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Abstract. We formulate a unique continuation principle for the inhomogeneous
Cauchy-Riemann equations near a boundary point z0 of a smooth domain in com-
plex euclidean space. The principle implies that the Bergman projection of a function
supported away from z0 cannot vanish to infinite order at z0 unless it vanishes iden-
tically. We prove that the principle holds in planar domains and in domains where
the ∂̄-Neumann problem is known to be analytic hypoelliptic. We also demonstrate
the relevance of such questions to mapping problems in several complex variables.
The last section of the paper deals with unique continuation properties of the Szegő
projection and kernel in planar domains.

1. Introduction. The results of this paper grew out of attempts to answer some
simple questions about the Bergman kernel function and the Bergman projection
associated to a domain in complex euclidean space. Suppose that Ω is a bounded
domain in Cn with C∞ smooth boundary and suppose that the Bergman kernel
function K(z, w) associated to Ω is known to be a function in C∞((Ω × Ω) −
{(z, z) : z ∈ bΩ}). (Kerzman’s theorem [26] yields that this condition on the kernel
function holds, for example, if Ω is strictly pseudoconvex, or more generally, if Ω
is pseudoconvex of finite type in the sense of D’Angelo [19].) The question from
which this research originates concerns the degree to which the Bergman kernel
can vanish at boundary points. If n = 1, the Bergman kernel cannot vanish at
any point (z0, w0) ∈ bΩ × bΩ, z0 6= w0 (although it must vanish at some points
(z0, w0) ∈ Ω × Ω if Ω is multiply connected, see [38]). In several variables, it is
not even known if the kernel function cannot vanish to infinite order at boundary
points. Given a point w0 ∈ Ω and a point z0 ∈ bΩ, is it possible for the holomorphic
function h(z) = K(z, w0) to vanish to infinite order at z0? More generally, given a
multi-index β and two points, z0 ∈ bΩ and w0 ∈ Ω, z0 6= w0, is there a multi-index
α such that

∂|α|+|β|

∂zα∂w̄β
K(z, w) is non-zero at (z0, w0)?

I will show that the answer to this question is “yes” on planar domains and in certain
domains in Cn for which the ∂̄-problem satisfies a unique continuation property. I
will also explain why these questions about finite order vanishing are natural and
how they can be related to the ∂̄-problem and to mapping problems in several
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complex variables. In the last section of the paper, I will study analogous questions
for the Szegő kernel and projection.

The symbol A∞(Ω) will denote the space of holomorphic functions on a domain
Ω in C∞(Ω). Catlin [13] proved that if Ω is a bounded pseudoconvex domain with
C∞ smooth boundary, then there exist many functions in A∞(Ω) that vanish to
infinite order at any given boundary point. Hence, infinite order vanishing of the
Bergman kernel cannot be ruled out a priori.

2. A unique continuation problem for ∂̄. If z0 ∈ Cn and ε > 0, let Bε(z0)
denote the ball of radius ε about z0. If α =

∑n
j=1 αjdz̄j is a (0, 1)-form, then ϑα is

a function defined via

ϑα = −
n∑
j=1

∂αj
∂zj

.

The operator ϑ is the formal adjoint of the ∂̄-operator. If Ω is a bounded domain in
Cn with C∞ smooth boundary, let Cs(0,1)(Ω) denote the space of (0, 1)-forms with

coefficients in Cs(Ω), and let ‖α‖s denote the norm of a form α ∈ Cs(0,1)(Ω) (which

is given as the supremum of the Cs(Ω) norms of the coefficients of α). Let C∞(0,1)(Ω)

denote the space of (0, 1)-forms with coefficients in C∞(Ω).
We shall say that the boundary of a domain Ω is C∞ smooth near a boundary

point z0 if there is a ball Bε(z0) such that Ω ∩ Bε(z0) is a C∞ manifold with
boundary near z0.

Suppose that Ω is a bounded pseudoconvex domain in Cn and that the boundary
of Ω is C∞ smooth near a point z0 ∈ bΩ. Let ε > 0 be small enough that Bε(z0)∩Ω
is connected. We shall say that the ϑ-Unique Continuation Property holds at z0 if
the following condition holds.

The ϑ-Unique Continuation Property. For any (0, 1)-form α in C∞(0,1)(Ω ∩
Bε(z0)) whose coefficients vanish on bΩ ∩Bε(z0), if the two conditions,

1) ϑα is holomorphic on Bε(z0) ∩Ω, and
2) ϑα vanishes to infinite order at z0,

hold, then ϑα must vanish identically on Bε(z0) ∩ Ω.

We shall use the abbreviation ϑ-UCP for ϑ-Unique Continuation Property. It is
easy to see that the ϑ-UCP is purely local and that it does not really depend on
Ω or the size of ε. It only depends on the germ of the hypersurface describing the
boundary of Ω near z0. I have stated the property in terms of a fixed domain Ω
because I shall only apply the property in such a setting.

It may not be true that every boundary point of a smooth bounded pseudoconvex
domain satisfies the ϑ-UCP, but it seems very likely to me that strictly pseudocon-
vex boundary points do, and maybe even pseudoconvex boundary points of finite
type in the sense of D’Angelo. We shall show later that the ϑ-UCP does hold at
strictly pseudoconvex boundary points of domains with real analytic boundaries by
virtue of the analytic hypoellipticity of the ∂̄-Neumann problem at such points.

In the case of one variable, the ϑ-UCP holds at every smooth boundary point as
a direct consequence of the Schwarz reflection principle (see Jeong [25]). To see this,
suppose z0 is a point on a C∞ smooth curve γ and ϕ is a function which is defined
on one side of γ near z0, which is C∞ smooth up to γ, and which vanishes along
γ. Let Ω be a small domain with C∞ smooth boundary whose boundary coincides

2



with γ near z0. We may further assume that Ω lies on the side of γ on which ϕ
is defined and that Ω is small enough that ϕ is in C∞(Ω). In one variable, the
assumptions of the ϑ-UCP translate to say that if ∂ϕ/∂z is holomorphic on Ω near
z0 and vanishes to infinite order at z0, then ∂ϕ/∂z ≡ 0 on Ω near z0. Furthermore,
saying that ∂ϕ/∂z is holomorphic is simply to say that ϕ is harmonic. Suppose
that ϕ is harmonic on Ω near z0 and that ∂ϕ/∂z does vanish to infinite order at z0.
Let f denote a biholomorphic map of the upper half plane onto Ω that maps the
origin to z0. The map f extends C∞ smoothly up to the real axis and f ′(0) 6= 0.
Consider the function ϕ◦f . This function is harmonic on the upper half plane near
the origin and it is C∞ smooth up to the real axis. Since ϕ vanishes on γ near
z0, it follows that ϕ ◦ f vanishes on the real axis near the origin, and the Schwarz
reflection principle yields that ϕ ◦ f extends to be harmonic on a neighborhood of
the origin. Hence, (∂/∂z)(ϕ◦f) extends holomorphically to the same neighborhood
of the origin. But (∂/∂z)(ϕ ◦ f) = f ′[(∂ϕ/∂z) ◦ f ] and it can be seen that infinite
order vanishing of ∂ϕ/∂z at z0 implies that the function (∂/∂z)(ϕ ◦ f), which is
holomorphic on a neighborhood of the origin vanishes to infinite order at the origin.
Consequently, this function vanishes on a neighborhood of the origin, and it follows
that ∂ϕ/∂z also vanishes in Ω near z0. The proof is complete.

We shall see that the ϑ-UCP implies a unique continuation property for the
Bergman projection in §4. First, however, we must prove an important lemma.

3. Rosay’s Lemma. In this section, we shall give a proof of a theorem of Rosay
which characterizes the space of smooth functions in the orthogonal complement
of the Bergman space. In [36], Rosay proved his lemma in C2 and summarized
briefly (but completely) how to generalize the result to higher dimensions. We give
a detailed proof in Cn here because we shall need to refer to steps in the proof at
points later in the paper. Also, I have needed to modify Rosay’s original argument
in order to adapt it to a localization scheme I use later. Let H2(Ω) denote the
Bergman space, which is the space of holomorphic functions contained in L2(Ω).

Theorem 3.1 (Rosay’s Lemma). Suppose Ω is a bounded pseudoconvex domain
in Cn with C∞ smooth boundary and suppose that u is a function in C∞(Ω) that
is orthogonal to the Bergman space H2(Ω). There exist functions αj ∈ C∞(Ω),
j = 1, . . . , n, all vanishing on bΩ, such that the (0, 1)-form α =

∑n
j=1 αjdz̄j satisfies

u = ϑα.

Since any function of the form ϑα where α ∈ C∞(0,1)(Ω) vanishes on bΩ is or-

thogonal to the Bergman space, Rosay’s Lemma characterizes the space of smooth
functions orthogonal to the Bergman space.

Before proving this result, it is worth mentioning one of its most striking con-
sequences. Given a holomorphic function h ∈ H2(Ω), only a fool would look for a
function in H2(Ω) which is equal to h near a boundary point z0 and which is sup-
ported in a small ball centered at z0. Rosay’s Lemma, however, implies that such
a localization is available in the orthogonal complement of the Bergman space.
Indeed, given a function u ∈ C∞(Ω) which is orthogonal to H2(Ω) and a point
z0 ∈ bΩ, let χ be a C∞ function supported in a small ball Bε(z0) which is equal to
one on a neighborhood of z0. If α is the (0, 1)-form supplied by Rosay’s Lemma,
then ũ = ϑ(χα) is a function in C∞(Ω) that is orthogonal to the Bergman space,
that is supported in Bε(z0), and that is equal to u near z0. (I do not know if such
a localization is possible in smooth non-pseudoconvex domains.)
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Proof of Theorem 3.1. As in Rosay [36], the proof rests firmly on Kohn’s theory of
the ∂̄-Neumann problem with weights [30].

Let ρ be a C∞ defining function for Ω (which means that Ω = {ρ < 0}, bΩ =
{ρ = 0}, and dρ 6= 0 on bΩ). We shall use subscript zj ’s and z̄j ’s to denote
differentiation with respect to those variables. Thus, for example, ρz̄j is shorthand
for ∂ρ/∂z̄j.

Before we begin the proof, we must define some basic objects associated with
the ∂̄-problem (see Kohn [30,31] for complete details). Let P denote the Bergman
projection, which is the orthogonal projection of L2(Ω) onto the closed subspace
H2(Ω). If t > 0, the space L2

t (Ω) is defined to be the Hilbert space of complex
valued functions on Ω with inner product given by

〈u, v〉t =

∫
Ω

u(z) v(z) e−t|z|
2

dV,

where dV denotes the standard Lebesgue measure on Cn. If β =
∑n
j=1 βjdz̄j is

a (0, 1)-form, then ϑt, the formal adjoint of ∂̄ with respect to the weight function

e−t|z|
2

, is defined via

ϑtβ = et|z|
2

ϑ(e−t|z|
2

β).

The space H2(Ω) can also be viewed as a closed subspace of L2
t (Ω), and we

may define the orthogonal projection Pt of L2
t (Ω) onto H2(Ω). This operator Pt

is related to the weighted ∂̄-Neumann operator Nt via Kohn’s formula (see Kohn
[30]),

Pt = I − ϑtNt∂̄.

Kohn proved that, given a positive integer s, there is a t0 such that if t > t0, the
operator Nt maps C∞(0,1)(Ω) into Cs(0,1)(Ω). Kohn also proved Sobolev estimates

for Nt. When Kohn’s estimates are combined with the basic Sobolev Lemma
estimate, we can see that there exists a positive integer M with the property
that Nt maps Cs+M(0,1) (Ω) into Cs(0,1)(Ω) and Nt satisfies an estimate of the form

‖Ntβ‖s ≤ C‖β‖s+M whenever t is sufficiently large. The integer M does not de-
pend on s or t.

We shall also need to know that (0, 1)-forms in the range of Nt satisfy the
following boundary condition. If β = Ntω, then writing β =

∑n
j=1 βjdz̄j , we have

(3.1)
n∑
j=1

βj
∂ρ

∂zj
= 0 on bΩ.

Suppose that u ∈ C∞(Ω) is orthogonal to H2(Ω) with respect to the standard

L2(Ω) inner product. It follows that et|z|
2

u(z) is orthogonal to H2(Ω) in L2
t (Ω),

and hence, that Pt(e
t|z|2u) = 0. Therefore,

et|z|
2

u = ϑtNt∂̄(et|z|
2

u) = et|z|
2

ϑ
(
e−t|z|

2

Nt∂̄(et|z|
2

u)
)
,

and so

u = ϑβ
4



where β is a (0, 1)-form given by

β = e−t|z|
2

Nt∂̄(et|z|
2

u).

Given a positive integer s, we assume that t is large enough to ensure that the
coefficients of β are in Cs+1(Ω). It then also follows that β satisfies the boundary
condition given by (3.1). Next, we use β to construct a (0, 1)-form α in Cs(0,1)(Ω)

whose coefficients vanish on bΩ such that ϑα = ϑβ = u.
Suppose that {χm}Nm=0 is a C∞ partition of unity of Ω that is subordinate to a

finite covering of Ω consisting of small open balls Brm(wm) centered at boundary
points of Ω together with the open set Ω. We assume that χ0 ∈ C∞0 (Ω) is the
function associated with the open set Ω and that χm ∈ C∞0 (Brm(wm)) for m ≥ 0.
We may assume that the radii rm are small enough that, on each ball, there is
some coordinate direction zj such that ∂ρ/∂zj is non-vanishing on the closure of
that ball.

Observe that

u =
N∑
m=0

ϑ(βχm).

Define u(m) = ϑ(βχm) and β (m) = βχm, and let us write β (m) =
∑n
j=1 β

(m)
j dz̄j .

If m = 0, define α(0) = β(0). Obviously, ϑα(0) = ϑβ(0), the coefficients of α(0)

vanish on bΩ, and α(0) is just as smooth as β.
We now restrict our attention to a single function u(m) = ϑβ (m) with m > 0.

We wish to construct a (0, 1)-form α(m) in Cs(0,1)(Ω) whose coefficients vanish on

bΩ such that ϑα(m) = ϑβ(m). Notice that β (m) satisfies the boundary condition
(3.1). We know that β (m) is supported in a ball Brm(zm) where zm ∈ bΩ and that
there is a coordinate direction zj such that ∂ρ/∂zj is non-vanishing on the closure
of Brm(zm). For convenience, we may assume that z1 is such a coordinate direction.
We now define a (0, 1)-form α(m) =

∑n
j=1 αjdz̄j via

α1 = β
(m)
1 +

n∑
j=2

∂

∂zj

(
β

(m)
j ρ

ρz1

)
, and

αk = β
(m)
k − ∂

∂z1

(
β

(m)
k ρ

ρz1

)
, k = 2, 3, . . . , n.

It is easy to see that αk vanishes on bΩ for k = 2, . . . , n. Furthermore, since

n∑
j=2

∂

∂zj

(
β

(m)
j ρ

ρz1

)
=

1

ρz1

n∑
j=2

β
(m)
j

∂ρ

∂zj
on bΩ,

the boundary condition (3.1) implies that

n∑
j=2

∂

∂zj

(
β

(m)
j ρ

ρz1

)
= −β (m)

1 on bΩ,
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and we see that α1 also vanishes on bΩ. A simple computation now reveals that

ϑα(m) = ϑβ (m).

Furthermore, α(m) is in Cs(0,1)(Ω). The global form α that we seek is now given by

α =
∑N
m=0 α

(m).
Because the operator Nt satisfies estimates when t is sufficiently large, and be-

cause the form α constructed above is only one degree less smooth than β, we
may assert that there is a positive integer M with the following property. Given
a positive integer s, the procedure outlined above to obtain α from u gives rise
to an operator L mapping functions in C∞(Ω) that are orthogonal to H2(Ω) into
Cs(0,1)(Ω). Furthermore, α = Lu satisfies an estimate of the form ‖α‖s ≤ C‖u‖s+M .

We emphasize here that, although C and L depend on s and t, the integer M does
not.

We shall now use a Mittag-Leffler argument to construct a (0, 1)-form α in
C∞(0,1)(Ω) whose coefficients vanish on bΩ such that ϑα = u. We shall inductively

construct a sequence of (0, 1)-forms αs such that αs ∈ Cs+M+2
(0,1) (Ω), the coefficients

of αs vanish on bΩ, ϑαs = u, and ‖αs+1 − αs‖s < 1/2s. The desired form α in
C∞(0,1)(Ω) will be given by

α = α1 +
∞∑
s=1

(αs+1 − αs).

We have shown how to construct α1. Suppose that α1, . . . , αs have been con-
structed satisfying the desired properties. Let α̃s+1 be a form in Cs+M+3

(0,1) (Ω) satis-

fying ϑα̃s+1 = u with coefficients that vanish on bΩ. The form αs+1 shall be given
by

αs+1 = α̃s+1 − Φε(α̃s+1 − αs) + σs,

where Φε is a special smoothing operator and σs will be a (0, 1)-form with small
Cs(0,1)(Ω) norm whose coefficients vanish on bΩ satisfying

ϑσs = ϑΦε(α̃s+1 − αs).

The smoothing operator Φε will have the property that it maps a form β ∈
Cs+M+1

(0,1) (Ω) to a form in C∞(0,1)(Ω) in such a way that ‖β−Φεβ‖s+M ≤ cε‖β‖s+M+1

where cε tends to zero as ε tends to zero. Furthermore, if the coefficients of β vanish
on bΩ, then so do the coefficients of Φεβ. We shall describe how to construct such
a smoothing operator Φε at the end of this proof. Now, we shall finish the proof of
the theorem, assuming that we have Φε at our disposal.

Let ω = Φε(α̃s+1 − αs) and let v = ϑω. Note that v is in C∞(Ω) and that v is
orthogonal to H2(Ω) because ω vanishes on bΩ. Notice that, since ϑ(α̃s+1 − αs) =
u− u = 0, it follows that

v = ϑ [Φε(α̃s+1 − αs)− (α̃s+1 − αs)] .

Hence, by taking ε small, the norm ‖v‖s+M can be made small. We may now find

a form σs which is in Cs+M+3
(0,1) whose coefficients vanish on bΩ such that ϑσs = v.
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Furthermore, by taking ε small, and by using the solution operators mentioned
above, we may guarantee that the norm ‖σs‖s is as small as we please. We now
define

αs+1 = α̃s+1 − Φε(α̃s+1 − αs) + σs.

Since α̃s+1−αs−Φε(α̃s+1−αs)+σs has been constructed to be a form in Cs+M+3
(0,1)

with small s-norm whose coefficients vanish on bΩ, the proof is complete.
Finally, we must show how to construct the smoothing operator Φε. The con-

struction hinges on the following simple one real variable argument. Suppose that
f(x) is a function in Cs+1(R) that vanishes at the origin. Notice that

f(x) =

∫ x

0

f ′(t) dt = x

∫ 1

0

f ′(tx) dt.

Let θε be an approximation of the identity in C∞0 (R) and define

(3.2) (Φεf)(x) = x

∫ 1

0

(θε ∗ f)′(tx) dt.

It is easy to see that (Φεf) is a function in C∞(R) that vanishes at the origin and
that the s-norm of f−Φεf on a compact ball is bounded by a constant cε times the
(s+ 1)-norm of f where cε → 0 as ε → 0. To construct the operator Φε on Ω, we
may use a partition of unity to reduce our problem to creating an operator Φε that
acts on forms that are supported on a small ball Br(z0) where z0 ∈ bΩ. We may
further use a C∞ change of variables in order to be able to assume that z0 = 0 and
that the boundary of Ω is equal to the real hyperplane Im z1 = 0 near z0. It will
also suffice to construct on operator that maps functions vanishing on bΩ to the
same kind of functions. Finally, the operator given by (3.2), using x = Im zn and
allowing the other variables Re z1 and z2, . . . , zn to be carried along as parameters,
satisfies the conditions we require. The proof is finished.

We shall also need the following local version of Rosay’s Lemma.

Theorem 3.2 (Local Rosay Lemma). Suppose Ω is a bounded pseudoconvex
domain in Cn and that the boundary of Ω is C∞ smooth near a boundary point z0

which is of finite type in the sense of D’Angelo. If u is a function in L2(Ω) which is
C∞ smooth up to bΩ near z0 and which is orthogonal to the Bergman space H2(Ω),
then there exist an ε > 0 and functions αj ∈ C∞(Ω ∩ Bε(z0)), j = 1, . . . , n, which
vanish on bΩ near z0 such that the (0, 1)-form α =

∑n
j=1 αjdz̄j satisfies

u = ϑα on Ω ∩Bε(z0).

Consequently, there exists a function ũ ∈ C∞(Ω) which is supported in Ω ∩Bε(z0)
such that ũ = u near z0 and ũ ⊥ H2(Ω).

The proof of this local version is a direct application of the subelliptic estimates
of the ∂̄-Neumann problem at points of finite type proved by Catlin [14-16]. The
Bergman projection is given by

P = I − ϑN∂̄,
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where N is the (unweighted) ∂̄-Neumann operator. Catlin [14, p. 164] showed that,
even in a non-smooth pseudoconvex domain, the Neumann operator exists and the
operators N , ϑN∂̄, and N∂̄ are bounded in L2 norms. If u is orthogonal to H2(Ω),
then Pu = 0 and so

u = ϑN∂̄u.

If u is C∞ smooth up to the boundary near z0, then the subelliptic estimates for
the ∂̄-Neumann problem near points of finite type yield that the coefficients of
the (0, 1)-form β = N∂̄u are C∞ smooth up to the boundary near z0. We have
produced a form β satisfying u = ϑβ where β satisfies the boundary condition (3.1)
near z0. Now the same procedure that we used in the proof of Theorem 3.1 can be
used to obtain a (0, 1)-form α from β which vanishes on bΩ near z0.

Now that we have set up the notation for the ∂̄-Neumann problem, we can
explain an important example where the ϑ-UCP can be seen to hold at certain
strictly pseudoconvex boundary points of pseudoconvex domains. Suppose Ω is
a bounded pseudoconvex domain and that z0 is a strictly pseudoconvex boundary
point such that bΩ is a real analytic hypersurface near z0. Suppose α is a (0, 1)-form
on Ω whose coefficients are C∞ smooth up to bΩ near z0 and vanish there. Suppose
further that α satisfies properties (1) and (2) in the statement of the ϑ-UCP. By
replacing α by χα where χ is a C∞ cut off function supported near z0 that is equal
to one on a neighborhood of z0, we may assume that α is globally C∞ smooth, that
ϑα is in L2(Ω), that α vanishes on bΩ, and that ϑα is holomorphic near z0. Under
these conditions, it follows that ϑα is orthogonal to H2(Ω). Thus, P (ϑα) ≡ 0. But
P (ϑα) = ϑα−ϑN∂̄(ϑα), and hence, ϑα = ϑN∂̄(ϑα) on Ω. Since ϑα is holomorphic
near z0, it follows that ∂̄ϑα is zero near z0 and the analytic hypoellipticity of the
∂̄-Neumann problem at strictly pseudoconvex boundary points (see [39-41]) implies
that ϑN∂̄(ϑα) extends to be real analytic on a neighborhood of z0. Therefore, ϑα
extends to be holomorphic on a neighborhood of z0. Consequently, infinite order
vanishing of ϑα at z0 implies vanishing on a full neighborhood of z0 and the ϑ-UCP
property is seen to hold at z0.

The ϑ-UCP also holds at weakly pseudoconvex boundary points where the
boundary is real analytic whenever the ∂̄-problem is known to be locally analytic
hypoelliptic there (see Derridj and Tartakoff [20] for examples of such boundary
points). Recent work of Christ and Geller [18] shows that local analytic hypoellip-
ticity can fail at certain weakly pseudoconvex boundary points, even when they are
of finite type. This is one of the reasons that, although I am reasonably confident
that the ϑ-UCP holds at strictly pseudoconvex boundary points, I have doubts
about the truth of the ϑ-UCP at general weakly pseudoconvex boundary points of
finite type.

4. Unique continuation for the Bergman projection. We are now in a
position to see how the ϑ-UCP relates to the Bergman projection and kernel. A
bounded domain Ω in Cn with C∞ smooth boundary is said to satisfy Condition R
if its Bergman projection preserves the space C∞(Ω).

Theorem 4.1. Suppose that Ω is a bounded pseudoconvex domain in Cn with C∞

smooth boundary that satisfies Condition R and suppose that z0 is a boundary point
of Ω which satisfies the ϑ-UCP. Suppose ϕ ∈ C∞0 (Ω). If Pϕ vanishes to infinite
order at z0, then Pϕ must vanish identically on Ω.

Proof. Given ϕ ∈ C∞0 (Ω), let h = Pϕ. Since h − ϕ is a function in C∞(Ω) that
8



is orthogonal to H2(Ω), Rosay’s lemma (Theorem 3.1) yields a form α ∈ C∞(0,1)(Ω)

whose coefficients vanish on bΩ such that

h− ϕ = ϑα.

Finally, ϑα is equal to the holomorphic function h near z0, and the ϑ-UCP at z0

implies the conclusion of the theorem.

Remark. Actually, the assumption that ϕ ∈ C∞0 (Ω) in Theorem 4.1 can be
replaced with the weaker assumption that ϕ ∈ L2(Ω) has compact support. Indeed,
if ϕ ∈ L2(Ω) has compact support K in Ω, we may construct a function ψ ∈ C∞0 (Ω)
such that Pψ = Pϕ as follows. Let δ denote the distance from K to bΩ and let

θδ(z) = δ−2nθ(z/δ)

where θ is a function in C∞0 (B1(0)) that is radially symmetric about the origin with∫
θ dV = 1. Let ψ = θδ ∗ϕ. A straightforward application of Fubini’s theorem and

the averaging property of holomorphic functions yields that∫
Ω

ϕh dV =

∫
Ω

ψh dV

for all functions h that are holomorphic on Ω. Hence Pϕ = Pψ. Later, we shall
need to take this argument one step further. If K is a compact subset of Ω and dµ
is a complex finite Borel measure on K, then we may define the Bergman projection
of dµ via

(P dµ)(z) =

∫
w∈K

K(z, w) dµ.

We may argue as above to see that the function ψ = θδ ∗dµ is a function in C∞0 (Ω)
satisfying Pψ = P dµ.

Theorem 3.2 can be used to prove a local version of Theorem 4.1. In the next
theorem, the domain Ω is not assumed to be globally C∞ smooth.

Theorem 4.2. Suppose Ω is a bounded pseudoconvex domain in Cn and that the
boundary of Ω is C∞ smooth near a boundary point z0 which is of finite type in the
sense of D’Angelo. Suppose further that the ϑ-UCP holds at z0. Given ϕ ∈ L2(Ω)
which vanishes on Bε(z0) ∩ Ω for some ε > 0, if Pϕ vanishes to infinite order at
z0, then Pϕ must vanish identically on Ω.

Proof. Let h = Pϕ. The subelliptic estimate for the ∂̄-problem at z0 implies that
h is C∞ smooth up to the boundary near z0. Since h − ϕ is a function in L2(Ω)
and in C∞(Ω ∩ Bε(z0)) that is orthogonal to H2(Ω), Theorem 3.2 yields a form
α ∈ C∞(0,1)(Ω ∩Bε(z0)) whose coefficients vanish on bΩ such that h− ϕ = ϑα near

z0. The conclusion of the theorem follows from the ϑ-UCP at z0 and the fact that
ϑα = h near z0.

Because the Bergman kernel function associated to a bounded domain Ω is equal
to the Bergman projection of a function in C∞0 (Ω), the two theorems above yield
information about the finite order vanishing of the kernel function at boundary
points. To be precise, given a point w0 in a bounded pseudoconvex domain Ω with
C∞ smooth boundary that satisfies Condition R, let δ denote the distance from
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w0 to bΩ and let θw0(z) = δ−2nθ((z − w0)/δ) where, as before, θ is a function in
C∞0 (B1(0)) that is radially symmetric about the origin such that

∫
θ dV = 1. The

Bergman kernel K(z, w) satisfies

K(z, w0) = (Pθw0)(z).

Given a multi-index β, let

θβw0
= (−1)|β|

∂|β|

∂z̄β
θw0(z).

The Bergman kernel also satisfies

∂|β|

∂w̄β
K(z, w0) = (Pθβw0

)(z).

The following theorem follows from these facts together with Theorem 4.1.

Theorem 4.3. Suppose that Ω is a bounded pseudoconvex domain in Cn with C∞

smooth boundary that satisfies Condition R and suppose that z0 is a boundary point
of Ω which satisfies the ϑ-UCP. Given a multi-index β and a point w0 ∈ Ω, there
exists a multi-index α such that

∂|α|+|β|

∂zα∂w̄β
K(z0, w0) 6= 0.

The next theorem allows both z0 and w0 to be in the boundary and does not
assume that the domain is globally C∞ smooth.

Theorem 4.4. Suppose Ω is a bounded pseudoconvex domain in Cn and that the
boundary of Ω is C∞ smooth near a boundary point z0 which is of finite type in the
sense of D’Angelo. Suppose further that z0 is a boundary point of Ω which satisfies
the ϑ-UCP. If w0 ∈ Ω is such that, either

a) w0 ∈ Ω, or
b) w0 ∈ bΩ, w0 6= z0, the boundary of Ω is C∞ smooth near w0, and w0 is a

point of finite type in the sense of D’Angelo,

then, given a multi-index β, there exists a multi-index α such that

∂|α|+|β|

∂zα∂w̄β
K(z0, w0) 6= 0.

Proof. We shall prove the theorem in case w0 is a boundary point. The proof in
case w0 ∈ Ω is similar to the proof of Theorem 4.3 and we leave it to the reader.
Assume that z0 and w0 are boundary points, that the boundary is C∞ smooth
and of finite type near these points, and that z0 6= w0. It is proved in [3,12]
that the Bergman kernel KΩ(z, w) for Ω extends C∞ smoothly to bΩ × bΩ near
(z0, w0). (Actually, this fact can also be deduced easily from the decomposition of
the Bergman kernel that we are about to describe.) It is possible to construct (see
[3]) a small pseudoconvex domain D with C∞ smooth boundary which is of finite
type in the sense of D’Angelo such that

1) D ⊂ Ω,
2) Bε(w0) ∩D = Bε(w0) ∩ Ω for some ε > 0, and
3) z0 6∈ D.

10



Let KΩ(z, w) denote the Bergman kernel associated to Ω and let KD(z, w) denote
the Bergman kernel associated to D. Since D is of finite type, the ∂̄-Neumann
problem on D is subelliptic and Kerzman’s theorem yields that KD(z, w) is in
C∞((D ×D)− {(z, z) : z ∈ bD}). If β is a multi-index, define

Kβ
D(z, w) =

∂|β|

∂w̄β
KD(z, w),

and define Kβ
Ω(z, w) similarly. If w ∈ D, define

Φβw(z) =

{
Kβ
D(z, w), if z ∈ D

0, if z ∈ Ω−D.

We now claim that, if w ∈ D and z ∈ Ω, then

Kβ
Ω(z, w) = (PΦβw)(z).

To see this, note that, given h ∈ H2(Ω), we may write∫
Ω

hΦβw dV =

∫
D

h(z)Kβ
D(z, w) dV =

∂|β|

∂wβ
h(w).

Since Kβ
Ω(z, w) is a holomorphic function of z in H2(Ω) that has the same effect

when paired with h ∈ H2(Ω), it follows that Kβ
Ω(z, w) = (PΦβw)(z). Let χ be a

function in C∞0 (Bε(w0)) that is equal to one on a neighborhood of w0. We may
now write

Kβ
Ω(·, w) = P (χΦβw) + P ((1− χ)Φβw).

If the point w ∈ D is allowed to approach w0, the smoothness property of the
Bergman kernel onD (Kerzman’s theorem) implies that (1−χ)Φβw tends in L2(Ω) to
the function (1−χ)Φβw0

∈ L2(Ω). Furthermore, even though χΦβw does not converge

to a function in L2(Ω), the form ∂̄(χΦβw) tends in C∞(0,1)(Ω) to ∂̄(χΦβw0
), which, by

Kerzman’s theorem, is also in C∞(0,1)(Ω). Recall that the Bergman projection can

be written P = I − ϑN∂̄. Since χΦβw and (1− χ)Φβw are supported away from z0,
it follows that, for z near z0 and w near w0, we have

(4.1) Kβ
Ω(z, w) = −ϑN [∂̄(χΦβw)]− ϑN∂̄[(1− χ)Φβw],

and that as w → w0, the functions in this decomposition all converge very nicely
to yield the decomposition,

Kβ
Ω(z, w0) = −ϑN [∂̄(χΦβw0

)](z)−
(
ϑN∂̄[(1− χ)Φβw0

]
)
(z),

which is valid for z near z0. Both functions on the right hand side of this decom-
position are in L2(Ω) and are orthogonal to H2(Ω). Furthermore, the subelliptic
estimate for the ∂̄-Neumann problem at z0 implies that both functions also extend

C∞ smoothly up to bΩ near z0. Hence, Theorem 3.2 implies that Kβ
Ω(z, w0) = ϑα

for a (0, 1)-form α whose coefficients extend C∞ smoothly up to bΩ near z0 and
11



vanish on bΩ near z0. Finally, the ϑ-UCP implies that Kβ
Ω(z, w0) cannot vanish to

infinite order as a function of z at z0, and the proof is complete.

We remark that, in the plane, all bounded domains with C∞ smooth boundary
satisfy Condition R and allC∞ smooth boundary points of bounded domains satisfy
the ϑ-UCP. Therefore, Theorems 4.1–4.4 hold in the plane without all the unsightly
extra hypotheses.

The non-vanishing property of the Bergman kernel described in Theorem 4.4 is
exactly what is needed to set up local Bergman-Ligocka coordinates of the type
used in [10] and [5] to study the boundary behavior of biholomorphic maps. In
particular, the following theorem would follow if the ϑ-UCP were known to hold at
strictly pseudoconvex boundary points (see Klingenberg [27] and [5]).

Theorem 4.5. Suppose Ω is a bounded weakly pseudoconvex domain in Cn with
C∞ smooth boundary that is of finite type in the sense of D’Angelo, and suppose
that fj is a sequence of automorphisms of Ω that converge to a holomorphic map

f : Ω → Ω. If the ϑ-UCP holds at a strictly pseudoconvex boundary point z0 of
Ω, then there is an ε > 0 such that the limit map f is in C∞(Bε(z0) ∩ Ω) and fj
converges to f in this space.

We remark that it is a standard fact that the limit map f in Theorem 4.5 must
either be an automorphism of Ω or a constant mapping f ≡ w0 where w0 is a weakly
pseudoconvex boundary point of Ω, and hence it is an easy part of the theorem to
prove that f is in C∞(Ω). The hard part of the proof is to see that the sequence
of automorphisms converge to f in C∞(Bε(z0) ∩Ω).

5. Bergman kernel density theorems. In a pseudoconvex domain, the ϑ-UCP
is closely related to a density property of the Bergman kernel. In what follows, we
shall refer to the linear span of a set of functions in a somewhat abbreviated fashion.
For example, we shall mention the complex linear span of the set of functions
{K(z, w) : w ∈ Ω}, and by this we shall mean the vector space of holomorphic
functions on Ω generated by functions h of the form h(z) = K(z, w), w ∈ Ω.

If K is a compact subset of Ω, let K̂ denote the hull of K with respect to holo-
morphic functions on Ω.

Theorem 5.1. Suppose that Ω is a bounded pseudoconvex domain with C∞ smooth
boundary that is of finite type in the sense of D’Angelo, and suppose that w0 is a
boundary point of Ω that satisfies the ϑ-UCP. Suppose that K is a compact subset

of Ω such that K̂ = K. Given a holomorphic function f defined on a neighborhood
of K and a number ε > 0, there is a function κ in the complex linear span S of{

∂|β|

∂w̄β
K(z, w0) : |β| ≥ 0

}
such that |f − κ| < ε on K.

Proof. In what follows, to streamline the writing, we shall frequently exhibit math-
ematical bad taste by thinking of one function space as a subspace of another, even
though the domains on which the functions are defined are different. Thus, for
example, we shall speak of A∞(Ω) as if it were a subspace of H2(D) when D is an
open subset of Ω without mentioning that we are actually restricting functions to
subsets.
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Suppose that f is a holomorphic function on a neighborhood U of K which
cannot be approximated uniformly on K by functions in S. Then there would exist
a complex finite Borel measure dµ on K such that

(5.1)

∫
K
hdµ = 0 for all h ∈ S,

but
∫
K f dµ 6= 0. Since Ω is pseudoconvex and of finite type, the Bergman kernel

is in C∞((Ω× Ω)− {(z, z) : z ∈ bΩ}), and it follows that P dµ is in C∞(Ω). The
orthogonality condition (5.1) implies that P dµ vanishes to infinite order at w0.
The remark after Theorem 4.1 yields a function ψ ∈ C∞0 (Ω) such that Pψ = P dµ
and Theorem 4.1 shows that P dµ ≡ 0. This means that dµ is orthogonal to the
complex linear span of the set of functions

{K(z, w) : w ∈ Ω}.

But this linear span is dense in A∞(Ω) (see [10]), and so dµ is orthogonal to A∞(Ω).
Catlin proved [13, Theorem 3.2.1] (note the third remark on page 618) that there
is an open set V with K ⊂ V ⊂ U , and functions fj ∈ A∞(Ω) such that fj → f in
H2(V ). Convergence in H2(V ) implies uniform convergence on K. A contradiction
is now obtained by writing

0 =

∫
K
fj dµ→

∫
K
f dµ 6= 0

and the conclusion of the theorem is proved.

We shall prove a generalized version of Theorem 5.1 at the end of this section in
which the set K is allowed to intersect the boundary of the domain. Next, however,
we shall prove a density theorem in which functions can be approximated in a much
stronger sense by functions in S.

Theorem 5.2. Suppose Ω is a bounded pseudoconvex domain of finite type in the
sense of D’Angelo with C∞ smooth boundary. Suppose z0 and w0 are boundary
points of Ω, z0 6= w0, and the ϑ-UCP holds at w0. Given an δ > 0 and a function
h which is holomorphic on Bδ(z0) ∩Ω and in C∞(Bδ(z0) ∩Ω), there is a sequence
of functions in the linear span S (as defined in Theorem 5.1) which tends to h in
C∞(Bε(z0) ∩Ω) for some ε ≤ δ.
Proof. To prove this theorem, we shall need to use the duality theory developed
in [6,7,8] (see also Ligocka [32,33]). If D is a bounded domain in Cn with C∞

smooth boundary, A∞(D) denotes the space of holomorphic functions in C∞(D)
equipped with the topology inherited from that space. If D is further assumed
to be pseudoconvex and of finite type in the sense of D’Angelo, then D satisfies
Condition R and it follows that the dual of A∞(D) is given by the space A−∞(D)
which is defined as the space of holomorphic functions g on D that satisfy a growth
estimate of the form

|g(z)|d(z)s ≤ C

where d(z) denotes the distance from z to bD, s is some positive integer, and C
is a constant. The duality is expressed via an extension of the usual L2(Ω) inner
product (see [8]).
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Suppose that h is a holomorphic function in C∞(Bδ(z0) ∩Ω) where |z0 −w0| >
δ > 0. Since z0 is a point of finite type, it is possible to construct arbitrarily
small domains D such that D is a C∞ smooth pseudoconvex domain of finite type,
D ⊂ Ω, and D ∩ Br(z0) = Ω ∩ Br(z0) for some small r > 0. Furthermore, such
domains can be constructed which are strictly star-like (and arbitrarily C1 close to
being a ball [1]) so that we may assume that the space of holomorphic polynomials
is dense in A∞(D). We now choose one such domain D1 so that D1 ⊂ Bδ(z0) ∩Ω.
Let r > 0 be small enough that D1 ∩ Br(z0) = Ω ∩ Br(z0), and choose another
small domain D2 of finite type so that D2 ⊂ D1 ∩ Br(z0), and (bD2 − bΩ) ⊂ D1,
and the boundary of D2 agrees with that of D1 (and Ω) near z0. We shall prove
that h can be approximated by functions in S as described in the statement of the
theorem by proving that S is dense in A∞(D2).

Suppose that S is not dense in A∞(D2). Then there would exist a function g 6≡ 0
in A−∞(D2) such that the extended inner product

〈g, κ〉D2 = 0 for all κ ∈ S.

Define
G(z) = 〈g,K(·, z)〉D2 for z ∈ Ω.

Since K(z, w) extends C∞ smoothly to bΩ× bΩ minus the boundary diagonal, it is
easy to check that G is a holomorphic function on Ω that extends C∞ smoothly up
to the boundary of Ω near w0. Notice that the orthogonality condition implies that
G vanishes to infinite order at w0. We shall prove the theorem by showing that we
may think of G as being equal to the Bergman projection on Ω of the function that
is equal to g on D2 and equal to zero on Ω − D2 and that the ϑ-UCP applies in
this generalized setting to yield that G ≡ 0 on Ω. From this it will follow that

〈g,K(·, z)〉D2 = 0 for all z ∈ Ω.

But the linear span of the set of functions K(·, z) as z ranges over Ω is dense in
A∞(Ω) (see [10]). We know that polynomials are dense in A∞(D2) and hence it
follows that the linear span of the functions K(·, z) as z ranges over Ω is dense
in A∞(D2). Hence, it will follow that g must be orthogonal to A∞(D2), and
since the extended pairing is non-degenerate, this will imply that g ≡ 0, contrary
to hypothesis, and the proof will be complete. To summarize, the proof will be
accomplished if we prove that G ≡ 0 on Ω.

Since A∞(D2) is dense in A−∞(D2) (see [8]), there exists a sequence of functions
gj in A∞(D2) converging to g in A−∞(D2). Let P denote the Bergman projection
on Ω, P1 the Bergman projection on D1, and P2 the Bergman projection on D2.
Let K(z, w), K1(z, w) and K2(z, w) denote the respective Bergman kernel functions
associated to Ω, D1, and D2. We may think of the functions g and gj as also being
defined on D1 or Ω by setting these functions to be zero on Ω−D2. We now claim
that P1gj tends to a function G in A−∞(D1) and that we may think of G as being
equal to P1g. A sequence convergenes in the space A−∞(D1) if it converges in some
negative Sobolev norm as described in [8]. If s is a positive integer, the Sobolev
−s norm of a holomorphic function f on D1 is given by

‖f‖−s = sup

{∣∣∣∣∫
D1

f ϕ dV

∣∣∣∣ : ϕ ∈ C∞0 (D1), ‖ϕ‖s = 1

}
,
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where ‖ϕ‖s denotes the usual Sobolev s norm of ϕ. The space A−s(D1) consisting
of functions in A−∞(D1) with finite −s norm is a Banach space under the −s norm.
We shall also need to know that the −s norm of a holomorphic function f ∈ H2(D1)
can be estimated by means of the L2 inner product (which, incidentally, agrees with
the extended L2 inner product when the functions involved are in L2). There is a
constant C = C(s,D1) such that

‖f‖−s ≤ C sup

{∣∣∣∣∫
D1

f h dV

∣∣∣∣ : h ∈ A∞(D1), ‖h‖s = 1

}
.

There is also a constant c = c(s,D1) such that∣∣∣∣∫
D1

f h dV

∣∣∣∣ ≤ c‖f‖−s‖h‖s
for f ∈ H2(D1) and h ∈ A∞(D1).

Because gj ∈ A∞(D2), there is a function ϕj ∈ C∞(D2) which vanishes to
infinite order on bD2 such that P2ϕj = gj (see [6,9]). We may think of ϕj as

also being in the space C∞(D1) by extending ϕj to be zero on D1 −D2, and it is
easy to verify that P1gj = P1ϕj . Since pseudoconvex domains of finite type satisfy
Condition R, it follows that P1gj ∈ A∞(D1). We may now estimate

‖P1gj − P1gk‖D1
−s

≤ C sup

{∣∣∣∣∫
D1

P1(gj − gk)hdV
∣∣∣∣ : h ∈ A∞(D1), ‖h‖s = 1

}
≤ C sup

{∣∣∣∣∫
D2

(gj − gk)h dV
∣∣∣∣ : h ∈ A∞(D1), ‖h‖s = 1

}
≤ (constant)‖gj − gk‖D2

−s .

Since gj is a Cauchy sequence in A−s(D2), this estimate shows that P1gj is a
Cauchy sequence in A−s(D1), and hence that P1gj converges to some function G
in A−∞(D1). Because the Bergman kernel function of D1 extends C∞ smoothly
up to bD1 × bD1 away from the boundary diagonal, and because

G(z) = lim
j→∞

∫
w∈D2

K1(z, w)gj(w) dV = 〈g,K1(·, z)〉D2 ,

it is easy to see that G extends C∞ smoothly up to the part of the boundary of D1

given by bD1 − bD2. In fact, given a point ζ0 ∈ bD1 − bD2, there is a radius r > 0
such that P1gj tends to G in C∞(Br(ζ0) ∩D1). Let Gj denote the function which
is equal to P1gj on D1 and equal to zero on Ω−D1, and let Gj = PGj , i.e.,

Gj(z) = 〈Gj , K(·, z)〉D1 for z ∈ Ω.

It is easy to see that Gj = PGj = Pgj since all three of these functions, when paired

in the H2(Ω) inner product with a function f ∈ H2(Ω), give
∫
D2
gj f dV . The same

reasoning we used above can be applied to see that Gj tends to G in A−∞(Ω) and

that this sequence also convergenes in C∞(Br(w0) ∩ Ω) for small r. Let χ be a
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C∞ function that is equal to one on a neighborhood of D2 and equal to zero on a
neighborhood of the closure of bD1 ∩ Ω. We shall split Gj into two pieces via

Gj = P [χGj ] + P [(1− χ)Gj ].

Since P = I − ϑN∂̄, and since Gj is zero near w0, we may further write

Gj = −ϑN [∂̄(χGj)] +−ϑN∂̄[(1− χ)Gj ] near w0.

Now, the functions (1−χ)Gj tend in L2(Ω) to (1−χ)G (which is in L2(Ω) because

G extends smoothly to bD1 − bD2), and the (0, 1)-forms ∂̄[χGj ] tend in C∞(0,1)(Ω)

to ∂̄[χG]. Hence, by letting j →∞, we obtain

G = −(ϑN)[∂̄(χG)]− (ϑN∂̄)[(1− χ)G] near w0.

Since (ϑN)[∂̄(χG)] and (ϑN∂̄)[(1 − χ)G] are both functions in L2(Ω) that are
orthogonal to H2(Ω) and that extend C∞ smoothly to bΩ near w0, we deduce via
Theorem 3.2 and the ϑ-UCP that G ≡ 0 and the proof is finished.

We conclude this section by showing how the proof of Theorem 5.1 can be modi-
fied to yield an improved result. In the statement of the next theorem, we shall use
the following notation. If U is a relatively open subset of Ω, we let A∞(U) denote
the set of holomorphic functions on U◦, the interior of U , which are bounded and
which have bounded derivatives of all orders on U◦.

Theorem 5.3. Suppose that Ω is a bounded pseudoconvex domain with C∞ smooth
boundary that is of finite type in the sense of D’Angelo, and suppose that w0 is a
boundary point of Ω that satisfies the ϑ-UCP. Suppose that K is a compact subset
of Ω which is convex with respect to A∞(Ω) such that w0 6∈ K. Suppose that f
is a function which is defined and holomorphic on a relatively open subset U of Ω
containing K and f ∈ A∞(U). Given a number ε > 0, there is a function κ in the
complex linear span S of {

∂|β|

∂w̄β
K(z, w0) : |β| ≥ 0

}
such that |f − κ| < ε on K.

The proof of this result follows the same steps as the proof of Theorem 5.1. There
are two points in the proof that need additional attention because K might intersect
the boundary. The first point concerns the projection of the Borel measure dµ on
K. We may define P dµ as before. The smoothness properties of the Bergman
kernel yield that P dµ is a holomorphic function on Ω that extends C∞ smoothly
up to the boundary of Ω near w0. We must prove that if P dµ vanishes to infinite
order at w0, then P dµ ≡ 0. To see this, we shall show that there is a function ψ in
C∞(Ω) that is orthogonal to H2(Ω) such that ψ = P dµ near w0. The uniqueness
property we need will then follow from Rosay’s Lemma and the ϑ-UCP at w0. If
we can construct such a ψ for measures supported on very small compact subsets,
then we can use a partition of unity to obtain such a function for dµ on K. We have
constructed such a ψ when K ⊂⊂ Ω (see the remark after Theorem 4.1). Hence,
we may assume that K is a very small compact subset of Ω that does not contain
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w0. The key to the construction of ψ is formula (4.1), taking β to be the null
multi-index. We may integrate formula (4.1) with respect to dµ in the w variable
over K. The resulting function is in the range of ϑN and is therefore orthogonal to
H2(Ω). The proof of the uniqueness property is complete.

The second point in the proof that needs attention concerns the application of
Catlin’s theorem [13, Theorem 3.2.1]. Here, we take a relatively open subset V of
Ω containing K and a sequence of functions fj in A∞(Ω) such that fj converges
to f in a Sobolev space Hs(V ), where s is chosen to be larger than n so that the
Sobolev lemma yields that fj converges uniformly to f on K. All the rest of the
proof of Theorem 5.1 carries over and the proof of Theorem 5.2 is complete.

6. Applications to mapping problems. If f : Ω1 → Ω2 is a biholomorphic
mapping between bounded non-pseudoconvex domains with C∞ smooth boundaries
in Cn, it is not currently known if f must extend smoothly to the boundary near
even a single boundary point. In this section, we shall show that such a map must
extend smoothly to certain types of boundary points provided that they satisfy the
ϑ-UCP.

A boundary point z0 of a bounded domain Ω is called extreme (see Peiming Ma
[34]) if

1) the boundary of Ω is C∞ smooth near z0, and
2) there is a pseudoconvex domain Ω0 such that Ω ⊂ Ω0 and an ε > 0 such

that Bε(z0) ∩ Ω = Bε(z0) ∩Ω0.

That every bounded domain with C∞ smooth boundary has an open set in its
boundary consisting of strictly pseudoconvex extreme points can be seen by allowing
a large ball containing the domain to shrink until the boundary of the ball comes
into contact with the boundary of the domain. Boundary points of the domain near
contact points with the boundary of the ball are easily seen to be extreme.

Theorem 6.1. Suppose that Ω1 and Ω2 are bounded non-pseudoconvex domains in
Cn, and that Ω1 has a C∞ smooth boundary, and Ω2 has a real analytic boundary.
Suppose that f : Ω1 → Ω2 is a proper holomorphic mapping, and that z0 is an
extreme boundary point of Ω1 that is of finite type in the sense of D’Angelo. If the
ϑ-UCP holds at z0, then f must extend C∞ smoothly up to the boundary of Ω1 near
z0.

We remark that, since the ϑ-UCP is known to hold at strictly pseudoconvex
boundary points that are real analytic, this theorem yields that proper maps be-
tween non-pseudoconvex domains with real analytic boundaries must extend C∞

smoothly up to the boundary near all the strictly pseudoconvex extreme boundary
points. Hence, Chern-Moser invariants [17] can be used to prove non-equivalence
of domains with real analytic boundaries whose invariants do not match at any
strictly pseudoconvex points. This implies that “most” (in the sense of Green and
Krantz) pairs of bounded non-pseudoconvex domains with real analytic boundaries
are biholomorphically inequivalent.

Proof of the theorem. The first part of the proof is easy and follows the procedure
described in [4]. Let P1 and P2 denote the Bergman kernels associated to Ω1 and
Ω2, respectively, and let u = det f ′ denote the holomorphic jacobian determinant
of f . Suppose that z0 is an extreme boundary point of Ω1 that is of finite type.

Since bΩ2 is real analytic, given a holomorphic polynomial h(z), there is a func-
tion ϕ ∈ C∞0 (Ω2) such that P2ϕ = h. The transformation formula for the Bergman
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projections under a proper holomorphic map yields

u(h ◦ f) = u[(P2ϕ) ◦ f ] = P1(u[ϕ ◦ f ]).

Since ϕ ∈ C∞0 (Ω2), and since f is proper holomorphic, it follows that u[ϕ ◦ f ] is
in C∞0 (Ω1). Peiming Ma [34] proved that the Bergman projection satisfies local
regularity estimates near pseudoconvex extreme points that are of finite type in the
sense of D’Angelo. Hence, the identity above reveals that if h(z) is a holomorphic
polynomial on Cn, then u(h ◦ f) extends C∞ smoothly up to the boundary near
z0. In particular, taking h ≡ 1 yields that u extends C∞ smoothly to the boundary
near z0. If we prove that u can vanish to at most finite order at z0, then we can
apply the division theorem of [9] or [21] to deduce that f extends C∞ smoothly up
to bΩ1 near z0.

Let Ω0 denote a pseudoconvex domain containing Ω1 with z0 ∈ bΩ0 as described
in condition (2) of the definition of extreme boundary point. Let P0 denote the
Bergman projection associated to Ω0. Let h ≡ 1 and let ϕ ∈ C∞0 (Ω2) be such that
h = P2ϕ as above. Extend the functions u(h◦f) and u(ϕ◦f) to Ω0 by setting them
equal to zero on Ω0 − Ω1. Since u(h ◦ f)− u(ϕ ◦ f) is orthogonal to H2(Ω1), it is
also orthogonal to H2(Ω0). Now Theorem 3.2, the ϑ-UCP at z0, and the fact that
u cannot vanish identically, together imply that u cannot vanish to infinite order
at z0. The proof is complete.

We next describe how the ϑ-UCP property could be used to prove the following
strengthened version of another result of Peiming Ma’s. The proof of this theorem
will also demonstrate the relevance of density theorems of the kind described in §5.

Theorem 6.2. Suppose that f : Ω1 → Ω2 is a proper holomorphic mapping between
bounded non-pseudoconvex domains in Cn with C∞ smooth boundaries and that the
target domain Ω2 satisfies Condition R. Then f must extend C∞ smoothly up to
the boundary of Ω1 near any extreme boundary point of finite type at which the
ϑ-UCP holds.

Proof. Let K1(z, w) and K2(z, w) denote the Bergman kernels associated to Ω1

and Ω2, respectively. Let F1, F2, . . . , Fm denote the local inverses to f which are
defined locally on Ω2 minus the image of the branch locus of f and let Uk = det F ′k.
Suppose that z0 is a pseudoconvex extreme boundary point of Ω1 that is of finite
type. Ma [34] proved that if h ∈ A∞(Ω2), then u(h ◦ f) extends C∞ smoothly up
to bΩ1 near z0. In order to conclude that f extends smoothly up to bΩ1 near z0,
it remains only to show that u cannot vanish to infinite order at z0. We shall now
show that this follows from the transformation formula for the Bergman kernels
under proper holomorphic mappings and the ϑ-UCP. The transformation formula
is

(6.1) u(z)K2(f(z), w) =
m∑
j=1

K1(z, Fj(w))Uj(w).

The function on the left hand side of this identity extends C∞ up to bΩ1 near z0

by Ma’s result and the fact that K2(z, ζ) is in A∞(Ω2) as a function of z for each
fixed ζ ∈ Ω2. Pick a point w0 ∈ Ω2 so that the functions Fj(w) are all holomorphic
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on a neighborhood of w0, Uj(w0) 6= 0 for each j, and Fi(w0) 6= Fj(w0) if i 6= j. Let
p(w) be a holomorphic polynomial on Cn such that

m∑
j=1

p(Fj(w0))Uj(w0) 6= 0.

We must next modify the proof of Theorem 5.1 to prove that there is an element κ
in the linear span of the set of functions{

∂|β|

∂z̄β
K1(w, z0) : |β| ≥ 0

}
such that κ is so close to p(w) on the set {Fj(w0)}mj=1 that

(6.2)
m∑
j=1

κ(Fj(w0))Uj(w0) 6= 0.

Let us assume, for the moment, that there is such a κ given by

κ(w) =
∑
|β|<M

cβ
∂|β|

∂z̄β
K1(w, z0).

Formula (6.1) shows that the complex conjugate of the left hand side of (6.2) is
equal to ∑

|β|<M
cβ
∂|β|

∂zβ
[u(z)K2(f(z), w0)]

evaluated at z = z0. If u vanishes to infinite order at z0, this last quantity would
necessarily be zero. This contradiction forces us to conclude that u can vanish to
at most finite order at z0 and the proof would be finished. To finish the proof, we
shall invoke the following lemma to show that such a κ exists.

Lemma 6.3. Suppose that Ω is a bounded domain in Cn and that z0 is a boundary
point of Ω such that the boundary of Ω is C∞ smooth near z0, z0 is a point of finite
type in the sense of D’Angelo, and that z0 is an extreme boundary point. Suppose
that the ϑ-UCP holds at z0. Given a polynomially convex compact subset K of Ω,
a polynomial p(w), and an ε > 0, there is an element κ in the complex linear span
S of {

∂|β|

∂z̄β
K(w, z0) : |β| ≥ 0

}
such that |κ(w)− p(w)| < ε for w ∈ K.

Remark. We remark that if Ω is a bounded pseudoconvex domain in Cn and z0

is a boundary point of Ω such that the boundary of Ω is C∞ smooth near z0, z0 is
a point of finite type in the sense of D’Angelo, and the ϑ-UCP holds at z0, then Ω
and z0 satisfy the hypotheses of the Lemma.

Proof. We shall continue to use the notation that we set up in the proof of The-
orem 6.2. Thus, Ω0 denotes the pseudoconvex domain containing Ω satisfying
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condition (2) in the definition of extreme boundary point. However, we no longer
need subscript ones and twos, and so we let K(z, w) denote the Bergman kernel
associated to Ω.

Let D be a relatively compact subdomain of Ω containing K. It will be enough to
prove that S is dense in the H2(D) closure of the space of holomorphic polynomials
because convergence in H2 implies uniform convergence on compact subsets. Let
P denote the closure in H2(D) of the space of holomorphic polynomials. If S is
not dense in P, there would be a function G ∈ P, G 6≡ 0, such that G is orthogonal
to the generating set of S. Extend G to be defined on Ω and Ω0 by setting G to
be equal to zero outside D and consider the Bergman projection PG on Ω. Extend
PG to Ω0 by setting it to be equal to zero outside Ω. P. Ma proved [34] that the
Bergman kernel of Ω is in C∞((Ω∩Br(z0))×Ω) for some small r. This shows that
PG is C∞ smooth up to the boundary near z0 and that

∂|β|

∂zβ
PG(z0) =

∫
w∈D

G(w)
∂|β|

∂zβ
K(z0, w) dV.

The orthogonality condition therefore yields that PG vanishes to infinite order at
z0. Now G − PG is orthogonal to H2(Ω), and hence, when viewed as a function
on Ω0, G − PG is also orthogonal to H2(Ω0). Hence, Theorem 3.2 shows that
G − PG = ϑα near z0 where α vanishes on bΩ near z0 and is C∞ smooth up
to the boundary there. The ϑ-UCP now yields that PG must vanish near z0,
and hence that PG ≡ 0. This implies that G is orthogonal to the linear span of
{K(z, w) : w ∈ Ω}, which is dense in H2(Ω). Hence G is certainly also orthogonal
to all holomorphic polynomials. Since G is contained in the space P we are forced
to conclude that G ≡ 0, contrary to hypotheses, and the proof is complete.

7. Unique continuation properties of the Szegő projection. We have been
studying unique continuation properties of the ∂̄-problem and the Bergman projec-
tion and kernel. Most of these properties have interesting analogues when phrased
for the ∂̄b-problem and the Szegő projection and kernel. In this last section, I will
demonstrate the nature of these questions by answering some of them in the plane.

We now assume that Ω is a bounded domain in the plane with C∞ smooth
boundary, i.e., that Ω is bounded by finitely many non-intersecting simple closed
C∞ curves. Let L2(bΩ) denote the space of complex valued functions on bΩ which
are square integrable with respect to arc length measure and let H2(bΩ) denote
the classical Hardy space of holomorphic functions on Ω whose boundary values
are in L2(bΩ). We now let the symbol P denote the Szegő projection, which is
the orthogonal projection of L2(bΩ) onto the closed subspace H2(bΩ), and we let
S(z, w) denote the Szegő kernel (see [2,11,35] for definitions and basic properties
of these objects). It is known that P maps C∞(bΩ) into itself and that S(z, w)
extends to be a function in C∞((Ω × Ω) − {(z, z) : z ∈ bΩ}). Let Dr(z0) denote
the disc of radius r about z0. Let 〈·, ·〉b denote the inner product in H2(bΩ) and
let 〈·, ·〉Ω denote both the inner product in H2(Ω) and the extended inner product
expressing the duality between A∞(Ω) and A−∞(Ω).

The Szegő projection satisfies a unique continuation property analogous to the
one satisfied by the Bergman projection in the plane, and the Szegő kernel function
satisfies a density property that seems even stronger than the one satisfied by the
Bergman kernel.
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Theorem 7.1. Suppose that Ω is a bounded domain in the plane with C∞ smooth
boundary and suppose that w0 ∈ bΩ. If ϕ ∈ L2(bΩ) is such that ϕ = 0 near w0, then
infinite order vanishing of Pϕ at w0 implies that Pϕ ≡ 0 in H2(bΩ). Furthermore,
given an ε > 0, the complex linear span of{

∂m

∂w̄m
S(z, w0) : m ≥ 0

}
is dense in C∞(bΩ−Dε(w0)).

Proof. There is a biholomorphic map f : Ω→ Ω0 of Ω onto a bounded domain Ω0

in C with real analytic boundary. The derivative f ′ of this map is known to be the
square of a (single valued) function in A∞(Ω). We will use the symbol

√
f ′(z) to

denote this function. The Szegő projections transform under f via

P
(√

f ′(ϕ ◦ f)
)

=
√
f ′ ((P0ϕ) ◦ f)

and the Szegő kernels transform via

S(z, w) =
√
f ′(z)S0(f(z), f(w))

√
f ′(w)

(where we have used the convention that subscript zeroes imply that the object is
associated to Ω0 and no subscripts imply that the object is associated to Ω). These
transformation formulas together with the fact that f must extend C∞ smoothly
to the boundary with non-vanishing derivative on Ω allow us to reduce our problem
to the case where Ω is assumed to have real analytic boundary. We make this
assumption from now on.

The Szegő projection on our bounded domain Ω with real analytic boundary has
the virtue of mapping Cω(bΩ) into the space A(Ω) of functions on Ω that extend
to be holomorphic on a neighborhood of Ω. Moreover, there is an open subset of
C × C containing (Ω × Ω) − {(z, z) : z ∈ bΩ} on which the Szegő kernel S(z, w)
associated to Ω extends to be holomorphic in z and antiholomorphic in w. Hence,
if ϕ ∈ L2(bΩ) is such that ϕ = 0 near w0, then Pϕ extends holomorphically past
the boundary near w0, and therefore infinite order vanishing of Pϕ at w0 implies
that Pϕ ≡ 0 near w0, which implies that Pϕ ≡ 0 in H2(bΩ). The statement about
the Szegő projection is proved.

Before we can prove the statement about the span of the Szegő kernel, we must
set down some groundwork. Given a continuous function u defined on the bound-
ary of Ω, the Cauchy transform of u will be written Cu and is defined to be the
holomorphic function on Ω given by

(Cu)(z) =
1

2πi

∫
ζ∈bΩ

u(ζ)

ζ − z dζ.

The Cauchy transform, like the Szegő projection, maps Cω(bΩ) into the space A(Ω).
Suppose that z(t) parameterizes one of the boundary curves of Ω in the standard

sense. If z0 = z(t0) is a point on this curve, we define T (z0) to be equal to
z′(t0)/|z′(t0)|. Thus, for z ∈ bΩ, T (z) denotes the complex number of unit modulus
representing the unit tangent vector to the boundary at z pointing in the direction
of the standard orientation. Notice also that T is in Cω(bΩ), that dz = T ds, and
that ds = T dz.

We shall need the following lemma due to Schiffer [37].
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Lemma 7.2. The space of functions in L2(bΩ) orthogonal to H2(bΩ) is equal to
the space of functions of the form HT where H ∈ H2(bΩ). Consequently, a function
u ∈ L2(bΩ) can be expressed uniquely as an orthogonal sum

u = h+HT

where h = Pu and H = P (uT ). Furthermore, if u is in Cω(bΩ), then h and H are
in A(Ω).

Before proving the statement about the linear span in Theorem 7.1, we must
prove a related result. For fixed a ∈ Ω, let Sa(z) denote the function of z given
by Sa(z) = S(z, a). Let Σ denote the (complex) linear span of the set of functions
{Sa(z) : a ∈ Ω}. It is easy to see that Σ is a dense subspace of H2(bΩ). Indeed, if
h ∈ H2(bΩ) is orthogonal to Σ, then h(a) = 〈h, Sa〉b = 0 for each a ∈ Ω; thus h ≡ 0.
We shall also need to know that Σ satisfies a much stronger density property.

Lemma 7.3. The complex linear span of {Sa(z) : a ∈ Ω} is dense in A∞(Ω).

To say that Σ is dense in A∞(Ω) means that, given a function h ∈ A∞(Ω), there
is a sequence Hj ∈ Σ such that Hj(z) tends uniformly on Ω to h(z), and each

derivative of Hj(z) tends uniformly on Ω to the corresponding derivative of h(z).
We shall need to know that the Szegő kernel is equal to the Szegő projection of

the kernel for the Cauchy transform. To be precise, given a point a in Ω, let Ca(z)
denote the complex conjugate of

T (z)

(2πi)(z − a) .

Given h ∈ H2(bΩ), the value of h at a ∈ Ω is given by the Cauchy integral formula,
h(a) = 〈h, Ca〉b. The Szegő kernel Sa also satisfies the property, h(a) = 〈h, Sa〉b,
and hence it follows that Sa = PCa.

Let u ∈ Cω(bΩ) be given. It is an easy exercise to see that Cω(bΩ) is equal
to the space of continuous functions on bΩ which extend to be holomorphic on
a neighborhood of bΩ. Hence, there is a function U which is holomorphic on a
neighborhood of bΩ and which is equal to u on bΩ. By multiplying U by a C∞

function which is compactly supported inside the set where U is holomorphic and
which is equal to one on a small neighborhood of bΩ, we may think of U as being
a function in C∞(Ω) which is holomorphic near bΩ. Let Ψ denote the C∞0 (Ω)
function given as Ψ = ∂U/∂z̄.

If v ∈ C∞(Ω) and z ∈ Ω, the inhomogeneous Cauchy integral formula (see
Hörmander [24, Theorem 1.2.1]) states that

v(z) =
1

2πi

∫
ζ∈bΩ

v(ζ)

ζ − z dζ +
1

2πi

∫∫
ζ∈Ω

∂v
∂ζ̄

ζ − z dζ ∧ dζ̄.

Apply this formula using v = U to obtain the identity

U(z) = (Cu)(z) +
1

2πi

∫∫
ζ∈Ω

Ψ(ζ)

ζ − z dζ ∧ dζ̄.
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Since Ψ has compact support, we deduce from this formula that Cu extends smoothly
to the boundary. Furthermore, the boundary values of Cu are given by Cu = u−I
where, for z ∈ bΩ,

I(z) =
1

2πi

∫∫
ζ∈Ω

Ψ(ζ)

ζ − z dζ ∧ dζ̄.

Now, because Ψ has compact support, for z ∈ bΩ, we may approximate the
integral defining I(z) by a (finite) Riemann sum

S(z) =
1

2πi

∑
ci

1

ai − z

in such a way that S is as close to I in the topology of C∞(bΩ) as we please.
We have now shown that u− Cu − S can be constructed to be arbitrarily close

to the zero function in C∞(bΩ). If we now multiply u− Cu− S by T and take the
complex conjugate, we see that

Tu− TCu−
∑

c̄iCai

can also be made arbitrarily small. Next, we take the Szegő projection of this func-
tion and use the fact that Szegő projection is a continuous operator from C∞(bΩ)
into itself. Note that P (TCu ) = 0 because functions of the form TH, H ∈ A∞(Ω),
are orthogonal to H2(bΩ), and keep in mind that S(z, a) = (PCa)(z). Therefore,

P (Tu)−
∑

c̄iS(·, ai)

can be made arbitrarily close to zero in C∞(bΩ). To finish the proof, we need
only note that a function h in A∞(Ω) can be written as Tu where u = Th. Hence
h = Ph = P (Tu) can be approximated in the C∞(bΩ) topology by functions in Σ
and the proof that Σ is dense in A∞(Ω) is finished.

Suppose that O is an open subset of Ω, and let ΣO denote the complex linear
span of {Sa(z) : a ∈ O}. The duality of A∞(Ω) and A−∞(Ω) allows us to deduce
from the density of Σ in A∞(Ω) that ΣO is also dense in A∞(Ω). Indeed, if ΣO is
not dense in A∞(Ω), then there would exist a function g ∈ A−∞(Ω) which is not
the zero function such that 〈g, Sa〉Ω = 0 for every a ∈ O. Let

H(a) = 〈g, Sa〉Ω,

and notice that H(a) is a holomorphic function of a on Ω. The orthogonality
property of g translates to say that H vanishes on the open set O, and therefore
H vanishes identically on Ω, i.e., 〈g, Sa〉Ω = 0 for every a ∈ Ω. Since Σ is dense in
A∞(Ω), and since the pairing between A∞(Ω) and A−∞(Ω) is non-degenerate, it
follows that g ≡ 0, contrary to hypothesis. Hence ΣO is dense in A∞(Ω).

We remark that the same reasoning that we used in the preceding paragraph
can be used to show that, given a fixed point a ∈ Ω, the complex linear span of{

∂m

∂ām
S(z, a) : m ≥ 0

}
is also dense in A∞(Ω). However, we shall not need this fact to prove the density
property in the statement of the theorem.
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We have described some useful dense subspaces of A∞(Ω). Let H⊥ denote the
set of functions in C∞(bΩ) that are orthogonal to H2(bΩ) in the L2(bΩ) inner
product. Next, we must describe a useful dense subspace of H⊥. Lemma 7.2
shows that H⊥ is equal to the space of functions of the form HT where H ∈
A∞(Ω). The dense subspace of H⊥ that interests us is expressed in terms of the
Garabedian kernel L(z, a), which is most easily described in terms of the orthogonal
decomposition of the Cauchy kernel Ca(z). Since Sa = PCa, we may write the
orthogonal decomposition of Ca in the form Ca = Sa +HaT where Ha = P (CaT ).
Solving this equation for Sa, writing out Ca, and taking complex conjugates gives

Sa(z) = −i
(

1

2π

1

z − a − iHa(z)

)
T (z).

The Garabedian kernel La (see [23,2]) is defined to be equal to the function in
parentheses, i.e.,

La(z) =
1

2π

1

z − a − iHa(z).

We shall also write L(z, a) for La(z). Both Sa and La extend holomorphically past
the boundary of Ω. In fact, Sa ∈ A(Ω) and La is meromorphic on a neighbor-
hood of Ω with a single singularity at a that is a simple pole with residue 1/(2π).
Furthermore, if we define `(z, a) via

L(z, a) =
1

2π(z − a) + `(z, a),

it is known that `(z, a) extends to an open subset of C× C containing Ω× Ω as a
holomorphic function of z and a.

It is possible to interpret the Garabedian kernel as being the kernel for the
projection P⊥ of L2(bΩ) onto the space of functions in L2(bΩ) which are orthogonal
to H2(bΩ), but we shall not do this here (see [2]).

We have just seen that

Sa(z) = −iLa(z)T (z)

for a ∈ Ω and z ∈ bΩ. Since T = 1/T on bΩ, this identity may be rewritten in the
form

(7.1) Sa(z)T (z) = −iLa(z).

This formula allows us to read off that the complex linear span Λ of the set {La(z) :
a ∈ Ω} is dense in H⊥ in the C∞(bΩ) topology. Indeed, a function u ∈ C∞(bΩ)
that is orthogonal to H2(bΩ) must be given as u = HT for some H ∈ A∞(Ω).
Formula (7.1) reveals that Λ is equal to {σT : σ ∈ Σ}, and therefore, since Σ is
dense in A∞(Ω), it follows that u can be approximated in C∞(bΩ) by elements in
Λ. Similar reasoning shows that, given an open subset O of Ω, the density of ΣO
in A∞(Ω) implies that the complex linear span ΛO of the set {La(z) : a ∈ O} is
also dense in H⊥.

We are finally in a position to prove the rest of the theorem. Let S denote the
linear span mentioned in the statement of Theorem 7.1. Since S(z, w) extends to
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be holomorphic in z and antiholomorphic in w on a open subset of C×C containing
(Ω×Ω)− {(z, z) : z ∈ bΩ}, there is a δ with 0 < δ < ε so that the expansion

S(z, a) =
∞∑
j=m

1

m!

[
∂m

∂w̄m
S(z, w0)

]
(ā− w̄0)

m

is valid for z ∈ Ω − Dε(w0) and a ∈ Ω ∩ Dδ(w0). This shows that the closure
of S in C∞(bΩ −Dε(w0)) contains the closure of ΣO in C∞(bΩ −Dε(w0)) where
O = Ω ∩ Dδ(w0). We will be finished with the proof if we show that A∞(Ω) is
dense in C∞(bΩ−Dε(w0)). Suppose u ∈ C∞(bΩ−Dε(w0)). Let U be a function
in C∞(bΩ)) that agrees with u on bΩ−Dε(w0). The function U has an orthogonal
decomposition given by U = h+HT where h and H are in A∞(Ω). The function
HT can be approximated in C∞(bΩ) by functions in ΛO. We will be finished with
the proof if we can show that if a ∈ Ω∩Dδ(w0), then L(z, a) can be approximated
in C∞(bΩ−Dε(w0)) by functions in A∞(Ω). That this is true follows from Runge’s
theorem because

L(z, a) =
1

2π(z − a) + `a(z)

where `a ∈ A∞(Ω), and 1/(z − a) can be approximated in C∞(bΩ − Dε(w0)) by
rational functions whose poles are outside Ω. (Actually, Runge’s theorem is not
needed here. Just write out the Laurent expansion for 1/(z−a) on the complement
of Dδ(w0) in powers of z−w0. Take a sufficient number of terms in the expansion,
then slide the base point from w0 to a point slightly outside of Ω.) The proof is
complete.

The density statement in Theorem 7.1 implies a strong form of a unique con-
tinuation theorem for the Szegő projection. If Ω is a bounded domain in C with
C∞ smooth boundary, then the Szegő kernel S(z, w) extends to be in C∞((Ω ×
Ω)−{(z, z) : z ∈ bΩ}). It therefore follows that the Szegő projection extends to be
defined on the space of distributions on bΩ. Let us also use the symbol P to denote
the extended Szegő projection which is understood to map the space of distributions
on bΩ into the space of holomorphic functions on Ω. If λ is a distribution on bΩ
that is supported away from a boundary point w0, then Pλ extends C∞ smoothly
up to the boundary near w0. The density of the linear span in Theorem 7.1 implies
the following theorem.

Theorem 7.4. Suppose that Ω is a bounded domain in C with C∞ smooth bound-
ary. If λ is a distribution on bΩ that is supported away from a boundary point w0,
and if Pλ vanishes to infinite order at w0, then Pλ ≡ 0.
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