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Abstract. I have recently shown that the Bergman kernel associated to a finitely
connected domain in the plane is given as an explicit rational combination of finitely
many basic functions of one complex variable. In this paper, it is proved that all
the basic functions and constants in the new formula for the Bergman kernel can
be evaluated using one-dimensional integrals and simple linear algebra. In fact, all
integrals used in the computations are line integrals over boundary curves; at no point
is an integral with respect to area measure required. From a theoretical perspective,
these results lead to an understanding of the complexity of the Bergman kernel. From
a practical point of view, they give an efficient method to numerically compute the
Bergman kernel.

Similar results are also proved for the Szegő kernel function, the Poisson kernel,
and the classical Green’s function.

1. Introduction. The Bergman kernel associated to a bounded domain in the
plane is frequently expressed as an infinite sum of orthonormal holomorphic func-
tions as K(z, w) =

∑∞
j=1 ϕj(z)ϕj(w). This formula is useful in theoretical contexts,

but of little practical use. People have tried to numerically orthonormalize a set of
rational functions that span a dense subspace of the Bergman space and have taken
partial sums of the infinite series in hopes of approximating the Bergman kernel of
a multiply connected domain. The results of such numerical nightmares are usually
disappointing. In this paper, I shall express the Bergman kernel in terms of finitely
many elementary functions that are easy to compute. I shall also give a recipe to
compute the functions and the coefficients appearing in the formula. All the terms
can be computed using “one-dimensional” objects. The results I shall describe are
based on a new formula for the Szegő kernel given in [4].

Suppose that Ω is a bounded finitely connected domain in the plane with C∞

smooth boundary, i.e., that the boundary bΩ of Ω is given by finitely many non-
intersecting C∞ simple closed curves. The Bergman kernel K(z, w) and the Szegő
kernel S(z, w) associated to such a domain are both known to extend to be in the
space C∞((Ω×Ω)−D) where D denotes the boundary diagonal {(z, z) : z ∈ bΩ}.
Our problem is to determine a method to compute K(z, w) at any given pair of
points (z, w) in (Ω×Ω)−D. We shall see that, once the boundary values of finitely
many basic functions of one variable have been determined, the kernels become
known at all points (z, w). Furthermore, the basic functions which comprise the
kernel functions are all solutions to explicit Kerzman-Stein integral equations, and
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as such, are easy to compute. All elements of the kernel functions may be computed
by means of simple linear algebra and one dimensional integrals and one dimensional
integral equations. At no point is it necessary to evaluate an integral with respect
to two-dimensional area measure. We shall prove analogous results for the Poisson
kernel and the gradient of the Green’s function.

In this paper, we require our domains to have C∞ smooth boundaries. To study
the kernels on a non-smooth finitely connected domain such that no boundary
component reduces to a point, one could use a classical construction to map the
given domain onto a smooth domain. Such a map is built up of a sequence of
Riemann mapping functions associated to simply connected domains and inversions.
To compute the kernel functions on the more general domain, one could use one
of the many excellent methods for computing Riemann maps of simply connected
domains to build such a map and associated smooth domain and then use the map
to pull back the results we describe in this paper to the original non-smooth domain.

Although the words, “numerical method,” appear in this paper, this is not a
paper on numerical analysis; no examples of numerical computations are given.
However, the results of this paper should be interesting to numerical analysts.

2. The Ahlfors map and zeroes of the Szegő kernel. Before we can state
our main theorems, we must recall some facts about the Szegő kernel function.

If Ω is a bounded n-connected domain in the plane with C∞ smooth boundary,
let γj , j = 1, . . . , n, denote the n non-intersecting C∞ simple closed curves which
define the boundary of Ω, and suppose that γj is parameterized in the standard
sense by zj(t), 0 ≤ t ≤ 1. We shall use the convention that γn denotes the outer
boundary curve of Ω. Let T (z) be the C∞ function defined on bΩ such that T (z) is
the complex number representing the unit tangent vector at z ∈ bΩ pointing in the
direction of the standard orientation. This complex unit tangent vector function is
characterized by the equation T (zj(t)) = z′j(t)/|z′j(t)|. (We remark that the notion
of the “standard sense” mentioned above translates to the condition that −iT (z) is
a complex number pointing in the direction of the outward pointing normal vector
at z ∈ bΩ.)

To fix notation, we state that A∞(Ω) is the space of holomorphic functions on
Ω that are in C∞(Ω), L2(Ω) is the space of complex valued functions on Ω that are
square integrable with respect to Lebesgue area measure dA, L2(bΩ) is the space
of complex valued functions on bΩ that are square integrable with respect to arc
length measure ds, H2(Ω) is the Bergman space of holomorphic functions on Ω
that are in L2(Ω), H2(bΩ) is the Hardy space of functions in L2(bΩ) that are the
L2 boundary values of holomorphic functions on Ω. The inner products associated
to L2(Ω) and L2(bΩ) are

〈u, v〉Ω =

∫∫
Ω

u v̄ dA and 〈u, v〉bΩ =

∫
bΩ

u v̄ ds,

respectively.
For each fixed point a ∈ Ω, the Szegő kernel S(z, a), as a function of z, extends to

the boundary to be a function in A∞(Ω). (An even stronger smoothness property
is mentioned in the introduction.) Furthermore, S(z, a) has exactly (n− 1) zeroes
in Ω (counting multiplicities) and does not vanish at any points z in the boundary
of Ω. The Garabedian kernel L(z, a) is a kernel related to the Szegő kernel via the
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identity

(2.1)
1

i
L(z, a)T (z) = S(a, z) for z ∈ bΩ and a ∈ Ω.

For fixed a ∈ Ω, the kernel L(z, a) is a holomorphic function of z on Ω− {a} with
a simple pole at a with residue 1/(2π). Furthermore, as a function of z, L(z, a)
extends to the boundary and is in the space C∞(Ω−{a}). In fact, L(z, a) extends
to be in C∞((Ω× Ω) − {(z, z) : z ∈ Ω}). Also, L(z, a) is non-zero for all (z, a) in
Ω× Ω with z 6= a.

The kernel S(z, w) is holomorphic in z and antiholomorphic in w on Ω×Ω, and
L(z, w) is holomorphic in both variables for z, w ∈ Ω, z 6= w. We shall need to know
that S(z, z) is real and positive for each z ∈ Ω, and we shall need to use the basic

identities S(z, w) = S(w, z) and L(z, w) = −L(w, z). The Szegő kernel reproduces
holomorphic functions in the sense that

h(a) = 〈h, S(·, a)〉bΩ

for all h ∈ H2(bΩ) and a ∈ Ω.

Given a point a ∈ Ω, the Ahlfors map fa associated to the pair (Ω, a) is a proper
holomorphic mapping of Ω onto the unit disc. It is an n-to-one mapping (counting
multiplicities), it extends to be in A∞(Ω), and it maps each boundary curve γj one-
to-one onto the unit circle. Furthermore, fa(a) = 0, and fa is the unique function
mapping Ω into the unit disc maximizing the quantity |f ′a(a)| with f ′a(a) > 0. The
Ahlfors map is related to the Szegő kernel and Garabedian kernel via

(2.2) fa(z) =
S(z, a)

L(z, a)
.

Also, f ′a(a) = 2πS(a, a) 6= 0. Because fa is n-to-one, fa has n zeroes. The simple
pole of L(z, a) at a accounts for the simple zero of fa at a. The other n−1 zeroes of
fa are given by the (n− 1) zeroes of S(z, a) in Ω−{a}. Let a1, a2, . . . , an−1 denote
these n−1 zeroes (counted with multiplicity). I proved in [3] (see also [1, page 105])
that, if a is close to one of the boundary curves, the zeroes a1, . . . , an−1 become
distinct simple zeroes. It follows from this result that, for all but at most finitely
many points a ∈ Ω, S(z, a) has n− 1 distinct simple zeroes in Ω as a function of z.

3. A formula for the Szegő kernel. The zeroes of the Szegő kernel give rise
to a particularly nice basis for the Hardy space of an n-connected domain with
C∞ smooth boundary. We shall use the notation that we set up in the preceding
section. We assume that a ∈ Ω is a fixed point in Ω that has been chosen so that
the n − 1 zeroes, a1, . . . , an−1, of S(z, a) are distinct and simple. We shall let a0

denote a and we shall use the shorthand notation f(z) for the Ahlfors map fa(z).

It was shown in [4] that the set of functions S(z, ai)f(z)k, where 0 ≤ i ≤ n− 1
and k ≥ 0, forms a basis for the Hardy space H2(bΩ) and that this basis is easy
to orthonormalize because it is already “nearly orthogonal.” The formula in the
following theorem was obtained in [4] by writing the Szegő kernel in terms of the
orthogonal basis obtained from the functions listed above.
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Theorem 3.1. The Szegő kernel is given by

(3.1) S(z, w) =
1

1− f(z)f(w)

c0S(z, a)S(w, a) +
n−1∑
i,j=1

cijS(z, ai)S(w, aj)


for all (z, w) in Ω. Here, f(z) denotes the Ahlfors map fa(z). Furthermore, the

(n− 1)× (n− 1) matrix M = [S(aj, ak)]k=1,...,n−1
j=1,...,n−1 is non-singular. The coefficient

c0 in the formula is given by c0 = 1/S(a, a), and the coefficients cij are given as
the coefficients of the inverse matrix to M.

4. Recipes for the Szegő and Garabedian kernels. Formula (3.1) reveals
that the Szegő kernel associated to an n-connected domain is composed of the n+1
functions, S(z, a), S(z, a1), S(z, a2), . . . , S(z, an−1), and f(z) (or L(z, a) because
f(z) = S(z, a)/L(z, a)). If one knows the boundary values of these n+ 1 functions,
then the Szegő kernel may be evaluated at any pair of points (z, w) in Ω × Ω by
applying the Cauchy integral formula twice, once to evaluate the functions on the
right hand side of (3.1) at z, and once to evaluate the functions at w. (Actually,
to compute the Garabedian kernel at an interior point, one would use the Cauchy
integral formula to evaluate L(z, a)−(2π)−1/(z−a) and then add back the singular
part.) In this section, we show how much effort is required to numerically compute
the boundary values of the n+ 1 functions that comprise S(z, w).

Kerzman and Stein [7] discovered an effective method for computing the Szegő
kernel (see also [1,2,6,8,10]). They proved that the function Sa(z) = S(z, a) is the
solution to a Fredholm integral equation of the second kind given by

Sa(z)−
∫
w∈bΩ

A(z, w)Sa(w) ds = Ca(z),

where A(z, w) is the Kerzman-Stein kernel and Ca(z) is the Cauchy kernel. To be
precise,

A(z, w) =
1

2πi

(
T (w)

w − z −
T (z)

w̄ − z̄

)
if z, w ∈ bΩ, z 6= w, and A(z, w) = 0 if z = w, and

Ca(z) =
1

2πi

T (z)

ā− z̄ .

The Kerzman-Stein kernel is skew-hermitian and, in spite of the apparent singu-
larity at z = w in the formula above, it is in C∞(bΩ × bΩ). (Kerzman and Stein
discovered that the apparent singularities in the formula for A(z, w) exactly can-
cel.) The Cauchy kernel is in C∞(bΩ). It follows from standard theory that this
integral equation has a unique C∞ smooth solution. (See Kerzman and Trummer
[8] and [2,6] for descriptions of convenient ways to write and to solve this integral
equation.)

The Kerzman-Stein equation produces the boundary values of S(z, a). The
boundary values of the Garabedian kernel L(z, a) can be computed via identity
(2.1), and the boundary values of the Ahlfors map fa(z) can now be gotten from
(2.2). The remaining functions in (3.1) can be computed via the Kerzman-Stein
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integral equation once the zeroes a1, . . . , an−1 have been located. Since S(z, a) does
not vanish on bΩ, we may use the residue theorem to compute the symmetric sums

n−1∑
j=1

akj =
1

2πi

∫
bΩ

zk
(
∂
∂z
S(z, a)

)
S(z, a)

dz

for k = 1, . . . , n−1. Newton’s identities can now be used to compute the elementary
symmetric functions of a1, . . . , an−1, and hence, the coefficients of the polynomial∏n−1
j=1 (ζ−aj) are determined. We have therefore shown that the problem of locating

the zeroes of S(z, a) is equivalent to computing n− 1 line integrals and finding the
roots of a polynomial of degree n− 1.

An interesting consequence of the results of this section is that, once the bound-
ary values of the n+ 1 basic functions have been computed, it becomes as easy to
evaluate Szegő projections at a point z ∈ Ω as it is to find Cauchy transforms at
that point.

We remark here that it was shown in [4] that the Garabedian kernel can be
expressed in terms of finitely many functions as

(4.1) L(z, w) =
fa(w)

fa(z)− fa(w)

c0S(z, a)L(w, a) +
n−1∑
i,j=1

c̄ijS(z, ai)L(w, aj)


for z, w ∈ Ω, z 6= w. Note that the constants c0 and cij are the same as the
constants in (3.1).

5. A recipe for the Bergman kernel. In this section, we shall give a procedure
for computing the Bergman kernel. The Bergman kernel K(z, w) is related to the
Szegő kernel via the identity

K(z, w) = 4πS(z, w)2 +
n−1∑
i,j=1

kijF
′
i (z)F

′
j(w),

where the functions F ′i (z) are classical functions of potential theory described as
follows. The harmonic function ωj which solves the Dirichlet problem on Ω with
boundary data equal to one on the boundary curve γj and zero on γk if k 6= j
has a multivalued harmonic conjugate. The function F ′j(z) is a globally defined
single valued holomorphic function on Ω which is locally defined as the derivative
of ωj + iv where v is a local harmonic conjugate for ωj . The Cauchy-Riemann
equations reveal that F ′j(z) = 2(∂ωj/∂z).

Let F ′ denote the vector space of functions given by the complex linear span of
the set of functions {F ′j(z) : j = 1, . . . , n− 1}. It is a classical fact that F ′ is n− 1
dimensional. Notice that S(z, ai)L(z, a) is in A∞(Ω) because the pole of L(z, a) at
z = a is cancelled by the zero of S(z, ai) at z = a. A theorem due to Schiffer [9]
(see also [1,3]) states that the n− 1 functions S(z, ai)L(z, a), i = 1, . . . , n− 1 form
a basis for F ′. We may now write

(5.1) K(z, w) = 4πS(z, w)2 +
n−1∑
i,j=1

µijS(z, ai)L(z, a)S(w, aj)L(w, a),
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It is shown in [1, page 80] that the linear span of {S(z, ai)L(z, a) : i = 1, . . . , n−1}
is the same as the linear span of {L(z, ai)S(z, a) : i = 1, . . . , n−1}. Hence, formula
(5.1) can be rewritten in the form

(5.2) K(z, w) = 4πS(z, w)2 +
n−1∑
i,j=1

λijL(z, ai)S(z, a)L(w, aj)S(w, a).

This last formula, together with (3.1), gives us an obvious strategy for computing
the Bergman kernel.

The difficulty of computing the functions appearing in (5.2) has been discussed.
We now describe a method for computing the coefficients λij . We shall write Kw(z)
in place of K(z, w) and Sw(z) in place of S(z, w) to emphasize that we are thinking
of w as being fixed and we are viewing these kernels as functions of z. Let us also
write Li(z) = L(z, ai)S(z, a). Thus, formula (5.2) may be rewritten as

(5.3) Kw − 4πS2
w =

n−1∑
i,j=1

λijLj(w)Li.

The complement of Ω in C is the union of domains Dj , j = 1, . . . , n, where the
boundary of Dj is described by the boundary curve γj . Recall that γn denotes the
outer boundary curve of Ω. For j = 1, . . . , n − 1, pick a point bj in Dj . We now
consider the effect of integrating (5.3) against the function 1/(z − bk). Notice that

〈(z − bk)−1, Kw〉Ω =
1

w − bk
because the Bergman kernel reproduces holomorphic functions. Since 1/(z− bk) =
(∂/∂z) ln |z − bk|2, we may use the complex Green’s identity to compute

〈(z − bk)−1, S2
w〉Ω =

∫∫
z∈Ω

(∂/∂z) ln |z − bk|2 Sw(z)2 (
i

2
dz ∧ dz̄) =

i

∫
z∈bΩ

ln |z − bk| Sw(z)2 dz̄.

Define numbers Aik = 〈(z− bk)−1,Li〉Ω. We may use the complex Green’s identity
again to obtain

Aik = i

∫
z∈bΩ

ln |z − bk| Li(z) dz̄.

We now collect the integrals above as dictated by (5.3), and we set w = am,
m = 1, . . . , n− 1 to obtain the system,

1

am − bk
− 4πi

∫
z∈bΩ

ln |z − bk| S(am, z)
2 dz̄ =

n−1∑
i,j=1

λijAikLj(am).

To show that this system determines the numbers λij , we need only check that the
matrices given by A = [Aik] and L = [Lj(am)] are invertible. That L is invertible
is obvious because

L(w, aj)S(w, a) =

{
0, if w = am, m 6= j
1

2π
∂
∂z
S(aj , a), if w = aj,
6



and (∂/∂z)S(aj, a) 6= 0 because a has been chosen so that the zeroes of S(z, a) are
simple zeroes. To show that A is invertible, we shall need to use an argument from

[3]. If G =
∑n−1
k=1 ckF

′
k, then G = 2(∂/∂z)ω where ω =

(∑n−1
k=1 ckωk

)
. It is proved

in [3, page 12] that the constants ck are given by the integral

ck = − 1

2πi

∫
z∈bΩ

ln |z − bk|G(z)dz,

where bk is the fixed point chosen from Dk. Notice that ck is the value of ω on γk.
Suppose A is not invertible. Then there would exist constants σi, not all zero, such
that

n−1∑
i=1

Aikσ̄i = 0

for each k, and the complex conjugate of this equality yields that

(5.4)

∫
z∈bΩ

ln |z − bk|
(
n−1∑
i=1

σiLi(z)
)
dz = 0.

Let G =
∑n−1
i=1 σiLi. Since G is in the linear span of {F ′j}n−1

j=1 , condition (5.4) and

the fact from [3] imply that G = 2(∂/∂z)ω where ω is a harmonic function on Ω
that vanishes on each boundary curve of Ω, i.e., that G ≡ 0. Now each σk must be
zero because the functions Li are linearly independent. This contradiction yields
that the matrix A must be non-singular and the proof is finished.

The method described above for computing the Bergman kernel presumes that
the boundary of the domain is smooth. If a finitely connected domain does not
have smooth boundary, and if none of its boundary components are points, it can
be mapped conformally onto a domain whose boundary is smooth (via a sequence of
Riemann maps of simply connected domains and inversions). The transformation
formula for the Bergman kernels under biholomorphic mappings can then be used
to determine the functions appearing in the formula of the following theorem.

Theorem 5.1. Suppose Ω is a finitely connected domain such that no boundary
component of Ω is a point. Let f(z) denote an Ahlfors map of Ω onto the unit disc.
The Bergman kernel K(z, w) associated to Ω is a function of the form

K(z, w) =
1

(1− f(z)f(w))2

n(n+1)/2∑
j,k=1

CjkHj(z)Hk(w)

+
n−1∑
i,j=1

λijGi(z)Gj(w)

where the functions Hj and Gj are functions of one variable in the Bergman space.

7. The Poisson kernel. I showed in [3] how the Szegő projection can be used
to solve the Dirichlet problem, and I showed in [4] how this method of solving the
Dirichlet problem gives rise to a formula for the Poisson kernel of a bounded domain
with smooth boundary in terms of the Szegő kernel.

Let Ω denote an n-connected domain with C∞ smooth boundary. We shall use
the same notation for describing Ω that we used above, and as above, we select a
point a ∈ Ω such that the zeroes a1, . . . , an−1 of S(z, a) are all distinct and simple.
Let Sa(z) = S(z, a) and La(z) = L(z, a).
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The Szegő projection P associated to Ω is the orthogonal projection of L2(bΩ)
onto the Hardy space H2(bΩ). The Szegő kernel is the kernel for the Szegő projec-
tion in the sense that, given a function u ∈ L2(bΩ), the projection Pu is identified
with a holomorphic function h = Pu defined on Ω whose L2 boundary values are
equal to Pu, and

(Pu)(z) =

∫
w∈bΩ

S(z, w)u(w) ds.

The Szegő projection maps C∞(bΩ) into C∞(Ω) (see [1,5] for proofs of these basic
facts).

Recall that the set of functions {L(z, ak)S(z, a)}n−1
k=1 spans the same linear space

as the set of functions {F ′k}n−1
k=1 . Define an (n− 1)× (n− 1) matrix of periods via

Ajk = −i
∫
γj

L(z, ak)S(z, a) dz,

for j = 1, . . . , n−1. Because the matrix of periods of F ′k is non-singular, so is [Ajk].
Let [Bjk] denote the inverse of [Ajk]. The following theorem was proved in [4].

Theorem 7.1. The Poisson extension Eu of u to Ω is given by an integral

(Eu)(z) =

∫
w∈bΩ

p(z, w)u(w) ds,

where p(z, w) is the Poisson kernel and is given by

p(z, w) = 2Re

S(z, w)L(w, a)

L(z, a)
−
n−1∑
j=1

Hj(z)µj(w)

(7.1)

+
|S(w, a)|2
S(a, a)

+
n−1∑
j=1

(ωj(z)− λj)µj(w).

where the Hj(z) are holomorphic functions in A∞(Ω) given by

Hj(z) =

∫
ζ∈γj

S(z, ζ)L(ζ, a)

L(z, a)
ds,

the λj are constants given by

λj =

∫
ζ∈γj

|S(ζ, a)|2
S(a, a)

ds,

and where the µj(w) are real valued C∞ function on bΩ given by

µj(w) =
n−1∑
k=1

BjkS(ak, w)S(w, a).

It is also shown in [4] that the functions µj(w) are linearly independent functions
that do not depend on a, but we shall not need these facts here.
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Actually, it was not shown in [4] that the functions Hj are in in A∞(Ω), so we
shall prove this here. The function 1/L(z, a) has a simple zero at a due to the pole
of L(z, a) at a. Furthermore, because L(z, a) is non-vanishing on Ω − {a} and is
C∞ smooth up to the boundary, it follows that 1/L(z, a) is in A∞(Ω). The formula
defining Hj shows that

Hj(z) =
1

L(z, a)
(Pχj)(z)

where χj(ζ) is a function in C∞(bΩ) that is equal to zero on γk if k 6= j, and
equal to the C∞ function L(ζ, a) for ζ ∈ γj . Since the Szegő projection preserves
functions in C∞(bΩ), we see that Hj is in A∞(Ω). We also remark here that the
task of evaluating Hj(z) at a point z in Ω is no more expensive than evaluating
S(z, a) because the boundary values of all the basic functions are presumed to be
known, and it is just as easy to plug these functions into the formula defining Hj

as it would be to use the Cauchy integral formula to evaluate S(z, a).
The appearance of the term ωj(z) in the formula above might seem disappointing

because

ωj(z) =
1

2πi

∫∫
w∈Ω

F ′j(w)

w − z dw ∧ dw̄

and it looks like we will be forced to compute some double integrals if we want
to compute the Poisson kernel. (I gave a method to compute F ′j in [3, page 12].)
However, it is possible to compute the functions ωj(z) without having to compute a
single double integral. Indeed, if we apply the Poisson integral formula using (7.1)
to the functions

ln |w − bk|, k = 1, . . . , n− 1,

where bk is a fixed point in the domain Dk (defined to be the inside of γk, see §5),
we obtain

ln |z − bk| = 2Re [hk(z)] +
n−1∑
j=1

cjkωj(z)

where the functions hk(z) are explicit holomorphic functions and the cjk are con-
stants. Since no non-trivial linear combination of the functions ln |z − bk| can be
expressed as the real part of a holomorphic function on Ω, it follows that the matrix
[cjk] is non-singular, and hence, that ωj(z) can be expressed as the real part of an
explicit holomorphic function plus a linear combination of the ln |z − bk|. It fol-
lows that the Poisson kernel, like the Bergman and Szegő kernel, can be computed
by forming simple combinations of functions of one complex variable, and without
using double integrals.

If we set z = a in (7.1), we obtain the formula,

(7.2) p(a, w) =
|S(w, a)|2
S(a, a)

+
n−1∑
j=1

(ωj(a)− λj(a))µj(w).

where λj(a) is now a function defined via

λj(a) =

∫
ζ∈γj

|S(ζ, a)|2
S(a, a)

ds.
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This formula relates the Poisson kernel to the Poisson-Szegő kernel |S(w, a)|2/S(a, a)
in a multiply connected domain. (These two kernels are equal in simply connected
domains.) We have shown that (7.2) is valid when a ∈ Ω is a point where the n−1
zeroes of S(z, a) as a function of z are all simple zeroes. However, it is clear that
(7.2) is valid for all a ∈ Ω because the functions in it are all continuous, S(a, a) > 0,
and the set of points a where the zeroes of S(z, a) are not simple is finite. Formula
(7.2) looks like it offers a better approach for computing the Poisson kernel than
(7.1), however, the functions λj(a) have the undesirable feature that they are given
by a quotient

1

S(a, a)

∫
ζ∈γj
|S(ζ, a)|2 ds

where both S(a, a) and the integral tend to infinity as a approaches γj in such a
way that the quotient is C∞ smooth up to γj .

We remark that it is shown in [4] that the functions λj(a) are non-harmonic

functions of a in C∞(Ω) that have the same boundary behavior as the harmonic
measure functions ωj , i.e., λj(a)→ 1 as a→ γj and λj(a)→ 0 as a→ γk, k 6= j.

8. The Green’s function. The gradient of the Green’s function is closely related
to the Poisson kernel. This connection was explored in [4], and in light of (7.1), the
following theorem was proved.

Theorem 8.1. Suppose that Ω is a bounded n-connected domain with C∞ smooth
boundary. The gradient of the Green’s function associated to Ω can be read off from
the formula

∂G

∂w̄
(z, w) = π

S(z, w)L(w, z)

S(z, z)
− i

n−1∑
j=1

(ωj(z)− λj(z))gj(w)


for all z, w ∈ Ω, z 6= w where where gj(w) = −i

∑n−1
k=1 BjkS(w, ak)L(w, a) and

λj(z) =

∫
ζ∈γj

|S(ζ, z)|2
S(z, z)

ds.

Given points z and a in Ω, z 6= a, let σz be a curve in in Ω that starts at a
point ζ0 on the boundary, ends at z, and avoids a. The Green’s function could be
computed by using the formula in (8.1) and

G(z, a) = 2Re

(∫
σz

∂G

∂w̄
(w, a) dw̄

)
,

but I cannot recommend this method as I do the others.

I close by mentioning that I would like to know that the Green’s function is
finitely complex in the same sense that the other kernels are, but I have not been
able to get my hands as directly on the Green’s function as I have with the other
kernels.

10



References

1. S. Bell, The Cauchy transform, potential theory, and conformal mapping, CRC Press, Boca
Raton, 1992.

2. , Numerical computation of the Ahlfors map of a multiply connected planar domain,
J. Math. Anal. and Appl. 120 (1986), 211–217.
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