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Abstract. We prove that if either of the Bergman or Szegő kernel functions as-
sociated to a multiply connected domain Ω in the plane is an algebraic function,
then there exists a compact Riemann surface R such that Ω is a domain in R and
such that a long list of classical domain functions associated to Ω extend to R as
single valued meromorphic functions. Because the field of meromorphic functions on
a compact Riemann surface is generated by just two functions, it follows that all
the classical domain functions associated to Ω are rational combinations of just two
functions of one variable. This result gives rise to some very interesting questions in
potential theory and conformal mapping. We discuss how it may yield information
about complexity in potential theory in a much more general context.

1. Introduction. On a simply connected domain in the plane, the Riemann
mapping function can be used to pull back the classical kernel functions from the
unit disc and questions about the complexity and algebraic properties of the ker-
nel functions become downright transparent. I have been spurred on to answer
similar questions in the multiply connected case for reasons stemming from results
in several complex variables. While studying the boundary behavior of holomor-
phic mappings in several complex variables ([6-9]), I discovered that the Bergman
projection, and consequently the Bergman kernel, transforms under holomorphic
mappings which are merely proper (in the topological sense of the word — for ex-
ample, finite Blaschke products are proper holomorphic maps of the unit disc to
itself). This result leads one to suspect that it might be possible to pull back the
classical kernel functions from the disc via proper holomorphic mappings. Since
any finitely connected domain in the plane such that no boundary component is a
point can be mapped properly onto the unit disc by an Ahlfors map, there arose
the hope to find formulas for the kernel functions on such domains analogous to the
formulas in the simply connected case, but with the Ahlfors map taking over the
role of the Riemann map. For example, the domain A(r) := {z ∈ C : |z+z−1| < r}
is a two-connected domain with smooth real analytic boundary curves if r > 2. The
mapping f(z) = (1/r)(z+ z−1) is a proper holomorphic map from Ω onto the unit
disc that is a 2-sheeted branched covering map. If the transformation formula for
the Bergman kernels under proper maps could be used to pull back the simple
rational kernel functions on the disc up to A(r), then it ought to follow that the
kernel functions for A(r) are algebraic. I have recently proved in [5] that the kernel
functions associated to A(r) are indeed algebraic, however, the connection between
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the kernels on these domains and the kernels on the unit disc are much more ten-
uous than direct pull backs. In this paper, I shall enlist the help of a Riemann
surface that I construct by means of a Szegő kernel identity that I discovered in
[4] to reveal further connections between kernel functions on multiply connected
domains and the proper holomorphic maps of these domains onto the unit disc.

The starting point for this research is the following theorem that I proved in [5,
Theorem 4.4].

Theorem 1.1. Suppose Ω is a finitely connected domain in the plane such that no
boundary component is a point. The following conditions are equivalent.

(1) The Bergman kernel associated to Ω is algebraic.
(2) The Szegő kernel associated to Ω is algebraic.
(3) There exists a single proper holomorphic mapping of Ω onto the unit disc

which is algebraic.
(4) Every proper holomorphic mapping of Ω onto the unit disc is algebraic.

This theorem will allow us to begin the construction of a Riemann surface in case
one of the conditions of the theorem are met. Indeed, if the Szegő kernel is algebraic,
then we shall be able to realize Ω as a subdomain of a certain compact Riemann
surface to which all the kernels and mappings associated to Ω can be extended as
single valued meromorphic functions. Furthermore, the complement of Ω in R is
connected (see Theorem 3.1 and its proof in §3 for a more precise description of
the Riemann surface). A key element in the construction of this Riemann surface
is a formula from [4] which relates the Szegő kernel to an Ahlfors map and finitely
many other functions of one complex variable. Since the field of meromorphic
functions on a compact Riemann surface is generated by two elements (see Farkas
and Kra [12, page 249]), we shall be able to show that the kernel functions and
proper maps associated to the domain are generated by just two functions of one
complex variable. This shall mean that the kernel functions associated to a multiply
connected domain with algebraic kernel functions are just as simple as the kernel
functions associated to a simply connected domain. To be precise, we prove

Theorem 1.2. Suppose Ω is a finitely connected domain in the plane such that no
boundary component is a point. If one of the conditions,

(1) the Bergman kernel associated to Ω is algebraic, or
(2) the Szegő kernel associated to Ω is algebraic, or
(3) there exists a single proper holomorphic mapping of Ω onto the unit disc

which is algebraic,

is met, then there exist two holomorphic functions f(z) and g(z) on Ω such that
the Bergman kernel K(z, w) and the Szegő kernel S(z, w) are given as rational
combinations of the four functions f(z), g(z), and the complex conjugates of f(w)
and g(w). Furthermore, every proper holomorphic mapping of Ω onto the unit disk
is a rational combination of f and g, and so are the domain functions F ′j .

The unit disc is the model domain of choice in the study of simply connected
domains in the plane for a score of well known reasons. Besides the superlative
symmetry, the kernel functions associated to the disc are simple rational functions
and the classical operators of function and potential theory are extremely simple. In
the multiply connected setting, the choice of the ideal model domains is not so clear
cut. Candidates include the unit disc with non-overlapping circular slits removed,
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an annulus with circular slits removed, a plane with radial slits removed, and a unit
disc with non-intersecting closed discs removed. These model domains are each
useful in various contexts. I shall put forth the idea here based on Theorem 1.2
that another candidate for the class of best model domains is the set of domains of
the form

A :=

{
z ∈ C : |z +

n−1∑
k=1

ak/(z − bk)| < r

}
where r is large enough thatA is an n-connected domain with boundary components
that are smooth real analytic curves. Since f(z) := (1/r)(z+

∑n−1
k=1 ak/(z − bk)) is

a proper holomorphic mapping of A onto the unit disc, Theorem 1.1 implies that
the classical kernels and domain functions associated to A are algebraic functions
and that every proper holomorphic mapping from A onto the unit disc is algebraic.
Theorem 1.2 yields that the kernel functions associated to A are rational combina-
tions of just two functions of one variable. I conjecture that this is as simple as the
kernel functions associated to a multiply connected domain can be. In §5 I describe
some open questions and avenues of future research based on these results.

2. Preliminaries. Before we can begin to prove our main results, we must review
some known facts about the classical kernel functions. Many of these facts and
formulas can be found in Stefan Bergman’s book [10]. I have also written up most
of these results in [2] in the same spirit as this paper and I include cross references
here to give the interested reader access to a uniform approach to the whole subject.

To begin with, we shall assume that Ω is a bounded n-connected domain in the
plane with C∞ smooth boundary. (Later, we shall consider general n-connected
domains such that no boundary component is a point.)

Let γj, j = 1, . . . , n, denote the n non-intersecting C∞ simple closed curves
which define the boundary bΩ of Ω, and suppose that γj is parameterized in the
standard sense by zj(t), 0 ≤ t ≤ 1. We shall use the convention that γn denotes
the outer boundary curve of Ω. Let T (z) be the C∞ function defined on bΩ such
that T (z) is the complex number representing the unit tangent vector at z ∈ bΩ
pointing in the direction of the standard orientation (meaning that iT (z) represents
the inward pointing normal vector at z ∈ bΩ). This complex unit tangent vector
function is characterized by the equation T (zj(t)) = z′j(t)/|z′j(t)|.

The symbol A∞(Ω) will denote the space of holomorphic functions on Ω that are
in C∞(Ω). The Bergman projection is the orthogonal projection of L2(Ω) onto its
subspace consisting of holomorphic functions and the Bergman kernel K(z, w) is
the kernel for this projection. The Szegő projection is the orthogonal projection of
L2(bΩ) onto the Hardy Space of functions in L2(bΩ) that represent the L2 boundary
values of holomorphic functions. The Szegő kernel S(z, w) is the kernel function
for the Szegő projection.

The Bergman kernel K(z, w) is related to the Szegő kernel via the identity

(2.1) K(z, w) = 4πS(z, w)2 +
n−1∑
i,j=1

AijF
′
i (z)F

′
j(w),

where the functions F ′i (z) are classical functions of potential theory described as
follows ([10, page 119], or see also [2, pages 94–96]). The harmonic function ωj
which solves the Dirichlet problem on Ω with boundary data equal to one on the
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boundary curve γj and zero on γk if k 6= j has a multivalued harmonic conjugate.
The function F ′j(z) is a globally defined single valued holomorphic function on Ω
which is locally defined as the derivative of ωj + iv where v is a local harmonic
conjugate for ωj . The Cauchy-Riemann equations reveal that F ′j(z) = 2(∂ωj/∂z).

The Bergman and Szegő kernels are holomorphic in the first variable and anti-
holomorphic in the second on Ω×Ω and they are hermitian, i.e., S(w, z) = S(z, w).
Furthermore, the Bergman and Szegő kernels are in C∞((Ω×Ω)−{(z, z) : z ∈ bΩ})
as functions of (z, w) (see [2, page 100]).

We shall also need to study the Garabedian kernel L(z, w), which is related to
the Szegő kernel via the identity

(2.2)
1

i
L(z, a)T (z) = S(a, z) for z ∈ bΩ and a ∈ Ω.

For fixed a ∈ Ω, the kernel L(z, a) is a holomorphic function of z on Ω− {a} with
a simple pole at a with residue 1/(2π). Furthermore, as a function of z, L(z, a)
extends to the boundary and is in the space C∞(Ω − {a}). In fact, L(z, w) is in
C∞((Ω × Ω) − {(z, z) : z ∈ Ω}) as a function of (z, w) (see [2, page 102]). Also,
L(z, a) is non-zero for all (z, a) in Ω×Ω with z 6= a and L(a, z) = −L(z, a) (see [2,
page 49]).

For each point a ∈ Ω, the function of z given by S(z, a) has exactly (n−1) zeroes
in Ω (counting multiplicities) and does not vanish at any points z in the boundary
of Ω (see [2, page 49]).

Given a point a ∈ Ω, the Ahlfors map fa associated to the pair (Ω, a) is a
proper holomorphic mapping of Ω onto the unit disc. It is an n-to-one mapping
(counting multiplicities), it extends to be in A∞(Ω), and it maps each boundary
curve γj one-to-one onto the unit circle. Furthermore, fa(a) = 0, and fa is the
unique function mapping Ω into the unit disc maximizing the quantity |f ′a(a)| with
f ′a(a) > 0. The Ahlfors map is related to the Szegő kernel and Garabedian kernel
via (see [2, page 49])

(2.3) fa(z) =
S(z, a)

L(z, a)
.

Note that f ′a(a) = 2πS(a, a) 6= 0. Because fa is n-to-one, fa has n zeroes. The
simple pole of L(z, a) at a accounts for the simple zero of fa at a. The other n− 1
zeroes of fa are given by the (n−1) zeroes of S(z, a) in Ω−{a}. Let a1, a2, . . . , an−1

denote these n − 1 zeroes (counted with multiplicity). I proved in [3] (see also [2,
page 105]) that, if a is close to one of the boundary curves, the zeroes a1, . . . , an−1

become distinct simple zeroes. It follows from this result that, for all but at most
finitely many points a ∈ Ω, S(z, a) has n−1 distinct simple zeroes in Ω as a function
of z.

Fix a point a in Ω so that the zeroes a1, . . . , an−1 of S(z, a) are distinct simple
zeroes. I proved in [4, Theorem 3.1] that the Szegő kernel can be expressed in terms
of the n+ 1 functions of one variable, S(z, a), fa(z), and S(z, ai), i = 1, . . . , n− 1
via the formula

(2.4) S(z, w) =
1

1− fa(z)fa(w)

c0S(z, a)S(w, a) +
n−1∑
i,j=1

cijS(z, ai)S(w, aj)


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where fa(z) denotes the Ahlfors map associated to (Ω, a), c0 = 1/S(a, a), and
the coefficients cij are given as the coefficients of the inverse matrix to the matrix
[S(aj, ak)]. A similar formula follows for the Garabedian kernel by noting that, if

z ∈ Ω and w ∈ bΩ, then L(z, w) = −L(w, z) = −iT (w)S(z, w) by identity (2.2).

If we now plug (2.4) into the right hand side of this expression, distribute iT (w)

through the sum, use (2.4) again, and finally use the fact that fa(w) = 1/fa(w) for
w ∈ bΩ, we obtain the identity

(2.5) L(z, w) =
fa(w)

fa(z)− fa(w)

c0S(z, a)L(w, a) +
n−1∑
i,j=1

cijS(z, ai)L(w, aj)


where the constants c0 and cij are the same as the constants in (2.4). This identity
extends to hold for all (z, w) in Ω × Ω with z 6= w. The two formulas (2.4) and
(2.5) will be very important in what follows.

Let F ′ denote the vector space of functions given by the complex linear span of
the set of functions {F ′j(z) : j = 1, . . . , n−1} mentioned above. It is a classical fact
that F ′ is n − 1 dimensional. It shall be important for us to relate the functions
in F ′ to the Szegő and Bergman kernel functions. Notice that S(z, ai)L(z, a) is
in A∞(Ω) because the pole of L(z, a) at z = a is cancelled by the zero of S(z, ai)
at z = a. Similarly, S(z, a)L(z, ai) is in A∞(Ω) because the pole of L(z, ai) at
z = ai is cancelled by the zero of S(z, a) at z = ai. A theorem due to Schiffer
([13], see also [2, page 80]) states that the set of n − 1 functions {S(z, ai)L(z, a) :
i = 1, . . . , n − 1} form a basis for F ′. It is also shown in [2, page 80] that the
linear span of {S(z, ai)L(z, a) : i = 1, . . . , n− 1} is the same as the linear span of
{L(z, ai)S(z, a) : i = 1, . . . , n − 1}. Hence, formula (2.1) can be rewritten in the
form

(2.6) K(z, w) = 4πS(z, w)2 +
n−1∑
i,j=1

λijLi(z)Lj(w)

where Li(z) = L(z, ai)S(z, a).
The Bergman kernel is related to the classical Green’s function via ([10, page 62],

see also [2, page 131])

K(z, w) = − 2

π

∂2G(z, w)

∂z∂w̄
.

Another kernel function on Ω×Ω that we shall study is given by

Λ(z, w) = − 2

π

∂2G(z, w)

∂z∂w
.

In the literature, this function is sometimes written as L(z, w) with anywhere be-
tween zero and three tildes over the top. We have chosen the symbol Λ here to
avoid confusion with our notation for the Garabedian kernel above. It follows from
well known properties of the Green’s function that Λ(z, w) is holomorphic in z and
w and is in C∞(Ω×Ω− {(z, z) : z ∈ Ω}). If a ∈ Ω, then Λ(z, a) has a double pole
at z = a as a function of z and Λ(z, a) = Λ(a, z) (see [2, page 134]).

The Bergman kernel is related to Λ via the identity

(2.7) Λ(w, z)T (z) = −K(w, z)T (z) for w ∈ Ω and z ∈ bΩ
5



(see [2, page 135]).
The kernel Λ(z, w) can also be expressed in terms of kernel functions associated

to the boundary. By using (2.7), (2.6), and (2.2), the identity

(2.8) Λ(w, z) = 4πL(w, z)2 +
n−1∑
i,j=1

λijL(w, ai)S(w, a)S(z, aj)L(z, a),

can be seen to hold for z, w ∈ Ω, z 6= w. The coefficients λij are the same as those
appearing in (2.6). We may express the functions S(z, aj)L(z, a) in terms of the

other basis {Lj}n−1
j=1 for F ′ in order to be able to rewrite formula (2.8) in the form

(2.9) Λ(w, z) = 4πL(w, z)2 +
n−1∑
i,j=1

µijLi(z)Lj(w)

where Li(z) = L(z, ai)S(z, a).
We now suppose that Ω is merely an n-connected domain in the plane such that

no boundary component of Ω is a point. It is well know that there is a biholomorphic
mapping Φ mapping Ω one-to-one onto a bounded domain Ω0 in the plane with
real analytic boundary. The domain Ω0 is a bounded n-connected domain with
C∞ smooth boundary whose boundary consists of n non-intersecting simple closed
real analytic curves. Let subscript 0’s indicate that a kernel function is associated
to Ω0. The transformation formula for the Bergman kernels under biholomorphic
mappings gives

(2.10) K(z, w) = Φ′(z)K0(Φ(z),Φ(w))Φ′(w).

Similarly,

(2.11) Λ(z, w) = Φ′(z)Λ0(Φ(z),Φ(w))Φ′(w).

It is well known that the function Φ′ has a single valued holomorphic square root on
Ω (see [2, page 43]). To avoid a discussion of the meaning of the Cauchy transform
and the Szegő projection in non-smooth domains, we shall opt to define the Szegő
and Garabedian kernels associated to Ω via the natural transformation formulas,

(2.12) S(z, w) =
√

Φ′(z) S0(Φ(z),Φ(w))
√

Φ′(w),

and

(2.13) L(z, w) =
√

Φ′(z) L0(Φ(z),Φ(w))
√

Φ′(w).

Finally, the Green’s functions satisfy

(2.14) G(z, w) = G0(Φ(z),Φ(w)).

It is a routine matter to check that the transformation formulas for the kernel
functions above respect all the formulas given in this section where the variables
range inside the domain. The formulas on the boundary involving the unit complex
tangent vector function T (z) can be seen to be valid near boundary points of Ω
that are C1 smooth and where Φ is locally C1 up to the boundary and Φ′ is non-
vanishing.

6



3. Construction of the Riemann surface. This section shall be devoted to
proving the following theorem.

Theorem 3.1. Suppose that Ω is a finitely connected domain in the plane such that
no boundary component is a point. If the Bergman or the Szegő kernel associated
to Ω is algebraic, then Ω can be realized as a subdomain of a compact Riemann

surface R̃ such that all the kernel functions S(z, w), L(z, w), K(z, w), Λ(z, w)

extend to R̃×R̃ as single valued meromorphic functions. Furthermore, the Ahlfors
maps fa(z) and every proper holomorphic mapping from Ω to the unit disc extend

to be single valued meromorphic functions on R̃. Also, the functions F ′k(z), k =

1, . . . , n− 1, extend to be single valued meromorphic functions on R̃. Furthermore,

the complement of Ω in R̃ is connected.

Proof. Suppose that Ω is a finitely connected domain in the plane such that no
boundary component is a point and such that the Bergman or the Szegő kernel
associated to Ω is algebraic. Theorem 1.2 yields that the Ahlfors maps fa(z) asso-
ciated to Ω are algebraic, and so the boundary of Ω is locally described by equations
|fa(z)|2 = 1. Hence, the boundary of Ω consists of a finite union of real analytic
curve segments with endpoints. For now, let us assume that no singular points of
fa(z) occur on the boundary of Ω so that the boundary of Ω consists of n non-
intersecting C∞ smooth real analytic closed curves. (We shall consider the case
where singular points of fa(z) fall on the boundary of Ω later because they shall
only force modifications in the proof that distract from the main idea given now in
the smooth case.) Note that the exterior of Ω contains an open set in the Riemann
sphere. Hence, by making a linear fractional change of variables, we may assume
that the point at infinity is not on the boundary of Ω. (Note that the transforma-
tion formulas for the kernel functions and Ahlfors maps imply that linear fractional
transformations preserve algebraicity.)

We shall now use the three formulas (2.3),(2.4), and (2.5) to construct a certain
Riemann surface R and to describe its boundary. Let us call the n + 1 functions
S(z, a), L(z, a), and S(z, a1), S(z, a2), . . . , S(z, an−1) core functions and, for con-
venience, let us rename them C1(z), C2(z), . . .Cn+1(z). Each of the n + 1 core
functions is algebraic and so we may think of them (from the viewpoint of Weier-
strass) as being multivalued functions that can be analytically continued to the
whole Riemann sphere. There is a finite set of points E in the extended complex
plane above which one or more of the function elements associated to the core func-
tions has an algebraic singularity. Choose a point A0 in the outer boundary curve
γn of Ω to act as a base point. We construct R by performing analytic continuation
of each of the core functions simultaneously, starting at A0 and moving into the
exterior of Ω, paying special attention to the points in E. It is best to think of
R as being exterior to Ω and as being attached to Ω at the outer boundary curve
γn. Away from E, the lifting of germs along curves to a Riemann surface over the
extended complex plane is routine and obvious. When we analytically continue up
to a point p in E, it may happen that none of the germs of the function elements
of the core functions become singular at p. In this case, we lift and analytically
continue through p without incident. If, on the other hand, at least one of the
elements is singular at p, then we construct a local coordinate system at the point
p̃ above p as follows. Let us abuse notation by letting C1(z), C2(z), . . . , Cn+1(z)
denote the n + 1 function elements of the core functions that are obtained as we
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analytically continue them up to p along a curve. Each of these elements can be
viewed as a function element of a Puiseux expansion at p and so there are positive
integers λk such that the substitution z = p+ (ζ − p)λk makes Ck(ζ) analytic and
continuable in ζ through ζ = 0. (Note that the number λk is equal to one if Ck(z)
does not have a singularity at p.) Let m be equal to the least common multiple of
λ1, λ2, . . . , λn+1. We can now define a local uniformizing variable ζ that is suitable
for each of the function elements in the obvious manner: z = p + (ζ − p)m. This
coordinate function allows us to lift all the core functions so as to be defined and
single valued on a disc centered at ζ = 0 and we use it to define a local chart near
p̃.

We now define the boundary of the Riemann surface R as follows. The core func-
tions S(z, a), L(z, a) , and S(z, a1), S(z, a2), . . . , S(z, an−1) have preferred germs in
Ω given by the values they have by virtue of the definition of the kernel functions
of the domain Ω. A point p̃ ∈ R over p ∈ C is in the boundary of R if p is in
the boundary of Ω and the germs of the core functions are equal to their preferred
germs on the Ω side of the projection down onto the plane. (Note that there will be
sheets of R above Ω if it happens that one or more of the core functions continue
up to p ∈ bΩ and are not equal to their preferred germs over Ω.)

At the moment, it is not clear if any but the outer boundary curve of Ω is involved
in the formation of the boundary of R. We shall soon see that each boundary curve
of Ω contributes exactly one component to the boundary of R.

Our Riemann surface R is clearly a finitely sheeted surface over all or part of the
extended complex plane and R together with its boundary is compact. Formulas
(2.3), (2.4), and (2.5) reveal that S(z, w), L(z, w), and fa(z) are well defined and
single valued meromorphic functions of z on R when w is held fixed in Ω.

We now want to do a careful counting of the poles of S(z, w) and L(z, w) on R
in the z variable when w is held fixed at a point in Ω.

Recall that S(z, w) and L(z, w) have no zeroes or poles as functions of z on the
boundary of Ω when w is held fixed in Ω. We now want to show that the number
of poles of each of these functions (counted with multiplicity) in R is constant
independent of w as w ranges over Ω minus a certain finite set of points. We begin
by studying S(z, w). Formula (2.4) shows that S(z, w) has two kinds of poles:
roving poles that come from the first factor involving fa(z) and stationary poles
that come from the sum in the second factor. We first consider the stationary poles
arising from the second factor in (2.4). It will be convenient to think of S(z, w) as
a quotient NS(z, w)/DS(z, w) where

NS(z, w) := S(z, a)S(w, a) +
n−1∑
i,j=1

cijS(z, ai)S(w, aj),

and
DS(z, w) := 1− fa(z)fa(w).

If w is a fixed point in Ω, then the stationary poles of S(z, w) in the z variable on R
occur at poles of NS(z, w). We now consider whether it is possible for poles of the
various terms in this sum to cancel one another. Let P denote the set of points inR
where one or more of the function elements associated to the core functions S(z, a),
S(z, a1), S(z, a2), . . . , S(z, an−1) has a pole, and suppose z0 is a point in P. (If z0

is also in the set E of singular points, we use the local uniformizing variable used in
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the construction of R as the underlying coordinate variable.) Let N be the order
of the pole at z0 of highest order among S(z, a), S(z, a1), S(z, a2), . . . , S(z, an−1).
We claim that, for generic w in Ω, NS(z, w) has a pole of order N at z0 in the z
variable. Indeed, the coefficient of order N in the principal parts in the z variable
of NS(z, w) is given by a function of w of the form

H(w) := b0S(w, a) +
n−1∑
i,j=1

cijbi S(w, aj)

where not all the constants b0, b1, . . . , bn−1 are zero. We shall now prove that H(w)

can only vanish at finitely many w in Ω. Let βj =
∑n−1
i=1 cijbi. Because [cij] is a non-

singular matrix, (b1, . . . , bn−1) = 0 ∈ Cn−1 if and only if (β1, . . . , βn−1) = 0 ∈ Cn−1.
If the function H(w), which is holomorphic on a neighborhood of Ω, were to vanish
at an infinite number of points in Ω, then it would be identically zero on Ω, and
by integrating H(w) over the boundary against a generic polynomial p(w), the
reproducing property of the Szegő kernel would yield that

0 = b0 p(a) +
n−1∑
j=1

βj p(aj).

For this to hold true for any polynomial requires that b0 = 0 and (β1, . . . , βn−1) = 0.
Hence, all the constants b0, b1, . . . , bn−1 are zero, and this contradiction shows that
there are at most finitely many points w in Ω where NS(z, w) does not have a pole
of order N at z0. Let us call this finite set Q. We shall augment Q by finitely many
points as necessary as we proceed in order to keep the zeroes and poles of S(z, w)
and L(z, w) from co-mingling as w ranges over Ω −Q. We now add the points to
Q that we would get by repeating the argument above for z0 for each of the finitely
many points in R where one or more of the core functions has a pole.

Notice that we may now state that the zeroes of NS(z, w) in the z variable stay
away from the poles of NS(z, w) in the z variable as long as w stays in Ω−Q.

The same reasoning that we used at one of the poles z0 above shows that, given a
point z in R, there are at most finitely many points w ∈ Ω such that NS(z, w) = 0.

Next, we treat the stationary poles of the denominator term in the expres-
sion DS(z, w) = 1 − fa(z)fa(w) for S(z, w). Let us now add the points w =
a, a1, . . . , an−1 toQ in case they are not already there so that fa(w) is non-vanishing
on Ω −Q. Hence, when w ∈ Ω −Q, the poles of DS(z, w) in the z variable occur
at the poles of fa(z), and thus, are fixed. If one of these points falls in P, it will
simply reduce the order of or cancel one of the fixed poles of NS(z, w).

For w ∈ Ω−Q, the zeroes of DS(z, w) occur where fa(z) = 1/fa(w). Since fa(z)
takes on only finitely many values at the points where the core functions have poles,
we may add finitely many points to Q, if necessary, to ensure that the zeroes of
DS(z, w) (where fa(z) = 1/fa(w)) do not occur at points in P when w is in Ω−Q.

Finally, near a generic point (z0, w0) in (R − P) × (Ω − Q), we may express
NS(z, w) and DS(z, w) as products of irreducible Weierstrass polynomials normal-
ized in the z variable and we may factor out common factors. Since the discriminant
of such a generalized polynomial in z is a holomorphic function of w and since the
the resultant of two such polynomials is also a holomorphic function of w, elemen-
tary arguments similar to those in [11, page 7] reveal that, away from a finite set
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of points w near w0, the number of poles of NS(z, w)/DS(z, w) near z0 is constant
independent of w. Because NS(z, w) and DS(z, w) have no zeroes or poles near
bΩ×bΩ, we may use a finite cover to be able to assert that there is finite set Q ⊂ Ω
and a positive integer PS such that S(z, w) has PS poles as a function of z in R
when w ∈ Ω−Q. (Because the core functions are holomorphic and non-vanishing
on the boundary of R, the argument principle applied to a triangulation of the
closure of R shows that the number of zeroes minus the number of poles of S(z, w)
in the z variable is constant as w ranges over Ω. We have chosen Q so that the
zeroes and poles of S(z, w) in the z variable do not interact as w ranges over Ω−Q.)

Analogous reasoning can be applied to L(z, w) using (2.5). Define

NL(z, w) := c0S(z, a)L(w, a) +
n−1∑
i,j=1

cijS(z, ai)L(w, aj).

We shall now show that, after adding finitely many points to Q, if necessary,
NL(z, w) has poles in the z variable on R at exactly the same points as NS(z, w)
with exactly the same order when w ∈ Ω − Q. As above, suppose one or more
of the core functions S(z, a), S(z, a1), S(z, a2), . . . , S(z, an−1) has a pole at z0 in
R. Let N be the order of the pole at z0 of highest order among S(z, a), S(z, a1),
S(z, a2), . . . , S(z, an−1). We claim that, for generic w in Ω, NL(z, w) has a pole of
order N at z0 in the z variable. Indeed, if some of the top order terms in the poles
in z of the core functions involved in the definition of NL(z, w) cancel each other,
a linear relation of the form

0 = b0L(w, a) +
n−1∑
i,j=1

cijbi L(w, aj)

would hold where not all the constants b0, b1, . . . , bn−1 are zero. We shall now prove
that such a linear relation can only hold for at most finitely many w in Ω. Let
βj =

∑n−1
i=1 cijbi. Because [cij ] is a non-singular matrix, (b1, . . . , bn−1) = 0 ∈ Cn−1

if and only if (β1, . . . , βn−1) = 0 ∈ Cn−1. If the function

H(w) := b0L(w, a) +
n−1∑
j=1

βj L(w, aj),

which extends holomorphically across the boundary of Ω, were to vanish at an
infinite number of points in Ω, then it would be identically zero on Ω, and by
integrating H(w)T (w) over the boundary against a generic polynomial p(w), we
can use (2.2) and the reproducing property of the Szegő kernel to see that

0 = b0 p(a) +
n−1∑
j=1

βj p(aj),

which implies that b0 = 0 and (β1, . . . , βn−1) = 0. Hence, all the constants
b0, b1, . . . , bn−1 are zero, and this contradiction shows that there are at most finitely
many points w in Ω where NL(z, w) does not have a pole of order N at z0. Let us
add these points, if they are not already there, to Q.
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Define

gL(z, w) :=
fa(w)

fa(z)− fa(w)
.

For w ∈ Ω − Q, the zeroes of gL(z, w) in the z variable occur at poles of fa(z)
and the poles of gL(z, w) occur where fa(z) = fa(w). Since fa(z) takes on only
finitely many values at the points where the core functions have poles, we may add
finitely many points to Q, if necessary, to ensure that the poles of gL(z, w) (where
fa(z) = fa(w)) are not cancelled by zeroes of NL(z, w) for w in Ω−Q.

Away from points in P × Q, we may argue as we did in the study of S(z, w)
above to see that there is a positive integer PL which is equal to the number of
poles of L(z, w) as a function of z in R when w ∈ Ω−Q.

We shall now deduce relationships between PS and PL based on formula (2.2)
and the fact that, for w ∈ Ω near the boundary, the simple pole of L(z, w) in the
z variable at z = w corresponds to a simple pole of S(z, w) in the z variable at
the point obtained from w by Schwarz Reflection of w across the boundary (see [4,
page 1351]) and that near the boundary, these are the only poles of S(z, w) and
L(z, w). Because we shall need to modify the proof of this fact when the boundary
is not globally smooth, we shall give a quick proof of it here. Since bΩ is given by
real analytic curves, there exists an antiholomorphic reflection function R(z) with
the properties that R(z) is defined and is antiholomorphic on a neighborhood O of
bΩ, R(z0) = z0 when z0 ∈ bΩ, (∂/∂z̄)R(z) is non-vanishing on O, and R(z) maps
O ∩Ω one-to-one onto O−Ω. Let w be a point in Ω that is close to the boundary
and let A be a fixed point in Ω. By (2.2), we have −i L(z, A)T (z) = S(A, z) and
−i L(z, w)T (z) = S(w, z) for z ∈ bΩ. Divide the second of these identities by the
first and use the fact that R(z) = z on bΩ to obtain

S(w,R(z))

S(A,R(z))
=
L(z, w)

L(z, A)
for z ∈ bΩ.

The function on the left hand side of this identity is holomorphic in z on a neigh-
borhood of bΩ; so is the function on the right hand side. Since these functions agree
on bΩ, they must be equal on a neighborhood of bΩ. We may assume that O is
small enough that S(z, A) and L(z, A) have no poles or zeroes in O. We may now
read off from the identity that the simple pole of L(z, w) in the z variable at z = w
corresponds to a simple pole of S(z, w) in the z variable at w = R(z). It is also
apparent that there are no other poles of S(z, w) and L(z, w) near the boundary,
and if w0 is a point in the boundary of Ω, then S(z, w0) and L(z, w0) both have a
simple pole at w0 and no other poles on the boundary of Ω.

Let us consider what happens to the poles of S(z, w) and L(z, w) as w approaches
a point w0 in the outer boundary curve γn minus Q from the inside of Ω. When w
is actually in the boundary of Ω and z ∈ Ω, we may rewrite (2.2) as

(3.1)
1

i
L(w, z)T (w) = S(z, w).

This identity extends to hold for all z in R and hence it follows that L(z, w0) and
S(z, w0) have exactly the same poles as functions of z on R when w0 is a fixed
point in the boundary of Ω (recall that L(w, z) = −L(z, w)). As w approaches w0
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from the inside of Ω, the fact about the pole of L(z, w) at w corresponding to a
pole of S(z, w) at the reflection of w on the outside of Ω shows that

(3.2) PS = PL + 1.

We are now in a position to prove that each of the boundary curves of Ω is involved
in the formation of the boundary of R and so, by attaching Ω to R along their

mutual boundary, we will obtain the compact Riemann surface R̃ mentioned in
Theorem 3.1. Indeed, if γk is a boundary curve of Ω that is not reached in the
construction of R, then by letting w ∈ Ω−Q approach a fixed point w0 in γk −Q,
we see that

PS = PL,

and this contradicts (3.2).
It is now clear from the definition of R, that by attaching Ω to the boundary

of R in the obvious way, we obtain a compact Riemann surface R̃ on which the
functions S(z, w), L(z, w), and fa(z) are well defined and single valued meromorphic
functions of z when w is held fixed in Ω. Finally, the relationships between the
kernel functions and other functions of potential theory described in §2 complete
the proof of Theorem 3.1 in case the boundary of Ω is smooth.

To finish the proof of Theorem 3.1, we must allow the possibility that singular
points of the core functions might fall on the boundary of Ω. We now take a moment
to describe the boundary of Ω and the way the Ahlfors map behaves there when
fa has algebraic singularities on the boundary of Ω. (Keep in mind the example
where Ω is equal to the extended complex plane minus n non-intersecting x’s and
the boundary behavior of the extension of the Ahlfors map up to one of the x’s can
be visualized by thinking of the unit circle as if it had been stretched around the x
and “shrink wrapped” down to it. Extending the Ahlfors map up to the x would
set up a map from the “perimeter” of the x to the circle that is one-to-one on the
ends of each stroke of an x, 1-to-2 on the legs of an x, and 1-to-4 at the center of
an x.)

Because fa is algebraic and because fa maps bΩ into the unit circle, the boundary
of Ω is given by n connected components that are each a union of smooth real
analytic curve segments with endpoints. Indeed, given a point z0 in the boundary
of Ω, there are only three possible configurations of the boundary of Ω at z0. The
easiest case occurs when we may choose a small disc Dε(z0) so that in this disc,
the boundary of Ω is a single real analytic curve that enters the disc at one point
on the circle |ζ − z0| = ε and exits at another and such that the real analytic curve
divides the disc into two connected parts, one inside Ω and the other exterior to
Ω. In this case, fa extends holomorphically past the boundary of Ω along the real
analytic curve in Dε(z0) by reflection, and by shrinking ε, we may assume that fa
is holomorphic on Dε(z0). Another possibility is that we may choose Dε(z0) in the
same way, except that the real analytic curve divides the disc into two connected
parts that are both inside Ω. In this case, fa extends holomorphically past the
boundary of Ω via analytic continuation from either side and we should think of
the real analytic curve as being a “slit” as is commonly done when constructing a
Riemann surface by “cutting and pasting.” Note that, in this case, the continuations
of fa(z) along the two outward pointing normals (that point in opposite directions)
must yield function elements on the “outside” of Ω that are different from fa on
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the inside of Ω because the extensions of the Ahlfors map to the two different
sides must map the real analytic curve one-to-one onto two different and non-
overlapping arcs on the unit circle. Finally, the third possibility is that z0 is a
“center of a star” in the sense that we may choose a small disc Dε(z0) so that in
this disc, the boundary component of Ω that contains z0 consists of one or more
real analytic curves ν1, ν2, . . . , νq which originate at z0 and which radiate outward
from z0 and intersect the boundary of Dε(z0) in q distinct points, and such that
the only point common to more than one of the curves νj in the closure of Dε(z0)
is z0. Indeed, because the Ahlfors map fa(z0 + ζk) is holomorphic in ζ near ζ = 0
for some positive integer k, and because fa maps the boundary of Ω into the unit
circle, these curves can be easily parametrized. Since real analytic curves can only
intersect in finitely many points, it is possible to choose ε small enough so that z0

is the only point common to more than one curve in the closure of Dε(z0). Now
the q curves νj divide Dε(z0) into q sectors and, by choosing ε small enough, each
sector is either inside Ω or outside Ω. We now see that fa extends continuously
up to the curves νj from sectors that are inside Ω and that analytic continuation
may be performed past the curves to the “outside” of Ω, thinking of the curves
as “slits.” Furthermore, fa extends continuously up to the star point z0 from the
inside of sectors that are inside Ω. (Note that it will happen that fa extends with
different values on different sides of the curves νj and that fa might very well have
several different values at z0 as that point is approached from different sectors.)

Let γ1, γ2, . . . , γn denote the connected components of the boundary of Ω. Let
Eb denote the (finite) set of points which is the union of the set of boundary points
of Ω where one or more of the core functions on Ω are singular and the set of
singular points of the boundary of Ω, i.e., points where one or more of the real
analytic curves that comprise the boundary cross and/or terminate.

Choose a point A0 on the boundary component γn that is on a smooth part of
one of the smooth real analytic curves that comprise γn. This point A0 will act as
the base point as we construct R by performing simultaneous analytic continuation
of the core functions into the “exterior” of Ω as we did above in the smooth case,
except that now we might have to think of certain boundary curves as being “slits.”
The first difference from the construction in the smooth case above might occur
as we attempt to exit the domain at A0. It might happen that both sides of the
smooth boundary curve are inside Ω. If this is the case, choose one side of the
curve at A0 to be the inside of Ω and analytically continue the core functions as we
pass over A0 in the direction of the outward pointing normal there. Once we have
passed out of Ω along this “slit,” we may proceed exactly as we did in the smooth
case to construct the Riemann surface R.

We must be more careful when we define the boundary of R. As before, the
core functions S(z, a), L(z, a) , and S(z, a1), S(z, a2), . . . , S(z, an−1) have preferred
germs over Ω given by the values they have by virtue of the definition of the kernel
functions on Ω. We continue to think of a point p̃ over p ∈ C to be in the boundary
of R if p is in the boundary of Ω and the germs of the core functions are equal
to their preferred germs on the Ω side of the projection down onto the plane. If
p is not in Eb and is a point on a smooth part of a smooth real analytic curve
comprising the boundary that is a “one sided” boundary curve, then this works
exactly as in the smooth case above. If p is not in Eb and is a point on a smooth
part of a smooth real analytic curve comprising the boundary that is a “two sided”
boundary curve, then we think of the boundary of R as being attached to Ω along
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the proper side of the curve-slit in the obvious way.
We next consider the boundary of R and the problem of analytically continuing

the core functions at a point z0 in Eb. We may define a local uniformizing variable ζ
as we did above that makes each of the core functions single valued near z0. Choose
a small disc Dε(z0) as we did above so that in this disc, the boundary component
of Ω that contains z0 consists of real analytic curves ν1, ν2, . . . , νq which originate
at z0 and which radiate outward from z0 and intersect the boundary of Dε(z0) in
exactly one point each, and such that the only point common to more than one of
the curves νj is z0. Now it is an easy matter to see how to “glue” the boundary
of R to Ω, thinking of the curves νj as slits along which the boundary of R is to
be attached to the boundary of Ω if all the function elements of the core functions
agree with their preferred germs at points that lie above Ω on the “inside” side
of the slit. Note that it may very well happen that the center point z0 will be
included (by continuity) in the boundary of R as the boundary is approached from
more than one sectors that are “exterior” to Ω, and hence, it might happen that z0

has more than one point above it in the boundary of R.
The set Q can be chosen exactly as in the smooth case so that the number of

poles PS and PL are well defined for w ∈ Ω−Q.
At this moment, it is not clear if any but one piece of the boundary component

γn near A0 where we started the analytic continuation is involved in the formation
of the boundary ofR. We shall soon see that each “sided” segment in the boundary
is contained in the boundary of R. Let ν denote the smooth real analytic curve
that contains the point A0 from which we started the construction of R and let D+

denote the “half” of Dε(A0) that we chose as the “inside” of Ω which is bounded by
ν and let D− denote the “half” of Dε(A0) that represents the exterior of Ω (and the
interior of R). Identity (3.1) extends to hold on R as before and hence it follows
that L(z, w0) and S(z, w0) have exactly the same poles as functions of z on R when
w0 is a fixed point in ν. As w approaches w0 from the D+ side of Ω, the fact that
the pole of L(z, w) at w corresponds to a pole of S(z, w) at the reflection of w on
the D− side of the “exterior” of Ω shows that

(3.3) PS = PL + 1.

We may now think of Ω as being attached to R along ν and we may analytically
continue the core functions into Ω using their preferred germs. Pick another point
w1 on any other smooth part of a real analytic arc ν1 in bΩ−Eb. If w1 is not part
of the boundary of R, then by letting w approach w1 from the inside of Ω, the same
reasoning we used in the smooth case shows that PS = PL, and this contradicts 3.3.
Because of our ability to analytically continue the core functions by their preferred
values in Ω, this shows that all the smooth parts of the boundaries together with
their appropriate “sides” are all attached to R. The finite number of points in Eb
can now be filled in by continuity to complete the picture.

It is now evident that by attaching Ω to R, we have constructed a compact

Riemann surface R̃ on which S(z, w), L(z, w), and fa(z) are well defined and single
valued meromorphic functions of z when w is held fixed in Ω. To finish the proof
of Theorem 3.1 we need only note that identities (2.4) and (2.5) now show that

S(z, w) and L(z, w) extend to R̃× R̃ as single valued functions and (2.6) and (2.8)
reveal the same for K(z, w) and Λ(z, w). The fact that the functions F ′j extend
follows from the fact mentioned in §2 that F ′j is a linear combination of functions
of the form S(z, a)L(z, ai).
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The next short section deals with the simply connected case, n = 1.

4. The simply connected case. Let a be a fixed point in a simply connected
domain Ω 6= C and let fa(z) denote the Riemann mapping function mapping Ω
one-to-one onto the unit disc D1(0) with fa(a) = 0 and f ′a(a) > 0. The Szegő
kernel S(z, w) associated to Ω may be expressed as

S(z, w) =
c S(z, a)S(w, a)

1− fa(z)fa(w)
,

where c = 1/S(a, a). This formula is analogous to (2.4) and it shows that if the
Szegő kernel is algebraic, then Riemann mappings are algebraic. Conversely, if a
Riemann map is algebraic, the transformation formula for the Szegő kernel (2.12)
shows that S(z, w) is algebraic. Hence, Riemann mappings are algebraic if and
only if the Szegő kernel is algebraic. Furthermore, the Szegő kernel is a rational
combination of the two functions of one variable, fa(z) and S(z, a). In a simply
connected domain, the Bergman kernel is related to the Szegő kernel very simply
via

K(z, w) = 4πS(z, w)2.

This formula shows that the Bergman kernel is algebraic if and only if the Szegő
kernel is algebraic and that the Bergman kernel is a rational combination of the
same two functions of one variable, fa(z) and S(z, a).

5. Consequences of the existence of the Riemann surface and open ques-
tions. Suppose Ω is a finitely connected domain in the plane such that no boundary
component is a point and suppose that one of the conditions of Theorem 1.2 is met.
Suppose f : Ω→ D1(0) is a proper holomorphic mapping (such as an Ahlfors map).

We know that f extends to the Riemann surface R̃ as a single valued meromorphic

function. Suppose the order of f on R̃ is m. Choose a point λ with |λ| > 1 so

that f−1(λ) consists of m distinct points in R̃. We may construct a meromorphic

function g on R̃ as in Farkas and Kra [12, page 248-249] which is holomorphic on

Ω ⊂ R̃ such that f and g form a primitive pair for the field of meromorphic func-

tions on R̃. (This means that any meromorphic function on the double of Ω can be
written as a rational combination of these two functions.) Now the kernel identities
of §2 reveal that K(z, w) and S(z, w) are rational combinations of f(z), g(z) and
conjugates of f(w) and g(w). Furthermore, all proper holomorphic maps of Ω onto
the unit disc are rational combinations of f and g and so are the functions F ′j .

A fascinating problem that remains is to determine if the function g(z) can be
taken to be something explicit and well known. For example, can g be taken to be a
second proper holomorphic map of Ω onto the unit disc? To show that such a thing
is possible, one would have to find a proper holomorphic map g that separates the
m points in f−1(λ) (see [1, page 321-324]). Since proper holomorphic maps from Ω
to the disc extend to be meromorphic on the double of Ω (see [5]), the consequences
mentioned above would imply that all the kernels and domain functions associated
to Ω extend to the double of Ω as single valued meromorphic functions. Another
interesting possibility is that maybe g(z) could be taken to be S(z, b) or K(z, b) for
some choice of b in Ω.

Perhaps the most interesting problem that presents itself in light of Theorem 1.2
is the question as to whether every n-connected domain in the plane such that no
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boundary component is a point can be mapped conformally onto a domain of the
form

A :=

{
z ∈ C : |z +

n−1∑
k=1

ak/(z − bk)| < r

}
for some choice of the parameters ak, bk, and r. If such a thing were possible, then
the transformation formula for the Bergman kernels under conformal maps would
allow the information obtained by means of the Riemann surface attached to A to
be pulled back to a general domain.
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