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Abstract. We derive some new connections between the Szegő kernel, the
Poisson kernel, the Dirichlet-to-Neuamnn map, and the Bergman kernel in
planar domains. The new formulas shed light on the complexity of the Poisson
kernel in multiply connected domains.

To celebrate the legacy of Nessim Sibony

1. Preamble

The first time I met Nessim Sibony, I was part of a group of mathematicians
who were trying to compliment him on a fiendishly clever and beautiful argument
he had come up with in a recent paper of his. He said, in the most French way
possible, “It’s just analysis!” It was the most modest thing I had ever heard a
mathematician say! I took him to mean that, if you shine the light of analysis
on a problem, you are sure to find something interesting and beautiful.

In the spirit of Nessim Sibony, I shine the light of analysis on some rather
old and moldy areas of mathematics. It’s just complex analysis. In fact, it’s
just another paper on the Bergman kernel in the plane, an object that has the
annoying feature that, if you think about it for any length of time, you will
think that you have discovered something new and interesting about it. After
shining the light of analysis on this material for awhile, I suspect that some
of the founders of the subject must have known some of these things. What
probably is new, however, is how all the pieces can be seen to fit together and
how they extend nicely to the multiply connected setting, where they shed light
on the complexity of the Poisson kernel. For that reason, I have made the paper
somewhat expository and have improved and simplified some arguments that
have previously appeared in order to shine the beam a little brighter.

2. Introduction

Because I have started this paper writing in the first person, I must warn the
reader that, when I begin to prove theorems, I will switch, not to the royal we,
but to the “we” that refers to the reader and me. I like to think that we are in
this together.

Assume that Ω is a bounded simply connected domain in the plane with C∞

smooth boundary bΩ. I assume that my reader is familiar with the Bergman,
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Szegő, Garabedian, and Poisson kernels associated to Ω. We will quickly review
the key properties and identities we will need; this information can be found in
Bergman’s book [11] or in [1], where it is given in a style and form in the same
spirit as this paper.

Before we launch into a long string of definitions and properties of the classical
kernel functions, we will summarize some of the easier results of this paper that
do not require too much background. They fall under the heading: the Poisson
kernel and the Bergman kernel.

Let a be a point in our bounded domain Ω with smooth boundary that we fix
once and for all, and let k(z, w) be a complex antiderivative in the z variable of the
Bergman kernel K(z, w) for Ω that vanishes at a. Let T (w) denote the complex
number of modulus one pointing in the direction of the standard orientation of
the boundary at a point w in the boundary bΩ of Ω.

The first theorem relates the Poisson kernel to the antiderivative of the Bergman
kernel.

Theorem 2.1. The Poisson kernel P (z, w) associated to a bounded simply con-

nected domain in the plane with C∞ smooth boundary Ω is given by

P (z, w) = P (a, w) + Re
[

ik(z, w)T (w)
]

,

where a is a fixed point in Ω and k(z, w) is a holomorphic antiderivative in the

z variable of the Bergman kernel K(z, w) associated to Ω that vanishes at z = a.

The second theorem shows that, in some sense, the Bergman kernel can be
viewed as the kernel function for the Dirichlet-to-Neumann map, which is the
mapping that takes a smooth function on the boundary of Ω to the normal
derivative of its harmonic extension to Ω. This theorem does not require the
domain to be simply connected.

Theorem 2.2. Suppose Ω is a bounded finitely connected domain with C∞

smooth boundary Ω. The Dirichlet-to-Neumann map applied to a C∞ smooth

real valued function ϕ on the boundary is given by the function on the boundary

Re [h(z)T (z)]

where the boundary values of h are gotten from the holomorphic function

h(z) =

∫

w∈bΩ

K(z, w)ϕ(w) dw̄

on Ω by letting z tend to the boundary.

We note here that it is an easy matter to see that the function h in Theorem 2.2
is in C∞(Ω). Indeed, if we let Φ denote a C∞ extension of ϕ to Ω, an application
of the complex Green’s theorem yields

h(z) =

∫∫

Ω

K(z, w)
∂Φ(w)

∂w
dw ∧ dw̄,
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and we observe that h is −2i times the Bergman projection of ∂Φ(w)
∂w

. Since the

Bergman projection preserves functions in C∞(Ω) (see [1, p. 73] for a proof), we
conclude that h is smooth. Fun fact: if the Bergman projection preserves smooth
functions, so does the Poisson extension operator. The reverse is also true (see
[1, p. 87]).

It feels like these theorems should have been known to the pioneers in the
subject like Bergman, Schiffer, Nehari, Szegő, or Grunsky, at least in the simply
connected setting, but I haven’t found references to them. The theorems rose to
the surface after I felt like I must be missing something obvious in my study of
the Dirichlet-to-Neumann map in area quadrature domains in [5, 6]. I will give
two proofs of the theorems in the simply connected case. The first follows the
path I used to discover the theorems and has as a byproduct Theorem 4.1 in §4,
which is a rather intriguing result by itself. The first also connects the Poisson
kernel to the Szegő kernel to the Bergman kernel and generalizes nicely to the
multiply connected setting, where it leads to Theorem 5.1 about the complexity
of the Poisson kernel. The second is perhaps the way the theorems should have
been discovered.

We turn now to summarizing the definitions, formulas, and properties we will
need to state the theorems carefully and prove them.

The Szegő kernel S(z, w) and the Bergman kernel K(z, w) are holomorphic
in z and antiholomorphic in w. They extend C∞ smoothly to Ω× Ω minus the
boundary diagonal and are Hermitian symmetric. They are nonvanishing in the
simply connected case. The Garebedian kernel L(z, w) is holomorphic in z and
w with a singularity of the form

1

2π(z − w)

near z = w. It extends smoothly to Ω × Ω minus the diagonal and satisfies
L(z, w) = −L(w, z). The Garabedian kernel is also nonvanishing on Ω × Ω
minus the diagonal in Ω×Ω, even in the finitely connected setting. Hence, when
w ∈ Ω, 1/L(z, w) can be viewed as a holomorphic function of z on Ω with a
simple zero at the point w in Ω.

Let A∞(Ω) denote the space of holomorphic functions on Ω in C∞(Ω).

When a is a fixed point in Ω, we will use the shorthand notation

Sa(z) := S(z, a) and La(z) := L(z, a).

Similarly, Ka(z) := K(z, a).

The Green’s function G(z, w) associated to Ω is the harmonic function of z
on Ω − {w} that has zero boundary values and singular part − ln |z − w| near
z = w. The Poisson kernel P (z, w) is given by

P (z, w) =
1

2π

∂

∂nw

G(z, w)



4 S. BELL

for z ∈ Ω and w ∈ bΩ, where ∂/∂nw represents the outward normal derivative
in the w variable. The Bergman kernel is related to the Green’s function via

(2.1) K(z, w) =
−2

π

∂2G(z, w)

∂z∂w̄
.

Another important kernel related to the Bergman kernel is the complementary
kernel Λ(z, w) given by

Λ(z, w) =
−2

π

∂2G(z, w)

∂z∂w
.

The Bergman kernel and its complementary kernel are related via

K(z, w)T (w) = −Λ(z, w)T (w)

when z ∈ Ω and w ∈ bΩ. This identity reveals that, when a ∈ Ω, the holomor-
phic 1-form Ka dz extends to the double of Ω as a meromorphic 1-form as the
conjugate of −Λa dz on the reflected side. We will let κa denote the extended
1-form on the double. This meromorphic 1-form has a residue free double pole
at the reflection of a ∈ Ω in the double, since Λ(z, a) has a residue free double
pole at z = a. In the simply connected case, this implies that κa is an exact
form, i.e., that κa = dg where g is a meromorphic function on the double of Ω.
One byproduct of our work will be that we can express g simply in terms of the
Szegő and Garabedian kernels (see the remarks after Theorem 4.1). The 1-form
κa also extends in this way to the double in the multiply connected setting and
we will explore some interesting, but more complicated, analogous results in §5.

A harmonic function u on Ω that extends smoothly to the boundary can be
expressed locally near a boundary point as h+H, where h andH are holomorphic
functions that extend smoothly to the boundary. The normal derivative of h at
a boundary point w is −ih′(w)T (w) and the normal derivative of H is therefore

iH ′(w)T (w). Hence,

∂u

∂n
= −ih′(w)T (w) + iH ′(w)T (w) = −i

∂u

∂w
T (w) + i

∂u

∂w̄
T (w).

We may express the normal derivative of the Green’s function in this way. If we
also note that

0 ≡
∂G

∂w
T (w) +

∂G

∂w̄
T (w)

on the boundary because G(z, w) is zero when z ∈ Ω and w is in the boundary,
we obtain that that the Poisson kernel can be expressed in two ways in terms of
the Green’s function as follows.

P (z, w) =
1

2π

∂

∂nw

G(z, w)(2.2)

=
1

2π
(−2i)

∂G

∂w
(z, w)T (w) =

1

2π
(2i)

∂G

∂w̄
(z, w)T (w).
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If we now take the normal derivative again in the z variable and use (2.1), we
obtain

∂

∂nz

∂

∂nw

G(z, w) = (−2i)(2i)T (z)
∂2G

∂z∂w̄
(z, w)T (w) = −2πT (z)K(z, w)T (w)

when z and w are in the boundary and z 6= w.

The Szegő kernel is related to the Garabedian kernel via

(2.3) S(z, a) =
1

i
L(z, a)T (z)

when a ∈ Ω and z ∈ bΩ.

3. The Poisson kernel and the Szegő projection

We assume that Ω is a bounded simply connected domain with C∞ smooth
boundary. The starting point for the results of this paper is the following observa-
tion from [2] that describes how the Poisson extension operator can be described
in terms of the Szegő projection.

Given a function ϕ in C∞(bΩ), its Poisson extension u is in C∞(Ω), and there
are holomorphic functions h and H on Ω in C∞(Ω) such that u = h + H on
Ω, and ϕ = h + H on bΩ. Pick any point a ∈ Ω and note that we can assume
that H(a) = 0 (after adding H(a) to h and subtracting H(a) from H). Multiply

ϕ = h+H by Sa and use the identity (2.3) in the form Sa(z) = iLa(z)T (z) when
z ∈ bΩ to obtain

(3.1) Saϕ = Sah+ iLaHT

on bΩ. Notice that LaH is holomorphic on Ω because the zero of H at a cancels
the pole of La at a. Also, the Cauchy theorem reveals that functions of the form
GT , where G is in A∞(Ω), are orthogonal to the Hardy space. Indeed, if g and
G are both in A∞(Ω), then

〈g,GT 〉 =

∫

γ

g GT ds =

∫

γ

gG dz = 0,

and since A∞(Ω) is dense in the Hardy space, the result follows. Hence, letting
P denote the Szegő projection and applying it to (3.1), we find that

Sah = P (Saϕ) and so h =
P (Saϕ)

Sa

.

Take the conjugate of (3.1) and multiply by T and use (2.3) in the form Sa(z) =
−iLa(z)T (z) to obtain

(3.2) −iLaϕ = −iLaH + SahT ,

on bΩ, another orthogonal decomposition. This time we see that −iLaH =
P (−iLaϕ ), and so

LaH = P (La ϕ ) and H =
P (La ϕ )

La

.
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Consequently, the harmonic extension of ϕ to Ω is given by h+H where

h =
P (Saϕ)

Sa

and H =
P (Laϕ)

La

.

Hence, as noted in [2], the Poisson kernel is given by

(3.3) P (z, w) =
S(z, w)S(w, a)

S(z, a)
+

S(z, w)L(w, a)

L(z, a)
.

Also noted in [2], letting z = a in this formula shows that

P (a, w) =
|S(w, a)|2

S(a, a)
,

i.e., the well-known fact that the Poisson kernel is equal to the Poisson-Szegő
kernel in a simply connected domain. The main results of this paper center
around showing that the functions

S(z, w, a) :=
S(z, w)S(w, a)

S(z, a)
and L(z, w, a) :=

S(z, w)L(w, a)

L(z, a)

are related to the Bergman kernel in a rather straightforward manner.

We will also study the Dirichlet-to-Neumann map, which is the map that takes
the function ϕ above to the normal derivative of its Poisson extension u, which
we have seen to be equal to −ih′T + iH ′T .

4. From Poisson kernel to Szegő kernel to Bergman kernel

We continue to assume that Ω is a bounded simply connected domain in the
plane with C∞ smooth boundary, and that all the definitions and notations of
§2 are in place.

We now claim that, assuming w and a are fixed points in Ω with w 6= a, that

s(z) :=
d

dz
S(z, w, a) =

1

2

S(w, a)

L(w, a)
K(z, w).

We will prove this by showing that the L2(Ω) inner product of a holomorphic

function H(z) in C∞(Ω) with s(z) is equal to cH(w) where c = 1
2
S(w, a)/L(w, a).

Since such functions H are dense in the Bergman space, it follows that s(z) =
c̄K(z, w). Here is the computation.

〈H, s〉 =

∫∫

Ω

H(z) s(z)

(

−1

2i

)

dz ∧ dz̄ =
1

2i

∫

bΩ

H(z)
S(z, w)S(w, a)

S(z, a)
dz,

by the complex Green’s identity. Note that (2.3) reveals that

S(z, w)S(w, a)

S(z, a)
=

T (z)S(z, w)S(w, a)

T (z)S(z, a)
=

L(z, w)S(w, a)

L(z, a)
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when z is in the boundary. Hence, continuing the calculation of the integral
yields

=
1

2i
S(w, a)

∫

bΩ

H(z)
L(z, w)

L(z, a)
dz.

Note that L(z, w) has a single simple pole at z = w with residue 1/(2π), and
H(z)/L(z, a) can be identified as holomorphic on Ω with a zero at a because of
the pole of L(z, a) at z = a and the fact that L(z, a) is nonvanishing on Ω−{a}.
Hence, the residue theorem shows that this last integral is equal to

1

2i
S(w, a)(2πi)

1

2π

H(w)

L(w, a)
,

and our claim is proved.

A very parallel calculation shows that, if w 6= a, then

ℓ(z) :=
d

dz
L(z, w, a) =

1

2

L(w, a)

S(w, a)
K(z, w).

Indeed, assuming w and a are fixed points in Ω, w 6= a, then the L2(Ω) inner
product of a holomorphic function H(z) in C∞(Ω) with ℓ(z) is given by

〈H, ℓ〉 =
1

2i

∫

bΩ

H(z)
S(z, w)L(w, a)

L(z, a)
dz,

by the complex Green’s identity. Note that (2.3) reveals that

S(z, w)L(w, a)

L(z, a)
=

T (z)S(z, w)S(w, a)

T (z)L(z, a)
=

L(z, w)L(w, a)

S(z, a)
.

Hence, continuing the calculation of the integral yields

=
1

2i
L(w, a)

∫

bΩ

H(z)
L(z, w)

S(z, a)
dz,

and, because L(z, w) has a single simple pole at z = w with residue 1/(2π),
and S(z, a) is nonvanishing and smooth up to the boundary, the residue theorem
shows that this last integral is equal to

1

2i
L(w, a)(2πi)

1

2π

H(w)

S(w, a)
,

and our claim is proved.

We now let w tend to the boundary and note that (2.3) shows that

S(w, a)

L(w, a)
= iT (w)

when w is in the boundary. Thus,

d

dz
S(z, w, a) =

i

2
K(z, w)T (w)
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when w is in the boundary. Similarly,

d

dz
L(z, w, a) =

i

2
K(z, w)T (w).

Note that

L(a, w, a) = 0

because of the pole of L(z, a) at z = a. Hence, letting z = a in the expression

P (z, w) = S(z, w, a) + L(a, w, a)

for the Poisson kernel yields that, on a simply connected domain, the Poisson
kernel P (a, w) is equal to

P (a, w) = S(a, w, a) =
|S(a, w)|2

S(a, a)
,

which, as noted earlier, is the Poisson-Szegő kernel at a. We now can take
antiderivatives to obtain

S(z, w, a) =
1

2
ik(z, w)T (w) + P (a, w) and L(z, w, a) =

1

2
ik(z, w)T (w).

Theorem 2.1 is proved. Theorem 2.2 now follows by writing out the integrals in
the new Poisson formula for solving the Dirichlet problem as h(z) + H(z) and
computing the normal derivative via −ih′T + iH ′T . Differentiating under the
integral sign when z is in Ω and letting z tend to the boundary completes the
proof.

Before we proceed to the multiply connected case, it is worth collecting the
formulas we have derived in the statement of a theorem and pointing out an
interesting consequences of one of them.

Theorem 4.1. If Ω is a bounded C∞ smooth simply connected domain in the

plane and a and w are points in Ω, then

∂

∂z

(

S(z, w)S(w, a)

S(z, a)

)

=
1

2

S(w, a)

L(w, a)
K(z, w)

∂

∂z

(

S(z, w)L(w, a)

L(z, a)

)

=
1

2

L(w, a)

S(w, a)
K(z, w).

Furthermore, if w is in the boundary then,

∂

∂z

(

S(z, w)S(w, a)

S(z, a)

)

=
i

2
K(z, w)T (w)

∂

∂z

(

S(z, w)L(w, a)

L(z, a)

)

=
i

2
K(z, w)T (w).

If both a and w are in the boundary and a 6= w, then

S(z, w)L(w, a)

L(z, a)
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is a biholomorphic mapping of Ω onto the right half plane that sends the point a
to zero and the point w to the point at infinity, and so the last formula expresses

the boundary values of the Bergman kernel in terms of such an object.

The proof of Theorem 4.1 is complete except for the last statement about the
quotient being a biholomorphic map to the right half plane, which is proved in
[7]

We mentioned in §2 that the meromorphic 1-form κw is an exact meromorphic
1-form on the double of Ω. This is true even when w is a point in the boundary.
The identity

∂

∂z

(

S(z, w)L(w, a)

L(z, a)

)

=
i

2
K(z, w)T (w)

shows that the function G(z) which is equal to S(z, w)L(w, a)/L(z, a) on Ω is

such that dG = i
2
T (w)Kwdz on Ω. Identity (2.3) can be used multiple times to

show that, when z and w are in the boundary, S(z, w)L(w, a)/L(z, a) is equal
to the conjugate of H(z) := −S(z, w)S(w, a)/S(z, a). Hence, the meromorphic
function g(z) given by −2iT (w)G(z) on Ω and −2iT (w) times the conjugate of
H(z) on the reflected side of Ω in the double is such that dg = κw. Note that g
has a single simple pole at the point w ∈ bΩ in the double.

We isolate part of this last argument as a theorem because we will use it again
in the multiply connected setting.

Theorem 4.2. Suppose Ω is a bounded C∞ smooth finitely connected domain.

If a is a point in Ω and z and w are points on the boundary, then

S(z, w)L(w, a)

L(z, a)

is equal to the conjugate of

−
S(z, w)S(w, a)

S(z, a)
,

and this reveals that S(z, w)L(w, a)/L(z, a) extends to be a meromorphic func-

tion G(z) on the double of Ω when w is a boundary point of Ω. Similarly,

S(z, w)S(w, a)/S(z, a) also extends to the double as a meromorphic function of

z when w ∈ bΩ. If Ω is simply connected and w ∈ bΩ, then the meromorphic

one-form κw is equal to dg where g(z) = −2iT (w)G(z) is meromorphic on the

double with a single simple pole at the point w ∈ bΩ.

5. Poisson, Szegő, Bergman kernel connections in the multiply

connected case

We now consider the case of a bounded finitely connected domain Ω with C∞

smooth boundary. Assume that Ω is n-connected and let γ0 denote the outer
boundary curve and γj, j = 1, . . . n− 1, denote the n− 1 inner boundary curves,
all parameterized in the standard sense. Let ωj denote the harmonic function
on Ω that has boundary values equal to one on γj and equal to zero on the
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other boundary curves, and let F ′

j = 2(∂ωj/∂z) denote the associated classical
holomorphic functions whose matrix of periods on the n − 1 inner boundary
curves is nonsingular. (F ′

j is not the derivative of a holomorphic function.) As
we did in the simply connected case, we first review the relationship between the
Poisson extension operator and the Szegő projection, as described in [2].

It is a well known fact that, given a holomorphic function H on Ω, there is a
holomorphic function h on Ω and complex constants cj such that

h′ = H +
n−1
∑

j=1

cjF
′

j .

The constants are uniquely determined by the periods ofH on the inner boundary
curves and h is unique up to an additive constant. If H is in C∞(Ω), then so is
h. Given a harmonic function u in C∞(Ω), ∂u/∂z is holomorphic. Hence, there
is a holomorphic function g in C∞(Ω) such that

g′ =
∂u

∂z
+

n−1
∑

j=1

c̃jF
′

j .

Now

g − u− 2
n−1
∑

j=1

c̃jωj

is an antiholomorphic function G. Hence, we have shown that u can be expressed
as

(5.1) u(z) = g(z) +G(z) +
n−1
∑

j=1

cjωj(z),

where g and G are holomorphic functions on Ω in C∞(Ω) and the cj are complex
constants. As shown in [2], it is possible to pick a point a in Ω such that the
n− 1 zeroes of Sa(z) in Ω are simple zeroes (see also [1], Chapter 27). We may
assume that G(a) = 0 by absorbing its value into g. We note that, in multiply
connected domains, even though the Szegő kernel has zeroes, the Garabedian
kernel L(z, a) is nonvanishing for z ∈ Ω − {a}, and the Szegő kernel S(z, w) is
nonvanishing when z ∈ bΩ and w ∈ Ω.

Let ϕ denote the function on bΩ representing the boundary values of u and
multiply (5.1) by Sa, restrict to the boundary, and use (2.3) to obtain

Saϕ = Sag − iLaGT +
n−1
∑

j=1

cjSaωj.

Take the Szegő projection and note that LaGT is orthogonal to the Hardy space
to see that

g =
P (Saϕ)

Sa

−
n−1
∑

j=1

cj
P (Saωj)

Sa

.
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Let {aj}
n−1
j=1 denote the simple zeroes of Sa. Because g is holomorphic on Ω, there

can be no poles at the zeroes of the S(z, a), and so

(5.2) P (Saϕ)(ak) =
n−1
∑

j=1

cjP (Saωj)(ak)

for k = 1, . . . , n − 1. We must conclude that this system of equations for cj
has a solution no matter what the function ϕ is. We could choose ϕ so that
the left hand side of the system (5.2) is equal to one at aj and equal to zero
at the ak with k 6= j. Since we could do this for each aj, it follows that the
(n− 1)× (n− 1) matrix [Akj] where Ajk = P (Saωj)(ak) is nonsingular. (Indeed,
since Sa is nonvanishing on the boundary, we could choose a ϕ so that Saϕ has
the boundary values of any given complex polynomial. The Szegő projection of
Saϕ would be equal to that polynomial, and we could use Lagrange interpolation
at the points ak to come up with a system of equations that shows that the matrix
must be nonsingular. That the matrix is nonsingular was also proved in [2], see
also [1, p. 111].)

Hence, (5.2) determines the constants cj. Next, take the conjugate of (5.1),
multiply by La, and repeat the process to obtain

Laϕ = LaG+ iSagT +
n−1
∑

j=1

c̄jLaωj,

and project to see that

G =
P (La ϕ )

La

−

n−1
∑

j=1

c̄j
P (Laωj)

La

.

We now face the task to recognize the quotients of Szegő and Garabedian
kernels appearing as kernels in these formulas as derivatives of something like we
did in the simply connected case (the part of this paper that can be considered
to be new). The matter is complicated by the fact that S(z, a) has n− 1 simple
zeroes at {a1, . . . , an−1}. The easiest term to analyze is, assuming w 6= a,

ℓ(z) :=
d

dz
L(z, w, a)

where

L(z, w, a) =
S(z, w)L(w, a)

L(z, a)
.

Indeed, assuming w and a are fixed points in Ω, w 6= a, then the L2(Ω) inner
product of a holomorphic function H(z) in C∞(Ω) with ℓ(z) is given by

〈H, ℓ〉 =
1

2i

∫

bΩ

H(z)
S(z, w)L(w, a)

L(z, a)
dz,
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by the complex Green’s identity. As before, the identity (2.3) reveals that

S(z, w)L(w, a)

L(z, a)
=

T (z)S(z, w)S(w, a)

T (z)L(z, a)
=

L(z, w)L(w, a)

S(z, a)
.

Hence, continuing the calculation of the integral yields

=
1

2i
L(w, a)

∫

bΩ

H(z)
L(z, w)

S(z, a)
dz,

and, because L(z, w) has a single simple pole at z = w with residue 1/(2π), and
S(z, a) is smooth up to the boundary and nonvanishing on the boundary, the
residue theorem shows that this last integral is equal to

1

2i
L(w, a)(2πi)

[

1

2π

H(w)

S(w, a)
+

n−1
∑

j=1

H(aj)L(aj, w)

S ′(aj, a)

]

where

S ′(aj, a) =
∂

∂z
S(z, a)

∣

∣

∣

∣

z=aj

are nonzero constants (because the zeroes are simple). It now follows that

(5.3) ℓ(z) =
1

2

L(w, a)

S(w, a)
K(z, w) + πL(w, a)

n−1
∑

j=1

L(aj, w)

S ′(aj, a)
K(z, aj).

Finally, letting w go to the boundary and using the identities (2.3) and

L(aj, w) = −L(w, aj) = −i S(w, aj)T (w)

when w ∈ bΩ, we obtain that

(5.4) ℓ(z) =
i

2
K(z, w)T (w) + iπ

n−1
∑

j=1

L(w, a)S(w, aj)T (w)

S ′(aj, a)
K(z, aj)

when w ∈ bΩ and a ∈ Ω. The functions L(w, a)S(w, aj) appearing here are rather
interesting. Let F ′ denote the n− 1 dimensional linear span of the functions F ′

j ,
j = 1, . . . , n − 1. Schiffer [13] showed that L(w, a)S(w, aj), j = 1, . . . , n − 1,
form a basis for F ′. So do the functions S(w, a)L(w, aj), j = 1, . . . , n− 1, since

F ′

jT = −F ′

jT on the boundary and (2.3) yields that

L(w, a)S(w, aj)T (w) = −S(w, a)L(w, aj)T (w)

on the boundary (see [1, p. 98] for another treatment of these facts). Notice that
the zero of S(w, aj) at w = a cancels the pole of L(w, a) at w = a and the pole
of L(w, aj) at w = aj is canceled by the zero of S(w, a) at aj. We may rewrite
(5.4) in the form

(5.5) ℓ(z) =
i

2
K(z, w)T (w)− iπ

n−1
∑

j=1

S(w, a)L(w, aj)T (w)

S ′(aj, a)
K(z, aj).
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We define normalized basis functions uj for F
′ via

uj(w) := 2π
S(w, a)L(w, aj)

S ′(aj, a)
.

These basis functions will show up in many of our formulas and are noteworthy
because

uj(aj) = 1 and uj(ak) = 0 for j 6= k.

We can now shorten (5.5) to a pleasing

(5.6) ℓ(z) =
i

2
K(z, w)T (w)−

i

2

n−1
∑

j=1

uj(w)T (w)K(z, aj).

An interesting consequence of the expression for ℓ in (5.3) when w is in Ω can
be obtained by integrating around an inner boundary curve in the z variable and
using the well known formula

∫

γk

K(z, w) dz = −i F ′

k(w).

Since ℓ is the complex derivative of something, we obtain

0 = −
i

2

L(w, a)

S(w, a)
F ′

k(w)− πiL(w, a)
n−1
∑

j=1

L(aj, w)

S ′(aj, a)
F ′

k(aj),

and dividing by iL(w, a), multiplying by S(w, a), and taking the complex conju-
gate yields

F ′

k(w) = −2π
n−1
∑

j=1

S(w, a)L(aj, w)

S ′(aj, a)
F ′

k(aj).

Since L(aj, w) = −L(w, aj), we obtain that

F ′

k(w) = 2π
n−1
∑

j=1

F ′

k(aj)

S ′(aj, a)
S(w, a)L(w, aj).

(Note that the formula is valid at the zeroes w = am because L(w, am) has a
simple pole at am with residue 1/(2π) and S(w, a) has simple zeroes at the aj
with j 6= m.) This formula confirms the result of Schiffer mentioned above that
says that the functions {S(w, a)L(w, aj)}

n−1
j=1 form a basis for F ′.

We next note that, since ℓ(z) is a derivative for each fixed w in Ω, identity
(5.3) yields that the periods of ℓ(z) must all be zero. Furthermore, since the
complex linear span of K(z, w) as w ranges over Ω is dense in A∞(Ω), it follows
that the matrix of periods of the functions K(z, aj), j = 1, . . . , n − 1, must be
nonsingular. Hence, the coefficients in front of the functions K(z, aj) in identities
(5.3) and (5.4) are completely determined by the periods of the K(z, w) term.

We now focus attention on equation (5.6) for fixed w in the boundary. Let
k(z, w) be a complex antiderivative of the right hand side of (5.6) in the z variable
that vanishes at z = a. (We remark that k(z, w) can be defined via a path integral
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that starts at a and ends at z.) The definition of ℓ and the fact that the pole of
L(z, a) in the denominator makes L(z, w, a) vanish at z = a allows us to conclude
that

S(z, w)L(w, a)

L(z, a)
= k(z, w).

Next, we want to simplify the functions

Hm(z) :=

∫

w∈γm

S(z, w)L(w, a)

L(z, a)
ds

that appear in the solution to the Dirichlet problem in the form P (Laωm)/La.
Notice that, by differentiating under the integral sign and using (5.6),

H ′

m(z) =

∫

w∈γm

[

i

2
K(z, w)T (w)−

i

2

n−1
∑

j=1

uj(w)T (w)K(z, aj)

]

ds(5.7)

=
i

2
F ′

m(z) +
n−1
∑

j=1

cmjK(z, aj),

where cmj is a nonsingular matrix of periods. Since the left hand side of this
equation is a derivative, the coefficients cmj are completely determined by the
periods of the F ′

m. Define Fm to be a complex antiderivative of the right hand
side of (5.7) that vanishes at z = a. (Once again, we remark that Fm could be
defined by a path integral. We also remark that Fm is not an antiderivative of
F ′

m, since the periods of the later are not all zero.) Since Hm vanishes at a, again
by virtue of the pole of L(z, a) at z = a, we conclude that Fm(z) is equal to
Hm(z).

We could continue to express all the other functions that appear as kernels
in the solution to the Dirichlet problem. One way to do this would be to use
Theorem 4.2. Another way would be to note that the Ahlfors map fa : Ω →
D1(0), which is an n-to-one branched proper holomorphic mapping from Ω onto
the unit disc with fa(a) = 0, is given by

fa(z) =
S(z, a)

L(z, a)
,

and it follows that

S(z, w)S(w, a)

S(z, a)
=

S(z, w)L(w, a)

L(z, a)

fa(w)

fa(z)
,

and many of the properties of the other terms in the solution to the Dirichlet
problem can be read off. However, it turns out we have done enough now to be
able to write out the Poisson kernel completely. The solution is further analyzed
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in [2] and the Poisson kernel is expressed there as

P (z, w) = 2Re

[

S(z, w)L(w, a)

L(z, a)
−

n−1
∑

j=1

µj(w)

∫

ζ∈γj

S(z, ζ)L(ζ, a)

L(z, a)
ds

]

(5.8)

+
|S(w, a)|2

S(a, a)
+

n−1
∑

j=1

(ωj(a)− λj(a))µj(w),

where µj(w) is a real valued fixed linear combination

µj(w) =
n−1
∑

k=1

AjkF
′

k(w)T (w),

where the coefficients Ajk are determined by the system
∫

γj

µk ds = δjk.

The constant λj(a) is given by

λj(a) =

∫

γj

|S(w, a)|2

S(a, a)
ds.

Using our results above, we may write

P (z, w) = 2Re

[

k(z, w)−
n−1
∑

j=1

µj(w)Fj(z)

]

+
|S(w, a)|2

S(a, a)
+

n−1
∑

j=1

(ωj(a)− λj(a))µj(w),

As noted in [2], letting z = a in the formula (5.8) for the Poisson kernel and
observing that the pole of L(z, a) at z = a makes the top line vanish reveals
that, on a multiply connected domain, the Poisson kernel and the Poisson-Szegő
kernel are related via

P (a, w) =
|S(w, a)|2

S(a, a)
+

n−1
∑

j=1

(ωj(a)− λj(a))µj(w).

I, the author, have been obsessed over the years with revealing the complexity
of the Poisson kernel in finitely connected domains (see [3, 4, 5]) and how it
relates to questions about the complexity of solutions to the Dirichlet problem
originating in [12] and culminating in [8]. Identity (5.8) can be used to shed light
on this subject. Indeed, it is proved in [2] that the Szegő kernel can be expressed
via

(5.9) S(z, w) =
c0S(z, a)S(w, a) +

∑n−1
i,j=1 cijS(z, ai)S(w, aj)

(1− fa(z) fa(w))
,

where fa(z) is the Ahlfors map associated to a and where the coefficients are
constants. Consequently, k(z, w) = S(z, w)L(w, a)/L(z, a) can be decomposed
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into a sum of terms involving terms like S(z, b)/L(z, a), which extend meromor-
phically to the double of Ω as functions of z for fixed b and a. Indeed, identity
(2.3) shows that

S(z, b)

L(z, a)
=

L(z, b)

S(z, a)
for z ∈ bΩ,

and this shows how to define the extension to the reflected side of Ω in the dou-
ble. Similarly, terms like S(w, b)/S(w, a) extend meromorphically to the double
because they are equal to the conjugate of L(w, b)/L(w, a) on the boundary. It
is shown in [4] that the field of meromorphic functions on the double of Ω is
generated by any one given Ahlfors map fa(z) and another Ahlfors map fb(z)
associated to a point b 6= a in Ω. Hence, when we divide identity (5.9) by

L(z, a)S(w, a) and distribute the denominator through the sum, we may con-

clude that S(z, w)/L(z, a) is a rational combination of fa(z), fb(z), fa(w), fb(w),

and S(w, a). Since the Ahlfors map fa(w) is equal to S(w, a)/L(w, a), it fol-
lows that L(w, a) = S(w, a)/fa(w), and we conclude that the principal term
S(z, w)L(w, a)/L(z, a) of the Poisson kernel is a rational combination of the

same basic functions, fa(z), fb(z), fa(w), fb(w), and S(w, a). We next claim
that F ′

j(w)/S(w, a)
2 extends meromorphically to the double. Indeed,

F ′

j(w)T (w) = −F ′

j(w)T (w) on bΩ,

and (2.3) yields that

S(w, a)2T (w) = −L(w, a)2T (w) on bΩ.

Dividing the two equations yields that F ′

j(w)/S(w, a)
2 is equal to the conjugate

of F ′

j(w)/L(w, a)
2 on the boundary, and this defines the claimed extension. We

now conclude that F ′

j(w) is a rational combination of fa(w) and fb(w) times

S(w, a)2. Finally, since L(w, a) = S(w, a)/fa(w) and (2.3) yields that T (w) =

iS(w, a)/L(w, a) = fa(w)S(w, a)/S(w, a) on bΩ, it follows that T (w) can also be
expressed simply in terms of fa(w) and S(w, a). We may now assert the following
theorem.

Theorem 5.1. Suppose Ω is a bounded finitely connected domain with C∞

smooth boundary. There are two points a and b in Ω such that the Poisson

kernel P (z, w) associated to Ω is a rational combination of the two Alfors maps

fa(z), fb(z), fa(w), fb(w), the Szegő kernel S(w, a) associated to the point a, the
functions Fm(z), m = 1, . . . , n− 1, and conjugates of all these functions.

It is interesting that all the functions in this list are holomorphic functions of
one variable and that the functions Fm(z) occur as linear factors only in terms
that are in C∞(Ω× bΩ).

Given a bounded finitely connected domain with smooth boundary, there is a
biholomorphic mapping to a nearby double quadrature domain Ω that is as C∞

close to the identity map as desired as shown in [10]. It is also proved there that,
on a smooth double quadrature domain, S(z, a) extends meromorphically to the
double of Ω, and consequently, S(z, a) too is a rational combinations of the two
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Ahlfors maps fa and fb that generate the field of meromorphic functions on the
double. Hence, in this case, the Poisson kernel is a rational combination of just
the functions fa(z), fb(z), fa(w), fb(w), the functions Fm(z), m = 1, . . . , n − 1,
and all their conjugates. This confirms the feeling that double quadrature do-
mains should be thought of as replacements for the unit disc in the multiply
connected setting via a “Riemann mapping theorem for multiply connected do-
mains” that says smooth finitely connected domains are biholomorphic to nearby
double quadrature domains.

One might have expected the harmonic measure functions ωm to be required
someplace in the formula. We will show momentarily that the ωm can be thought
of as being concealed in the functions Fm. We remark that, because the Poisson
kernel is the normal derivative of the Green’s function, we could further analyze
the formulas to deduce that ∂

∂w
G(z, w) is a rational combination of exactly the

same functions.

It is traditional to call the n−1 periods along the inner boundary curves γj in
the double the alpha periods and the periods around the handles the beta periods.
The beta periods are traditionally described by taking cuts out of the domain
from points on the inner curves connecting them to the outer boundary curve in
such a way that the domain minus the nonintersecting cuts is simply connected.
The βj period is then defined as an integral that starts from the point in γj and
follows the cut to the outer boundary, then travels back to the starting point
along minus the cut curve in the reflected copy of Ω in the double. The n − 1
alpha and the n − 1 beta periods form a homology basis for the double. The
identities F ′

mT = −F ′

mT and KaT = −ΛaT that hold on the boundary reveal
that the holomorpic one-forms F ′

mdz extend to be holomorphic one-forms on
the double and the holomorphic one-form Kadz extends to be a meromorphic
one-form on the double with a residue free double pole at a in the reflected side
of Ω in the double. The holomorphic one-form H ′

mdz where H ′

m is given via
(5.7) is such that it extends to the double as a meromorphic one-form whose
alpha periods are zero, and whose beta periods are zero, except for one. Indeed,
Schiffer and Spencer [14] showed that the beta periods of the extensions of Kadz
are zero. The beta periods of F ′

mdz are zero, except for the one βm that goes from
γm to the outer boundary and comes back along the same path in the reflected
side. The period of that one is 2. Because the poles of the extension of H ′

mdz
are residue free, it follows that it is possible to analytically continue a germ of a
holomorphic antiderivative Fm = Hm of H ′

m in Ω to the double as a mutivalued
meromorphic function that jumps by 2 every time that βm is traversed, and no
jumps along the other curves in the homology basis. The function given by ωm

in Ω and −ωm on the reflected side of Ω in the double is a harmonic function on
the double minus the curve γm that has this same jumping behavior, and hence
Fm can be viewed as contributing the same type of behavior. It is interesting
to note that Fm − ωm is a complex valued harmonic function on Ω that extends
harmonically to the double minus the zeroes of S(z, a) in the reflected side, where
it has pole-like singularities.
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The functions appearing in (5.6) are rather interesting from the point of view
of the last paragraph. When w ∈ bΩ, the 1-form

[

i

2
K(z, w)T (w)−

i

2

n−1
∑

j=1

uj(w)T (w)K(z, aj)

]

dz

extends to the double as the conjugate of

−

[

i

2
Λ(z, w)T (w)−

i

2

n−1
∑

j=1

uj(w)T (w)Λ(z, aj)

]

dz

on the reflected side of Ω in the double. Its alpha and beta periods are all zero
and its poles are all double residue free poles. Hence, it is equal to dg for some
meromorphic function g on the double with simple poles at w and the reflections
of the points aj in the double. We have shown that

g(z) =
S(z, w)L(w, a)

L(z, a)

on the Ω side. Theorem 4.2 defines g on the reflected side. If both w and a are
allowed to be on the boundary, then these identities extend by continuity. It is
shown in [7] that, in this case, such a function g(z) on Ω is a proper n-to-one
branched mapping of Ω onto the right half plane. It is interesting to note that
any proper holomorphic map from Ω to the right half plane can be expressed as
a positive linear combination of such maps plus a pure imaginary constant, and
so the derivatives of proper holomorphic mappings of Ω to the right half plane
can be expressed in terms of the Bergman kernel.

It will be interesting to see if any of these new relationships between the kernel
functions shed light on the proposed alternate proof of Hejhal’s theorem about
the relationship between the Bergman and Szegő kernels in multiply connected
domains in [9].

6. Alternative ways to think about Theorems 2.1 and 2.2

Let Ω denote a bounded finitely connected domain with C∞ smooth boundary.
We will first give a more direct proof of Theorem 2.2.

Suppose ϕ is a C∞ smooth real valued function on the boundary. Let u be
the harmonic extension of ϕ to Ω. The normal derivative of u is

−i
∂u

∂z
T (z) + i

∂u

∂z̄
T (z).

For z in Ω, u(z) is given by the Poisson integral, which by (2.2), can be written
it two ways:

u(z) =

∫

w∈bΩ

i

π

∂G(z, w)

∂w̄
ϕ(w)T (w) ds =

∫

w∈bΩ

−i

π

∂G(z, w)

∂w
ϕ(w)T (w) ds.
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We will use the first way to write ∂u/∂z and the second way to write ∂u/∂z̄ to
see that the normal derivative of u is equal to −ihT + iHT where the boundary
values of the holomorphic functions h and H are gotten from

h(z) =

∫

w∈bΩ

i

π

∂2G(z, w)

∂z∂w̄
ϕ(w)T (w) ds

and

H(z) =

∫

w∈bΩ

−i

π

∂2G(z, w)

∂z̄∂w
ϕ(w)T (w) ds.

Because the conjugate of ∂2G/∂z̄∂w is equal to ∂2G/∂z∂w̄, we see that H = h,
and so ∂u

∂n
is equal to two times the real part of −ihT , and now (2.1) yields that

the normal derivative of u is given by (Re g(z)T (z)) where the boundary values
of g are gotten from the expression

g(z) =

∫

w∈bΩ

K(z, w)ϕ(w)T (w) ds.

Since dw̄ = T (w) ds, the proof is complete.

We now assume that Ω is a bounded simply connected domain with C∞ smooth
boundary. To prove Theorem 2.1, we note that we showed at the end of §4 that
the normal derivative of

U(z) :=

∫

w∈bΩ

(

1

2

[

ik(z, w)T (w)
]

+
1

2

[

−ik(z, w)T (w)
]

)

ϕ(w)dsw

is given by the integral in Theorem 2.2. Hence, the Poisson extension u of ϕ and U
get mapped to the same function via the Dirichlet-to-Neumann map. Therefore,
they differ by a constant. Plugging in z = a reveals that the constant is equal
to u(a), which is given by the Poisson integral formula at a. This completes the
proof of Theorem 2.1, using only Theorem 2.2.

Another way to deduce Theorem 2.1 is to note that

∂

∂z

(

1

2
ikw(z)T (w)− P (z, w)

)

=
1

2
iKw(z)T (w)−

i

π

∂2G

∂z∂w̄
T (w) ≡ 0.

Hence, H(z) := 1
2
ikw(z)T (w) − P (z, w) is an antiholomorphic function. Taking

∂/∂z̄ and using the second way to relate the Poisson kernel to the Green’s func-
tion in (2.2), noting that the conjugate of ∂2G/(∂z̄∂w) is equal to ∂2G/(∂z∂w̄),

yields that H ′(z) is equal to the conjugate of − i
2
Kw(z)T (w), and so

H ′(z) = −
i

2
Kw(z)T (w),

and therefore H(z) differs from − i
2
kw(z)T (w) by a constant, which can be shown

is equal to P (a, w) by plugging in z = a. Finally, the definition of H reveals that

−
1

2
ikw(z)T (w)− P (a, w) =

1

2
ikw(z)T (w)− P (z, w),

and the theorem follows.



20 S. BELL

These simpler, more direct, proofs might convince the reader that the main
theorems are not terribly interesting. This is further reinforced by noting that the
transformation formula for the Bergman kernel under biholomorphic mappings
reveals that, in the simply connected setting,

k(z, w) =
f ′(w)

πf(w)(1− f(z) f(w))
−

f ′(w)

πf(w)

where f(z) is a Riemann map to the unit disc with f(a) = 0 and w is a point in
Ω. Since the Green’s function is

−Ln

∣

∣

∣

∣

∣

f(z)− f(w)

1− f(z) f(w)

∣

∣

∣

∣

∣

,

it would seem that many of the formulas we have derived for the Poisson kernel
could be deduced by expressing it as the normal derivative of the Green’s function
in this form. This is where our “Just analysis” might be seen as just pointless
analysis. However, this shortcut bypasses all the fascinating connections between
the Poisson, Szegő, and Bergman kernels, and how they generalize to the multiply
connected setting. Whereas it is rather easy to see that the Poisson kernel is given
as an explicit rational combination of f(z), f(w), f ′(w), and T (w) in the simply
connected setting, it seems to require something like the work of §5 to understand
the complexity of the Poisson kernel in terms of Ahlfors maps in the multiply
connected setting.

7. Postlude

It is interesting to note that, whereas Nessim Sibony’s statement, “It’s just
analysis!,” was the most modest thing I have ever heard a mathematician say, a
very similar sounding statement by another noteworthy mathematician in refer-
ence to the solution to the ∂̄-Neumann problem, “It’s just integration by parts!,”
was the most deliciously arrogant!

I was young when I heard Nessim Sibony say “It’s just analysis!” Now that
I have witnessed his life’s work and his prodigious contributions to geometric
analysis and this venerable journal, I wonder if maybe he meant that the best
analysis is geometric analysis. Otherwise it’s just analysis.
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