
THE SZEGÖ KERNEL AND PROPER HOLOMORPHIC
MAPPINGS TO A HALF PLANE

STEVEN R. BELL

Abstract. We prove that all proper holomorphic mappings from a finitely
connected domain in the plane to the right half plane can be expressed simply
in terms of the Szegö kernel associated to the domain. Our decomposition also
reveals the linear structure of the semi-group of all such maps and it offers a
method to construct proper holomorphic maps of arbitrary mapping degree.

1. Main results

Suppose that Ω is a finitely connected domain in the plane such that no bound-
ary component is a point. When Ω is a simply connected domain that is not
equal to the whole complex plane, the Riemann map, which is a biholomorphic
map to the unit disc, is a useful object. When Ω is multiply connected with con-
nectivity n > 1, then proper holomorphic mappings to the unit disc can assume
a similar role (see [B4, B5]). When studying proper holomorphic mappings, it
is convenient to observe that such a domain Ω is biholomorphic to a bounded
domain bounded by n real analytic non-intersecting Jordan curves. Since proper
holomorphic maps are the main topic of this paper, we will always make this
change of variables in order to be able to assume this feature about Ω. Given a
point a in Ω, the Ahlfors map fa associated to a is the solution to the extremal
problem: among all holomorphic functions mapping Ω into the unit disc, fa is
the one such that f ′

a(a) is real and as large as possible. Ahlfors [A] proved that
fa is an n-to-one branched covering map of Ω onto the unit disc. It extends
holomorphically past the boundary and maps each real analytic boundary curve
of Ω one-to-one onto the unit circle. The Ahlfors map is an example of a proper
holomorphic mapping of Ω to the unit disc. Garabedian [Ga] proved that the
Ahlfors map is given by

fa(z) =
S(z, a)

L(z, a)
,

where S(z, a) is the Szegő kernel and L(z, a) is the Garabedian kernel, which is
related to S(z, a) via

(1.1) S(z, a) =
1

i
L(z, a)T (z) for z ∈ bΩ,

where T (z) is the complex number of unit modulus pointing in the direction of
the tangent vector at z pointing in the direction of the standard orientation.
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Proper holomorphic mappings of Ω onto the unit disc form a semi-group un-
der the operation of multiplication. In case Ω 6= C is simply connected, it is
easy to generate all the proper holomorphic mappings of Ω onto the unit disc
because they are given as finite Blaschke products composed with a single Rie-
mann mapping. Proper holomorphic mappings to the right half plane (RHP)
form a semi-group under the operation of addition. In this paper, we will reveal
a method to generate all the proper holomorphic mappings of a finitely connected
domain onto the RHP that will allow us to display such maps with the same ease
as in the simply connected setting. (Of course the two semi-groups mentioned
here are directly related via a linear fractional transformation between the unit
disc and the RHP.)

We will show that quotients of the form

(1.2)
S(z, b)L(b, a)

L(z, a)
,

where a and b are two distinct boundary points in one of the boundary curves
of Ω, are proper holomorphic mappings of Ω onto the RHP as functions of z.
When Ω is n-connected, they are n-to-one branched covering maps that extend
meromorphically past the boundary of Ω. They map exactly one point on each
boundary curve to the point at infinity via a simple pole. They map the rest
of each boundary curve one-to-one onto the imaginary axis. The point a gets
mapped to zero.

It is interesting to note that S(z, a)/L(z, a) is a proper holomorphic mapping
onto the unit disc if a ∈ Ω, and S(z, a)/L(z, b) is a proper holomorphic mapping
to a half plane if a and b are distinct boundary points on one of the boundary
curves of Ω. One could obtain interesting homotopies between these two proper
mappings by letting a point a in the interior split into two and travel to two
distinct points on a single boundary curve.

We will also prove that quotients like (1.2) are the building blocks of all proper
holomorphic mappings from Ω to the RHP in the sense that, given a set of n or
more distinct points {bj}N

j=1 in the boundary of Ω which includes at least one
point from each boundary component, then there exist a point a in the boundary
different from all the points bj and positive constants cj such that the mapping
F given by

F (z) =

N∑
j=1

cj
S(z, bj)L(bj , a)

L(z, a)

is a proper holomorphic map of Ω to the RHP. The map F is an N -to-one
branched cover and each bj maps to the point at infinity. If there are m points
bj in a given boundary curve, then F maps the boundary curve m-to-one onto
the imaginary axis union the point at infinity.

We will also study maps like F when N = n, i.e., when there is exactly one
pole on each boundary curve. We will show that such “Grunsky maps” can be
used to generate all proper holomorphic maps to the RHP. In this way, we will
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be able to view the semi-group of proper holomorphic mappings from Ω to the
RHP as something akin to a linear space.

In the last section of the paper, we show how to use these ideas to construct
primitive pairs for the field of meromorphic functions on the double of a finitely
connected domain.

The inspiration for this paper came from the formulas in [B-K]. In particular,
the formula on page 111 makes one suspect that quotients of the form (1.2) are
fundamental. If we start from this assumption, we will see that the results of
[B-K] can be derived in a much more efficient and less technical manner.

Proper holomorphic mappings from a multiply connected domain to the right
half plane or the unit disc have been studied extensively. Some pioneers in the
subject were Bieberbach, Grunsky, Ahlfors, Garabedian, and Nehari (see [Bie,
G1, G2, A, Ga, N]). Such proper mappings are intimately related to extremal
problems for holomorphic functions and harmonic functions. See Heins [H1, H2,
H3] and Fisher and Khavinson [F-Kh] for further examples of the relevance of
these proper maps.

Although the techniques of proof used in the present paper are fairly standard,
the connection between proper maps and the Szegő kernel is something new. Be-
cause the Szegő kernel is an eminently computable object, the new formulas may
give rise to concrete methods to compute some important objects of conformal
mapping and potential theory.

2. The Szegő kernel and its zeroes

We continue to assume that Ω is a bounded n-connected domain bounded by
n non-intersecting C∞ smooth real analytic Jordan curves. The results in this
paper depend in a key way on the properties proved in [B3] of the zeroes of
the Szegő kernel S(z, a) in the z variable when a is a boundary point or near a
boundary point. To state the properties, we will need to first review some basic
properties of the Szegő kernel on domains with real analytic boundary. These
facts are all proved in [B2].

The Szegő kernel S(z, w) extends to be in C∞ of (Ω × Ω) − {(ζ, ζ) : ζ ∈ bΩ}.
It extends holomorphically in z past the boundary for each w in Ω. When w is a
boundary point, S(z, w). extends past the boundary near every boundary point
except w. It extends meromorphically past w and it has a simple pole at w. The
Garabedian kernel L(z, w) extends to be in C∞ of (Ω × Ω) − {(ζ, ζ) : ζ ∈ Ω}.
It extends holomorphically in z past the boundary for each w in Ω. When w
is a boundary point, L(z, w). extends past the boundary near every boundary
point except w. It extends meromorphically past w and it has a simple pole with
residue 1/(2π) at w. When w ∈ Ω, L(z, w) has a simple pole in the z variable

at w with residue 1/(2π) at w. The Szegő kernel satisfies S(z, w) = S(w, z) and
the Garabedian kernel satisfies L(z, w) = −L(w, z).

For a fixed a ∈ Ω, S(z, a) has n − 1 zeroes in the z variable, counted with
multiplicities. As a ∈ Ω moves toward a boundary point a0, the n − 1 zeroes of
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S(z, a) in the z variable become distinct and simple and head toward distinct
boundary points, one on each of the other n−1 boundary curves different from the
curve containing a0, and the mapping which takes a to the zero near a boundary
curve is an antiholomorphic mapping which extends antiholomorphically past
the boundary. In fact, it was proved in [B3] that the multivalued mapping which
sends a point a in Ω to the n − 1 zeros of S(z, a) is a proper antiholomorphic
correspondence. Therefore, using [B-B] (see also [M-R]), we may assert that
there are disjoint neighborhoods Uj of each boundary curve γj with the following
property. If a is a point in Uk, then the zeroes of S(z, a) can be numbered aj ,
j 6= k, and the map a 7→ aj is an antiholomorphic one-to-one map of Uk onto
Uj. Furthermore, as the point a travels once around γk in the standard sense,
aj travels once around γj in the opposite sense to the standard sense. If a is a
point on the boundary, then the n − 1 zeroes of S(z, a) on the other boundary
curves are simple zeroes and S(z, a) has a simple pole at a.

The Garabedian kernel L(z, w) is non-vanishing when z and w are distinct
points in Ω. When a is a boundary point, L(z, a) is non-vanishing in Ω, but it
has n−1 simple zeroes on the boundary that coincide with the zeroes of S(z, a).

The identity (1.1) is valid when z and a are distinct boundary points. In
this case, the identity can be applied once with z and a as in the formula and
then again with z and a interchanged in the formula to obtain the following two
important identities:

(2.1) S(a, z) = −T (z)S(z, a)T (a) and L(z, a) = T (z)L(z, a)T (a)

when a and z are distinct boundary points.

Let ωj denote the harmonic function on Ω that is equal to one on the j-
th boundary curve and equal to zero on the other boundary curves, and let F ′

j

denote the holomorphic function given by 2(∂/∂z)ωj . Let F ′ denote the complex
linear span of the F ′

j as j runs over all the boundary curves. It is well known
that F ′ is n − 1 dimensional and that any n − 1 of the F ′

j form a basis. We
will need an extended version of a result in [B3] (which itself was an extension
of a result by Schiffer [Sch]). Let a be a point in Ω such that the n − 1 zeroes
a1, . . . , an−1 of S(z, a) are distinct (and simple). It was proved in [B3] that both
{S(z, aj)L(z, a) : j = 1, . . . n − 1} and {L(z, aj)S(z, a) : j = 1, . . . n − 1} form a
basis for F ′ (see [B2, p. 80] for a proof in the spirit of this paper). We will need
to know that this statement remains true when a is a boundary point of Ω. Note
that the properties of the Szegő and Garabedian kernels mentioned above yield
that the functions in the two spanning sets are holomorphic in a neighborhood
of Ω even when a is in the boundary because the simple poles on the boundary
are exactly cancelled by simple zeroes. Since the functions converge uniformly
on compact subsets of Ω in z as a tends to the boundary, the limit functions are
in F ′. It is easy to see that Hj(z) := L(z, aj)S(z, a) are linearly independent
because Hj(aj) 6= 0, but Hj(ak) = 0 if k 6= j. The functions {S(z, aj)L(z, a)
have the same property since the zeroes and poles of L(z, b) and S(z, b) occur at
the same places with the same orders when b is a boundary point.
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We will need the following technical lemma.

Lemma 2.1. Suppose that b1, b2, . . . , bn−1 are boundary points of Ω, one on each
of n − 1 distinct boundary curves. If {Hj}n−1

j=1 is a basis for F ′, then

det[Hj(bk)] 6= 0.

Number the boundary curves so that bj is in γj and none of the points bj fall
on the n-th boundary curve. The proof of the lemma consists of remarking that
the outward normal derivative of ωj is given by

∂ωj

∂n
= −iF ′

jT,

and therefore −iF ′
j(bk)T (bk) is positive if k = j and negative if k 6= j. Since∑n

j=1 ωj ≡ 1, it follows that
∑n−1

j=1 −iF ′
j(bk)T (bk) = iF ′

n(bk)T (bk), which is pos-

itive for each k. Grunsky proved in [G1, G2] that the determinant of such a
matrix of positive and negative entries must be non-zero (see Prop. 4.1.3 on
page 136 of [G2] or see Khavinson [Kh]). Hence the lemma is true if the basis
is {F ′

j}n−1
j=1 . But the non-vanishing of the determinant is invariant under changes

of basis. The proof is complete.

3. Grunsky maps

We continue to assume that Ω is a bounded n-connected domain bounded
by n non-intersecting C∞ smooth real analytic Jordan curves. The n-to-one
proper holomorphic mappings of Ω onto the RHP were called Grunsky maps in
[B-K] and were expressed in terms of the Szegő and Garabedian kernels there.
(We should point out here that the existence of Grunsky maps was proved by
Bieberbach in [Bie].) Expressions of the form that appear in the next theorem
are ubiquitous in [B-K], but their properties were not known to the authors at
that time.

Theorem 3.1. Assume that Ω is a bounded n-connected domain bounded by n
non-intersecting C∞ smooth real analytic Jordan curves. If a and b are distinct
boundary points of Ω on the same boundary curve, the function of z,

f(z) =
S(z, b)L(b, a)

L(z, a)
,

is an n-to-one proper holomorphic map of Ω onto the right half plane. Among
the Grunsky maps, it is determined up to multiplication by a positive constant by
the conditions that it takes b and each of the n − 1 zeroes of L(z, a) to the point
at infinity, and it takes a to zero.

Proof. Let a1, . . . , an−1 denote the n−1 zeroes of S(z, a) associated to the bound-
ary point a. Note that these zeroes are the same as the zeroes of L(z, a) and they
fall one each on the boundary curves of Ω different from the boundary curve on
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which a and b reside. If z is a boundary point of Ω different from a, b, and the
zeroes aj , then the identities (2.1) can be applied to show that

S(z, b)L(b, a)

L(z, a)
=

T (z)S(z, b)T (b) T (b)L(b, a)T (a)

T (z)L(z, a)T (a)
= −S(b, z)L(b, a)

L(z, a)
,

i.e., that f(z) = −f(z). Hence f(z) is pure imaginary when z is on the bound-
ary. Note that f has simple poles at b and at each aj . Therefore f extends to

the double Ω̂ of Ω as a meromorphic function which maps the double n-to-one
(counting multiplicities) onto the extended complex plane. We will let f also
denote the extension.

We will now show that f maps Ω into the RHP. Call the imaginary axis union
the point at infinity the extended imaginary axis. Since f maps exactly one point
on each boundary curve to the point at infinity, and since f maps each boundary
curve into the extended imaginary axis, it follows via the Intermediate Value
Theorem that f maps each boundary curve onto the extended imaginary axis.
Since f is n-to-one, f must be a one-to-one mapping of each boundary curve onto
the extended imaginary axis. Furthermore, no point inside Ω can be mapped to
the imaginary axis.

It is proved in [B3] that the Szegő kernel is given by

(3.1) S(z, w) =
1

1 − g(w) g(z)

n∑
i,j=0

si(z)sj(w),

where g is an Ahlfors mapping of Ω onto the unit disc and the functions si(z) are
holomorphic in a neighborhood of Ω. The Ahlfors map g extends holomorphically
past the boundary of Ω, maps the boundary of Ω onto the unit circle, and maps Ω
onto the unit disc as a branched n-to-one covering map. Note that, consequently,
g′ is non-vanishing on the boundary. Because S(z, b) has a pole at b and because
S(z, z) > 0 for z ∈ Ω, it follows that

0 <
n∑

i,j=0

si(w)sj(w)

for w in Ω. We may restrict g to a small neighborhood in Ω of the boundary
curve of Ω that contains b. Let η denote the pull back under the restriction of
g of a small radial segment in the unit disc that terminates at g(b). The curve
η is a smooth curve in Ω that terminates at b and makes a right angle with the
boundary of Ω at b. Formula (3.1) shows that f(z) is real and tends to plus
infinity as z tends to b along η. This forces us to conclude that f maps Ω into
the RHP near b. Suppose now that there is a point in z0 ∈ Ω that gets mapped
to a point in the left half plane. A curve in Ω connecting w0 to a point b0 ∈ Ω
near b that gets mapped to a point in the RHP would have to get mapped under
f to a curve that crosses the imaginary axis. But no point in Ω can be mapped
to a point in the imaginary axis. Hence no such w0 exists and we see that f maps
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Ω into the RHP. It follows that f is a proper holomorphic map of Ω onto the
RHP, and indeed, f is an n-to-one branched covering map of Ω onto the RHP.

The uniqueness clause in the theorem follows from the fact (see Grunsky [G2])
that any other proper holomorphic mapping to the RHP with the same poles
as f above must be given by cf(z) + iC where c and C are real constants and
c > 0. �

We next turn to the problem of constructing a Grunsky map that is a proper
holomorphic mapping to the RHP with prescribed poles, one per boundary curve.

Given n boundary points b1, . . . , bn, one on each of n boundary curves, let bn

denote the point on the outer boundary and let a denote a point on the outer
boundary curve different from bn such that none of the n − 1 zeroes of L(z, a)
coincide with a bj . (Since the zero map, which maps the point a in the boundary
to the zero aj on the j-th boundary curve, is a homeomorphism of the two
boundary curves, it is possible to choose such a point a.)

We will construct a mapping F (z) given by

(3.2) F (z) =

n∑
j=1

cj
S(z, bj)L(bj , a)

L(z, a)
=

1

L(z, a)

n∑
j=1

cjS(z, bj)L(bj , a),

where, after fixing cn to be a positive constant, the coefficients cj will be uniquely
determined positive constants such that

n∑
j=1

cjS(z, bj)L(bj , a) = 0

when z is a zero of L(z, a), i.e., so that

n−1∑
j=1

cjS(ai, bj)L(bj , a) = −cnS(ai, bn)L(bn, a),

for i = 1, . . . , n − 1. The first of identities (2.1) allow us to rewrite this system
as

(3.3)
n−1∑
j=1

cjT (bj)S(bj , ai)L(bj , a) = −cnT (bn)S(bn, ai)L(bn, a)

for i = 1, . . . , n − 1. Now, since the functions S(z, ai)L(z, a), i = 1, . . . , n − 1,
form a basis for F ′, Lemma 2.1 yields that the determinant of the coefficient
matrix for the system (3.3) is non-zero. Hence the complex numbers cj exist
(partly because the T (bk) are non-zero, too).

We next show that the coefficients cj must be real. Identities (2.1) reveal that

T (z)S(z, ai)L(z, a) = −T (z)S(z, ai)L(z, a),

when z ∈ bΩ. This shows that the matrix of coefficients and the right hand side
of (3.3) are pure imaginary, and it follows that the cj are real valued.
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Next, we will show that each cj must be non-zero. The same argument used in
the proof of Theorem 3.1 shows that F maps each boundary curve of Ω into the
extended imaginary axis. Hence, F extends to the double of Ω as a meromorphic
function. We will let F also denote the extension of F to the double. Notice that
F has at most n poles. It has one pole on the outer boundary (because cn > 0),
and at most one on each of the other boundary curves. If F has a pole on a
boundary curve, then the Intermediate Value Theorem can be used to see that
F maps that boundary curve onto the extended imaginary axis. If F has a total
of m < n poles on the boundary, then F is an m-to-one mapping of the double
of Ω onto the extended complex plane (counting multiplicities). We must now
conclude that each boundary curve of Ω that contains a pole of F gets mapped
one-to-one onto the extended imaginary axis. If there is a boundary curve that
does not contain a pole of F (i.e., if m < n), then we encounter points on the
boundary that map to the imaginary axis and yield the existence of points in
the extended complex plane that have more than m pre-images under F . This
contradiction implies that m must be equal to n, and we conclude that each cj

must be non-zero.

Finally, we must show that each cj must be positive. The same argument used
in the proof of Theorem 3.1 shows that F maps Ω into the RHP near bj if cj is
positive and into the left half plane if cj is negative. We know that F maps Ω
into the RHP near bn because cn > 0. If one of the coefficients cj is negative,
then we may connect a point near bj that gets mapped to a point in the left half
plane to a point near bn that gets mapped to a point in the right half plane by a
curve in Ω. The Intermediate Value Theorem yields a point along the curve that
must map to a point in the imaginary axis, and this would make F more than
n-to-one in places, in violation of the result proved in the previous paragraph.

We note that there was nothing special about choosing the coefficient cn asso-
ciated with the outer boundary to be a fixed positive number. The system (3.3)
is such that, if one of the coefficients cj is set to be a fixed positive real number,
then all the other coefficients are uniquely determined and must also be positive
real numbers. We collect these results in the following theorem.

Theorem 3.2. Assume that Ω is a bounded n-connected domain bounded by
n non-intersecting C∞ smooth real analytic Jordan curves. Given n boundary
points bj, one on each boundary curve, it is possible to choose a point a in the
boundary different from all the bj so that a Grunsky map associated to the points
bj is given by

F (z) =

n∑
j=1

cj
S(z, bj)L(bj , a)

L(z, a)

where, after fixing one of the coefficients, say ck, to be a positive constant, the
other coefficients cj are positive constants that are uniquely determined by the
system

0 =
n∑

j=1

cj iS(ai, bj)L(bj , a),
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for i = 1, . . . , n − 1. The coefficients iS(ai, bj)L(bj , a) are real numbers. Notice
that F (a) = 0. The set of all Grunsky maps with poles at the bj is given by
cF + iC where c and C are real constants and c > 0.

We now turn to the problem of generating all the proper holomorphic map-
pings from our given domain Ω to the RHP. The work of Heins [H1, H2, H3]
and Fisher and Khavinson [F-Kh] lead one to suspect that Grunsky maps are
the building blocks for such mappings and that the solution will depend on lin-
ear equations. It is clear that real linear combinations of Grunsky maps using
only positive coefficients are proper holomorphic mappings to the RHP. Here, we
show that the semi-group of proper holomorphic mappings of Ω onto the RHP is
precisely the set of real linear combinations of Grunsky maps using only positive
coefficients. Furthermore, given a proper holomorphic mapping F to the RHP
with poles at points {bj}N

j=1 in the boundary of Ω (which, we have shown, must
include at least one point from each boundary component), then there exist a
point a in the boundary different from all the points bj and positive constants
Aj such that the mapping F is given by

(3.4) F (z) =

N∑
j=1

Aj
S(z, bj)L(bj , a)

L(z, a)
.

Suppose F is a proper holomorphic mapping to the RHP. It was shown in
[B-K] that F can be expressed as a real linear combination of Grunsky maps
where the Grunsky maps in the sum only have poles at poles of F . We may
select a point a on the boundary which is different from all the bj and such that
none of the zeroes a1, . . . , an−1 of S(z, a) coincide with any of the bj . We have
shown that Grunsky maps with poles amongst the set of bj are given by sums
like (3.2). When the sum is combined, an expression like (3.4) is obtained. It
now follows that all of the coefficients in the sum must be positive because we
have seen that S(z, bj)L(bj , a)/L(z, a) maps Ω into the RHP near bj ,

Suppose now that we are given N > n boundary points {bj}N
j=1 that include

at least one point from each boundary curve. It is easy to see that there exists a
proper holomorphic map to the RHP with only simple poles at each bj . Indeed,
label the bj so that the first n of them fall one per boundary curve. We have
shown that the system

0 =
n∑

j=1

AjS(ai, bj)L(bj , a)

has a unique solution when An = 1 with all the other Aj being positive. If we
set Ak to be small enough positive numbers for k = n + 1, . . . , N , and continue
to set An = 1, then the system,

0 =
N∑

j=1

AjS(ai, bj)L(bj , a)
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for i = 1, . . . , n − 1, will have a unique solution where the Aj are still positive
for j = 1, . . . , n − 1. Now

F (z) =

N∑
j=1

Aj
S(z, bj)L(bj , a)

L(z, a)

is the desired proper map.

The set of all proper holomorphic mappings to the RHP with simple poles
only at the points bj are the mappings of the form

F (z) =
N∑

j=1

Aj
S(z, bj)L(bj , a)

L(z, a)
,

where each Aj is positive and

0 =
N∑

j=1

AjS(ai, bj)L(bj , a)

for i = 1, . . . , n− 1. Hence, it is a standard problem in linear algebra to find all
such things. The set of all such vectors (Aj) in the positive N -tant is given by
convex combinations of extremal rays, where the extremal rays are the solutions
to the system with as many of the coefficients equal to zero as possible, and
the rest positive. We may repeat the geometric argument that we used in our
construction of Grunsky maps with prescribed poles to see that it is impossible
to have a solution with fewer than n positive Aj , and that there must be at least
one Aj associated to a bj on each of the n boundary curves. Hence, the extremal
ray solutions correspond to Grunsky maps. (This is reminiscent of the argument
used by M. Heins in [H2] to determine the building blocks for the linear space of
positive harmonic functions on a Riemann surface.)

We may now summarize what we have accomplished in the following theorem.

Theorem 3.3. The set of all proper holomorphic mappings from Ω to the RHP
is given by the set of positive linear combinations of Grunsky maps.

4. Constructing primitive pairs via the Szegő kernel

We conclude this paper by demonstrating the ease with which one can write
down a primitive pair for the space of meromorphic functions on the double of a
finitely connected domain with smooth boundary using the ideas above. A proper
holomorphic mapping from such a domain to the RHP extends to the double via
the Reflection Principle. We will explain how to find two proper maps to the
RHP whose extensions to the double form a primitive pair. (A primitive pair
of a compact Riemann surface is a pair of functions such that any meromorphic
function of the surface is a rational combination of the two functions.)

We start with the absolute easiest way to construct a pair. Suppose that F1

is a Grunsky map. Pick one point bj from each boundary curve such that the
values F1(bj) are distinct complex numbers in the finite complex plane. (This
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is easy because each boundary curve gets mapped one-to-one onto the extended
imaginary axis.) Now let F2(z) be the Grunsky map associated to the set {bj}.
Since F1 separates the points in F−1

2 (∞), the extensions of F1 and F2 form a
primitive pair (see Farkas and Kra [F-K]).

Now we describe a somewhat harder way to get a pair, but the pair is easier to
write down. Suppose that Ω is a bounded domain bounded by n non-intersecting
real analytic curves. Pick two points, a and b, in one of the boundary curves γk,
and let a1, . . . , an−1 denote the zeroes of L(z, a) (which fall one in each of the
other boundary curves). We know that S(z, b)/L(z, a) is a proper holomorphic
mapping of Ω onto the RHP. We will now show that there is a third point
α in γk (different from a and b) so that F1(z) = S(z, b)/L(z, a) and F2(z) =
S(z, b)/L(z, α) extend to the double and form a primitive pair. We know that
F1 has simple poles at b and each of the aj (and no other poles). To complete
the proof, we need to prove that F2 separates the points a1, . . . , an−1 with values
in the finite complex plane. The equation F2(aj) = F2(ai) is equivalent to 0 =
S(aj , b)L(ai, α) − S(ai, b)L(aj , α), or

(4.1) 0 = cijL(α, ai) + L(α, aj),

where cij is a non-zero constant. (We have used the fact that L(z, w) = −L(w, z)
here.) We now claim that equation (4.1) can hold for at most finitely many points
α in γk. Indeed, if the meromorphic function of α on the right hand side of (4.1)
were identically zero on γk, then it would be identically zero in α on Ω. It would
then follow from identity (1.1) that

(4.2) 0 = c̄ijS(ai, α) + S(aj , α)

for all α in Ω. It follows from Lemma 7.3 of [B1] that the complex linear com-
binations of functions of z of the form S(z, α) as α runs over Ω can be used to
approximate any polynomial uniformly on Ω. Hence the function on the right
hand side of (4.2) cannot be identically zero in α. Since it extends holomorphi-
cally past the boundary curve γk in α, it can have at most finitely many zeroes
on γk. By avoiding all the finite sets that arise in this way for i, j = 1, . . . , n− 1
with i 6= j, we obtain an open dense set of α on γk such that F2 separates points
as desired.

The Szegő kernel is eminently computable via the Kerzman-Stein-Trummer
method (see [K-S, K-T]). Hence, these observations may give rise to a concrete
way to calculate primitive pairs. Primitive pairs are the building blocks of many
of the basic kernel functions of complex analysis (see [B4]).
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