domains in several variables that might relate to
the Jacobian Conjecture.

Given a bounded domain Ω bounded by finitely many non-intersecting C∞-
smooth Jordan curves, let A∞(Ω) denote the subspace of C∞(Ω) consisting of
analytic functions. We will explain in §2 a new method to construct an analytic
function f(z) on Ω that is as close to the identity in A∞(Ω) as desired such that
f(Ω) is a quadrature domain. Hence, there exists quadrature domains that are
as C∞ close to Ω as desired.

The main tools we will use to demonstrate the density of quadrature domains
are the following two theorems.

Theorem 1.3. Suppose Ω1 and Ω2 are bounded domains in the plane. Suppose
further that f : Ω1 → Ω2 is a biholomorphic mapping. Then Ω2 is a quadrature
domain if and only if f ′ belongs to the Bergman span associated to Ω1.

Avci proved half of Theorem 1.3, that f ′ is in the Bergman span if Ω2 is a
quadrature domain, in his unpublished Stanford PhD thesis [2]. We will prove
this theorem in §3, where we will also prove that the word “biholomorphic” in
the theorem can be replaced by “proper holomorphic.” We will note in §3 that
Theorem 1.3 can be combined with Theorem 1.2 to extend the conclusion of
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Theorem 1.3 to read: Ω2 is a quadrature domain if and only if f ′fn belongs to
the Bergman span associated to Ω1 for n = 0, 1, 2, . . . ; this allows us to divide
f ′f by f ′ when Ω2 is a quadrature domain to see that f is a quotient of elements
in the Bergman span. This reveals that f , as constructed in this paper, is one
and the same with the Bergman coordinates constructed in [10].

Theorem 1.4. Suppose that Ω is a bounded domain bounded by finitely many
non-intersecting C∞-smooth Jordan curves. Then the Bergman span K associ-
ated to Ω is dense in A∞(Ω). Furthermore, KU is dense in A∞(Ω) for any open
subset U of Ω, and Ka is dense in A∞(Ω) for any point a ∈ Ω.

Theorem 1.4 was proved in [3] in several complex variables. The proof there
works fine in one variable, but we will give a short one variable proof in §3 using
the techniques of [6, Chap. 28].

The author would like to thank Zachary Sylvan for many interesting conver-
sations about the subject matter of this paper.

2. Constructing quadrature domains close by

In this section, we show how Theorems 1.3 and 1.4 allow us to construct
quadrature domains that are close to a given smooth domain. Suppose that Ω is
a bounded domain bounded by n non-intersecting C∞ smooth Jordan curves, n >
1. We first prove a key lemma. Let γ1, γ2, . . . , γn−1 denote the inner boundary
curves of Ω and let γn denote the outer boundary.

Lemma 2.1. There are n−1 points a1, a2, . . . , an−1 in Ω such that the (n−1)×
(n− 1) matrix of periods [λij] given by

λij =

∫
γi

K(z, aj) dz,

i = 1, . . . , n− 1, j = 1, . . . , n− 1, is non-singular.

Proof of the lemma. Suppose that det [λij ] is zero for all choices of points
aj . Let ωj denote the harmonic measure functions (that are harmonic functions
equal to one on γj and zero on the other boundary curves), and let F ′

j = 2 ∂
∂z

ωj .
It is well known that the functions F ′

j are in A∞(Ω) and that the matrix of

periods Aij =
∫

γi
F ′

j(z) dz, i, j = 1, . . . , n − 1, is non-singular. Think of the

quantity det [λij ] as being a function of (a1, . . . , an−1). The determinant is linear
in the first column. We may find a function in the span of {K(z, a1) : a1 ∈ Ω}
that is as close to the function F ′

1 in the C∞(Ω) topology as desired. Hence, the
determinant of the matrix gotten from [λij ] by replacing the first column with∫

γi
F ′

1(z) dz is zero for all choices of a2, . . . , an−1. This process can be repeated

for successive columns to deduce the contradiction that the matrix of periods
[Aij ] has zero determinant. Hence, the lemma is proved.

We may now construct a quadrature domain close to Ω as follows. Let aj

denote the points given by Lemma 2.1. Suppose that H is a function in the
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Bergman span that is close to the constant function 1 in A∞(Ω). The periods
of such a function are small. Hence, there exist small coefficients cj so that the

periods of H(z) − ∑n−1
j=1 cjK(z, aj) are zero. Denote this last function, which is

a function in the Bergman span which is also close to 1 in A∞(Ω), by F (z). Let
f be a complex antiderivative of F where we choose the constant of integration
so that f(z) is close to the identity in A∞(Ω). We want f to be so close to the
identity that f is one-to-one on Ω and f(Ω) is as close as we desire to Ω. (We
may run this argument backwards from here to determine just how close we want
close to mean and how small we want small to mean earlier in the paragraph.)

Now according to Theorem 1.3, f(Ω) is a quadrature domain that is C∞ close
to Ω.

The case of a simply connected domain Ω is handled the same way, but the
argument is simpler because we do not need the lemma or the points aj.

3. Proofs of the main theorems

We first prove Theorem 1.3. Suppose Ω1 and Ω2 are bounded domains in the
plane, and suppose that f : Ω1 → Ω2 is a biholomorphic mapping. Assume
that f ′ belongs to the Bergman span associated to Ω1; we will show that Ω2 is
a quadrature domain. Let h be a function in the Bergman space H2(Ω2) (which
is the subspace of L2(Ω2) consisting of analytic functions). Let the L2 inner
product on Ωj be denoted 〈u, v〉j. Since |f ′(z)|2 is equal to the real Jacobian of
the conformal mapping f viewed as a mapping from R2 to itself, it is easy to
verify that

(3.1)

∫
Ω2

h dA = 〈h, 1〉2 = 〈f ′(h ◦ f), f ′〉1,

and since f ′ is assumed to be in the Bergman span, and since the derivatives of
the Bergman kernel in the second variable yield the corresponding derivatives of
an analytic function when paired with one in the inner product, this last inner
product is equal to a complex linear combination of values and derivatives of
f ′(h ◦ f) at finitely many points, giving a quadrature identity that reveals Ω2 to
be a quadrature domain.

To prove the reverse implication, suppose that Ω2 is a quadrature domain, and
let g be any function in H2(Ω1). Let F = f−1 and note that

(3.2) 〈g, f ′〉1 = 〈F ′(g ◦ F ), 1〉2 =

∫
Ω2

F ′(g ◦ F ) dA,

and this last quantity is equal to a fixed linear combination of values and deriva-
tives of F ′(g ◦ F ) at finitely many points in Ω2, which is equal to a fixed linear
combination of values and derivatives of g at finitely many points in Ω1. Thus,
f ′ has the same effect as an element of the Bergman span associated to Ω1 when
paired with an element of H2(Ω1), and we conclude that these two functions
must be one and the same.
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To generalize Theorem 1.3 with the words “proper holomorphic” in place of
“biholomorphic,” we use the tools described in [6, Chap. 16]. If f : Ω1 → Ω2

is proper holomorphic, then it has a mapping degree m and there exist m local
inverses F1, . . . , Fm to f defined locally on Ω2 minus the image of the branch
locus of f . If g is in H2(Ω1), then

∑m
k=1 F ′

k(g ◦Fk) is a function in H2(Ω2) (with
removable singularities at the images of the branch points of f). Equation (3.1)
becomes ∫

Ω2

h dA = 〈h, 1〉2 =
1

m
〈f ′(h ◦ f), f ′〉1,

and Equation (3.2) becomes

〈g, f ′〉1 = 〈
m∑

k=1

F ′
k(g ◦ Fk), 1〉2,

and the argument proceeds exactly the same. The only point that requires extra
care is where one notes that when one evaluates a derivative of

∑m
k=1 F ′

k(g ◦ Fk)
at a point a in Ω2, one gets a finite linear combination of g and its derivatives
evaluated at points in f−1(a). This fact is proved in [5].

We now turn to the proof of Theorem 1.4. (A very constructive proof of the
result can be found on page 125 of [6].) Suppose that Ω is a bounded domain with
C∞-smooth boundary and let A−∞(Ω) denote the space of analytic functions on
Ω that are bounded by a constant times a negative power of the distance to the
boundary. It is proved in [6, Chap. 28] that A∞(Ω) and A−∞(Ω) are mutually
dual via an extension of the usual L2 pairing. If the Bergman span is not dense
in A∞(Ω), then there is a non-zero element g of A−∞(Ω) that is orthogonal to
the Bergman span. But when g is paired with Km(z, a), the m-th derivative of
g at a is obtained (see [6, p. 125]). Hence, g and all its derivatives vanish on Ω.

The same argument works if the linear span of the smaller sets {K(z, a) : a ∈
U} and {Km(z, a) : m = 0, 1, 2, . . .} are used in place of the Bergman span.
(In fact, any set of points or points plus derivatives at points that is a set of
determinacy for analytic functions can be used in the second variable a.) We
remark here that the points and derivatives in the quadrature identity associated
to domains of the form Ω = f(Ω1) that we have constructed are easily found by
our construction. If the mapping f is biholomorphic and a set KU is used to
approximate the function 1, then the quadrature identity is of the simple form

∫
Ω

h dA =

N∑
j=1

cjh(aj),

where the points aj are fixed points from the set f(U). If a set Ka is used to
approximate the function 1, then the quadrature identity is a “one point” identity
of the form ∫

Ω

h dA =
N∑

k=1

ckh
(k)(α),

where α = f(a).
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Next, we prove Theorem 1.2, i.e., that the polynomials zn belong to the
Bergman span associated to a bounded quadrature domain. Suppose Ω is a
quadrature domain of finite area. Aharonov and Shapiro [1] proved that the
boundary of Ω is piecewise real analytic and that the Schwarz function S(z)
extends to be continuous up to the boundary and meromorphically to Ω (with
finitely many poles), and is such that z̄ = S(z) for z in the boundary. Let h be a
holomorphic function on Ω that extends continuously to the boundary. We shall
now do a calculation analogous to one in [9, p. 74] (where n = 1) to see that∫∫

Ω

zn h(z) dA =
i

2

∫∫
Ω

zn h(z) dz ∧ dz̄

=
i

2(n + 1)

∫∫
Ω

∂

∂z

(
zn+1 h(z)

)
dz ∧ dz̄ =

i

2(n + 1)

∫
bΩ

zn+1 h(z) dz̄

=
i

2(n + 1)

∫
bΩ

S(z)n+1 h(z) dz̄.

The Residue Theorem yields that this last integral is equal to the conjugate of a
fixed linear combination of values of h and finitely many of its derivatives at the
points in Ω where S(z) has poles. There is an element of the Bergman span that
has exactly the same effect when paired with h in the L2 inner product. Since
such functions h are dense in the Bergman space, this shows that the function
zn and the element of the Bergman span must be one and the same.

The same argument can be repeated with R(z) in place of zn where R(z) is a
rational function without simple poles that is analytic on a neighborhood of Ω.

Finally, we remark that when Theorems 1.2 and 1.3 are combined, it is easy
to see that in the setting of Theorem 1.3, when f ′ is in the Bergman span
associated to Ω1 and Ω2 is a quadrature domain, every function of the form f ′fn

for n = 0, 1, 2, . . . must also be in the Bergman span. (This result follows from
the transformation formula for the Bergman kernels under proper holomorphic
mappings, see [6, p. 68]). This reveals that f = (f ′f)/f ′ is a quotient of elements
in the Bergman span, and consequently, in the case where f is biholomorphic, f
can be seen to be a Bergman coordinate function as defined in [10].

4. The case of several complex variables.

It would seem natural to call a bounded domain Ω in Cn a quadrature domain
if the integral of an L2 holomorphic function over the domain with respect to
Lebesgue volume measure (on R2n) is equal to a fixed finite linear combination
of values and derivatives of the function at a fixed finite set of points in the
domain. Let K(z, w) denote the Bergman kernel associated to Ω, and for a

multi-index α of length n, let Kα(z, w) = ∂|α|
∂w̄α K(z, w). Let Kν(z, w) also denote

the Bergman kernel when ν = (0, 0, . . . , 0) is the zero multi-index. Define the
Bergman span associated to Ω to be the complex linear span of the functions
Kα(z, a) as a ranges over Ω and α ranges over all multi-indices of length n. With
these definitions in place, the proof of Theorem 1.3 goes over line for line with
the complex Jacobian u = det [∂fi/∂zj ] in place of the the simple derivatives.
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Theorem 4.1. Suppose Ω1 and Ω2 are bounded domains in Cn. Suppose further
that f : Ω1 → Ω2 is a proper holomorphic mapping. Then Ω2 is a quadrature
domain if and only if u belongs to the Bergman span associated to Ω1.

The density lemma for the Bergman span was first proved in smooth bounded
domains that satisfy Condition R in [3], and so it seems distinctly possible to
prove the density of quadrature domains in some subclass of the category of
smooth domains that satisfy Condition R. To do so, one would need to be able
to show that given a function U(z) in the Bergman span that is close to 1 in
A∞(Ω1), one can find a biholomorphic mapping f that is close to the identity
such that the Jacobian of f is equal to U . This problem is easy to solve on certain
domains. On the unit ball, for example, one can take f to be (z1, . . . , zn−1, µ(z))
where µ(z) =

∫ zn

0
U(z1, . . . , zn−1, τ) dτ .

It is clear that quadrature domains in several variables do not have similar
strong properties to their one variable cousins. They do not have real algebraic
boundaries, or even real analytic boundaries, in general, since it is easy to con-
struct circular domains with smooth non-real-analytic boundaries. I also doubt
that they will have the same utility when it comes to Bergman coordinates (see
[10]). A more interesting class of domains might be the Quadrature domains
(with a capital “Q”) such that the polynomials belong to the Bergman span.
Complete circular domains that contain the origin have this property (see [4, 7]).
In fact the polynomials are given as the linear span of K(z, 0) and Kα(z, 0) as
α ranges over all multi-indices. In this sense, one might call complete circular
domains that contain the origin one-point Quadrature domains . (The only clas-
sical one-point quadrature domains in the plane are discs.) If Ω2 is a complete
circular domain that contains the origin and f : Ω1 → Ω2 is a biholomorphic
polynomial mapping with unit Jacobian and polynomial inverse, then Ω1 is also
a one point Quadrature domain in this generalized sense. I suspect that these
are the only one point Quadrature domains in several variables. Understanding
these objects might have a bearing on the famous Jacobian Conjecture.

Another category of domains in several complex variables that might prove
to be interesting is the class of domains such that the intersection of every one-
dimensional complex line through a fixed point is a quadrature domain. I like to
call this generalization of circular domains “quadular domains.” Since quadra-
ture domains are so dense, maybe it is possible to approximate quite general do-
mains by quadular domains, and maybe proper holomorphic mappings between
quadular domains have similar nice properties to mappings between circular do-
mains (see [4, 7]).
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