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Abstract. An apology is an explanation or defense of actions which may otherwise be

misunderstood. There are several sources of misunderstanding concerning the proof of the
Riemann hypothesis. An obstacle lies in the narrow perception of the Riemann hypothesis as

a mechanism for counting prime numbers. The Riemann hypothesis is significant because of

its significance in mathematical analysis. The proof cannot be read as an isolated argument
because of its roots in the history of mathematics. Another obstacle lies in the unexpected

source of the proof of the Riemann hypothesis. The proof is made possible by events which

seem at first sight to have no relevance to mathematics. Exceptional people and exceptional
circumstances prepared the proof of the Riemann hypothesis.

Good writing about mathematics is difficult because the expected reader knows either
too much or too little. Those with graduate experience are biased by the choice of a
specialty. Those without graduate experience exist in a state of ignorance. Expository
writing about mathematics needs to present the reader with a view of the subject which is
convincing at several levels of knowledge. Readers without graduate experience need to be
supplied with information which justifies mathematical research. Readers with graduate
experience need to place their speciality within a larger perspective. These objectives are
achieved by a history of mathematics as it relates to the Riemann hypothesis.

The Riemann hypothesis culminates a renewal of mathematical analysis after a mille-
nium in which Greek analysis lay dormant in libraries. The Renaissance is stimulated by
the Cartesian philosophy that problems are best solved by prior thought, as opposed to the
Roman philosophy that problems are solved by immediate action. Analysis is not exclusive
to mathematics since it is little else than the consistent application of thought. A common
feature of effective analysis is the need for hypotheses, without which no conclusion is
valid. Although analysis has striking successes, the analysis applied in mathematics sur-
passes other applications of analysis in the extent and consistency of its logical structure.
Other applications of analysis emulate the application made in mathematics.

Mathematical analysis differs in purpose from other applications of analysis. Serious
projects need to exhibit an evident purpose if they expect to receive the means required
for their achievement. The value of a proposed contribution is weighed against the cost
of its realization. Mathematical analysis does not admit a statement of purpose which is
meaningful without preparation. The discovery of purpose is a historical process which
perpetually diversifies itself into new channels and persistently returns to a clarification of
original aims.

The earliest known applications of mathematical analysis are witnessed by architectural
achievements, such as Egyptian pyramids, and by astronomical observations essential to
agriculture. Mathematical analysis originates as the geometry of space with numbers as ac-
cessories in measurement. Numbers are discovered as integers from which rational numbers
are constructed. An essentially different purpose is discovered for mathematical analysis
when geometric objects are constructed which are not measured by rational numbers.
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American readers may be pleased to learn how the attraction of irrational numbers
has shaped their history. The five–pronged star which is their cultural heritage has a
fascination which cannot be explained by beauty. Since beauty is akin to symmetry, the
six–pronged star wins when beauty is the issue. The attraction of the five–pronged star
lies in its dynamic quality which appeals for action because it is less complete. The star
originates in the construction of an irrational number disturbing an eye which prefers the
restfulness of rational proportions.

The distinction between constructions which terminate and those which do not assigns
a purpose to mathematical analysis. The Euclidean algorithm marks the discovery of
mathematical analysis as applied to infinite constructions. Discoveries of purpose in the
Renaissance are illustrated in the lives of René Descartes (1596–1652), Pierre de Fermat
(1601–1665), and Blaise Pascal (1623–1662).

Cartesian space reinforces the classical conception of space by the introduction of rect-
angular coordinates. Cartesian analysis applies the properties of real numbers to obtain
the properties of geometrical figures. The success of the method justifies the Cartesian
philosophy that problems are solved by thought. The contribution of Descartes to science
is the discovery of orderly structure in nature which exceeds previous expectations. Of
significance for the Riemann hypothesis is the conception of space as structured. The
characterization of the tetrahedron, the cube, the octahedron, the dodecahedron, and the
icosahedron as regular solids demonstrates Greek awareness of the properties of space.
Descartes completes this achievement with the observation that in every case the number
of faces minus the number of edges plus the number of vertices is equal to two.

The fires which ravaged the library of Alexandria are disastrous events in the history
of mathematical analysis. Those books salvaged by Muslim scholars leave an incomplete
record of Greek achievement. The theorem that every positive integer is the sum of four
squares is not found in any surviving book of Diophantus. Yet the conditions stated for the
representation as a sum of two squares presume a knowledge of the general representation.
The mathematical contributions of Fermat are stimulated by the desire to recover and
continue such classical knowledge. His problem of finding positive integers a, b, and c such
that

an + bn = cn

for a positive integer n challenged subsequent generations of analysts. The infinitessimal
calculus is however his most original contribution to mathematical analysis.

Although the logical skills required for mathematical analysis clearly require a special
education, there is no agreement about what its content should be. Examples of a successful
mathematical education are instructive for those who desire to nurture mathematical talent
in themselves and in others. Pascal received an exceptional education because his mother
died before he reached school age. His father personally taught him the reading and writing
skills of a traditional curriculum aimed at an understanding of current political, social, and
religious structures in a historical perspective. When he was twelve, he learned about the
nature and purpose of a discipline called geometry. Curiosity stimulated him to attempt
his own implementation of that purpose. Only then did his father supply him with Euclid’s
Elements. At that time there already existed in Paris learned societies for the presentation
of scientific work. The contributions of Pascal were well received initially because they
contain new arguments in support of known results and eventually because the results
themselves are new. Memorable contributions are combinatorial principles which underlie
the binomial theorem and the calculus of finite differences. The education of Blaise Pascal
is described with loving care by his sister Jacqueline in the preface to his Pensées. An
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illuminating portrait of her by the court artist Philippe de Champaigne is preserved in
the museum on the site of the ancient Abbaye de Port–Royal–des–Champs. It becomes
clear that her dedication as a Jansenist nun was a major ingredient in the success of her
brother’s education.

The revival of mathematical analysis in the Renaissance relies on foundations which
were discovered in ancient times and which are formalized in modern times. The geometric
concept of a line is implemented by an algebraic structure which is now called a field.

The elements of a field can be added and multiplied to produce elements of the field. If
a and b are elements of a field, a unique element

c = a+ b

is defined as the sum of a and b. Addition satisfies the commutative law

a+ b = b+ a

and the associative law
(a+ b) + c = a+ (b+ c).

If a and b are elements of a field, the equation

c+ a = b

admits a unique solution c in the field. The origin is a unique element 0 which satisfies
the identity

0 + c = c

for every element c of the field.
If a and b are elements of a field, a unique element

c = ab

is defined as the product of a and b. Multiplication satisfies distributive laws

c(a+ b) = ca+ cb

and
(a+ b)c = ac+ bc.

Multiplication satisfies the commutative law

ab = ab

and the associative law
(ab)c = a(bc).

If a and b are elements of a field with b nonzero, the equation

cb = a

admits a unique solution
c = a/b
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in the field. The unit is the unique element 1 of the field which satisfies the identity

1c = c

for every element c.
The rational numbers, which are ratios a and b with a and b integers of which b is

nonzero, are a field with the generally accepted definitions of addition and multiplication.
The concept of a field is useful in explaining that there are related real numbers having
the field properties and that they are essential to the description of points on a line. This
information was not new in the Renaissance but received its first major applications then.

A dynamical contribution of Isaac Newton (1642–1729) to mathematical analysis is to
treat the origin of Cartesian coordinates as a center surrounded by the trajectories of mov-
ing particles. Momentum is introduced as a concept which resembles position since it lies in
a space isomorphic to Cartesian space. Momentum is observable by its action on position.
The motion of a particle is formulated as a voyage in time through a phase space which
is composed of Cartesian space and momentum space. Implicit are mappings of phase
space into itself which are defined by the motion of particles in time. An evolution of the
infinitessimal calculus is required for a solution of the equations of motion. Newton applies
a limiting case of the calculus of finite differences. The application to planetary motion
owes its success to the understanding of Cartesian space obtained from the equations of
motion.

Applications of the infinitessimal calculus are typical of subsequent research results
submitted to national scientific academics. A fundamental treatment of the propagation
of light was presented by Christian Huygens (1629–1695) to the Académie des Sciences.
An infinite product of rational numbers converging to the area π enclosed by a unit circle
was presented by John Wallis (1616–1703) to the Royal Academy. An infinite sum of
rational numbers converging to π was discovered by Wilhelm Leibnitz (1646–1716), a
member of both academies who founded a predecessor of the Preussische Akademie der
Wissenschaften. Infinite series whose sums are products representing π were discovered
by Jakob Bernoulli (1654–1705). Applications of the infinitessimal calculus which underlie
computations of π were explored by Johann Bernoulli (1667–1748).

Complex analysis originates in the discovery of Abraham de Moivre (1667-1754) that the
complex plane is a field acceptable as domain of definition for polynomials and functions
represented by power series. The exponential function of a complex variable combines the
sine and cosine functions of a real variable with the exponential function of a real variable
to parametrize the complex plane in polar coordinates.

The Newton interpolation polynomials in the calculus of finite differences are motivating
special cases of hypergeometric functions discovered by Leonard Euler (1707–1783). The
gamma function appears in 1729 as an infinite limit of Newton polynomials. The classical
zeta function is discovered in 1737 by analogy of its Euler product to the infinite product
for the gamma function. The functional identity for the zeta function is obtained in 1761
by a calculation with hypergeometric series.

Mathematical analysis was subsidized during the Enlightenment by absolute rulers who
applied the resources of emerging nations to the perceived needs of the governed. Catherine
the Great in Petersburg and Frederick the Great in Potsdam followed the example of
Louis XIV in Versailles by maintaining courts as centers of cultural, artistic, and scientific
activity. Leonard Euler was one of many contributors to scientific knowledge who benefited
from this support.

A derivation of the Newtonian equations of motion by minimizing an integral of the
action of momentum on position was made by Jean le Rond d’Alembert (1717–1783).
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The nonexistence of solutions of the Fermat equation for exponent three was proved
by Comte Louis de Lagrange (1736–1813). The result is an application of the Euclidean
algorithm for the field obtained by adjoining a square root of three to the rational numbers.
The algorithm determines solutions of the equation

a3 + b3 = rc3

in positive integers a, b, and c when r is a given positive integer.
The French Revolution delayed appreciation of Lagrange’s most significant contribution.

A theorem which is attributed on indirect evidence to Diophantus states that every positive
integer is the sum of four squares of integers. If he left a proof in the library of Alexandria,
it was one of the many losses caused by fire. The first known proof was obtained by
Lagrange.

The algebra of the proof is clarified by the quaternions of Rowan Hamilton (1805–1865).
Students of the infinitessimal calculus learn about quaternions as vectors. A vector space
is defined over a coefficient field. Vectors can be added to vectors to produce vectors.
Vectors can be multiplied by elements of the field to produce vectors.

If a and b are vectors, a unique vector

c = a+ b

is defined as the sum of a and b. Addition satisfies the commutative law

a+ b = b+ a

and the associative law
(a+ b) + c = a+ (b+ c).

If a and b are vectors, the equation
c+ a = b

admits a unique vector solution c. The origin is the unique vector 0 which satisfies the
identity

0 + c = c

for every vector c.
If a is a vector and if b is an element of the field or if a is an element of the field and if

b is a vector, a unique vector
c = ab

is defined as the product of a and b. Multiplication satisfies the distributive laws

c(a+ b) = ca+ cb

and
(a+ b)c = ac+ bc

whenever the products are meaningful. Multiplication satisfies the commutative law

ab = ba

and the associative law
(ab)c = a(bc)
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whenever the products are meaningful. If a is a vector and if b is a nonzero element of the
field, the equation

cb = a

admits a unique vector solution
c = a/b.

The unit 1 of the field satisfies the identity

1c = c

for every vector c.
A skew–field is constructed when a field admits no representation

0 = a2 + b2 + c2 + d2

of zero with elements a, b, c, and d which are not all zero. The skew–field is a vector space
of dimension four over the field which is spanned by elements i, j, k, and 1. Products are
defined by the multiplication table

ij = k, jk = i, ki = j,

ji = −k, kj = −i, ik = −j,
ii = −1, jj = −1, kk = −1.

If a and b are elements of the skew–field, a unique element

c = ab

is defined as the product of a and b. Multiplication satisfies the distributive laws

c(a+ b) = ca+ cb

and
(a+ b)c = ac+ bc.

Multiplication satisfies the associative law

(ab)c = a(bc).

If a and b are elements of the skew–field with b nonzero, the equation

cb = a

admits a unique solution
c = a/b

in the skew–field. The unit is the unique element 1 of the skew–field which satisfies the
identity

1c = c

for every element c.



APOLOGY 7

The noncommutative nature of multiplication is compensated by conjugation, an anti–
automorphism c into c− which takes i into −i, j into −j, k into −k, and 1 into 1. The
identity

(ab)− = b−a−

holds for all elements a and b of the skew–field. A self–conjugate element c of the skew–field
is an element of the field since it satisfies the identity

c− = c.

A skew–conjugate element c of the skew–field satisfies the identity

c− = −c.

An element of the skew–field is the unique sum of a self–conjugate element and a skew–
conjugate element. Multiplication as taught in the calculus decomposes a product into
self–conjugate and skew–conjugate components.

The Euclidean algorithm applied by Lagrange in the proof of the Diophantus theorem
is clarified by Adolf Hurwitz (1859–1919). A skew–field is constructed from the field of
rational numbers. An element

ξ = d+ ia+ jb+ kc

of the skew–field is defined as integral if the coordinates a, b, c and d are all integers or if
they are all halves of odd integers. A positive integer n is a sum of four squares of integers
if, and only if, it admits a representation

n = ξ−ξ

with ξ an integral element of the skew–field.
Sums and products of integral elements are integral. The conjugate of an integral

element is integral. The product of a nonzero integral element with its conjugate is a
positive integer. The Euclidean algorithm is a search for an integral element which succeeds
because a nonempty set of positive integers contains a least element. The search is made in
the nonzero elements of a right ideal of integral elements. A right ideal is a set of integral
elements which contains the origin, which contains the sum of any two elements, and which
contains the product ab of an element a with every integral element b of the skew–field.
If a nonzero element a of the ideal minimizes a−a, then every element of the ideal is a
product ab with an integral element b of the skew–field.

An estimate of the number of primes which are less than a given positive number was
made by Adrien Marie Legendre (1752–1833). The Riemann hypothesis is a conjecture
which treats the accuracy of the estimate.

The Enlightenment is notable not only for the advancement of science but also for the
dissemination of information. An Encyclopédie des Sciences, des Arts, et des Métiers
supplied the needs of critical readers. The Encyclopedia Britannica was created as an
equivalent in the English language. When publication of the original encyclopedia ceased
in the French Revolution, its successor continued with informative articles on mathematical
analysis.

Fourier analysis in the decomposition of a function which is subject to symmetries into
elementary functions which exhibit these symmetries. The techniques of Joseph Fourier
(1768–1830) implement this purpose by a relaxation of the accepted concept of function.
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A function treated by Fourier need not be defined prior to analysis. It is reconstructed
indirectly by a determination of its symmetric components.

Fourier analysis introduces a new perception of orbital motion. The Newtonian equa-
tions of motion determine the orbits of an isolated particle. In Fourier analysis all orbits
of the particle are treated with no preconception as to which is occupied. Some spacial
variable is chosen to measure the probability that the particle has a given position at a
given time.

Fourier illustrates the method in his treatment of heat flow. The mechanism for trans-
porting energy is irrelevant to his analysis. Temperature is observed as a function of
position and time. A differential equation is proposed which is generally accepted as cor-
rect. Heat flow is distinct from previous treatments of motion since energy is lost in the
process. A conflict with the law of conservation of energy is circumvented by declaring
that not all energy is observed.

The differential equation for the flow of heat admits a solution which was previously
introduced in celestial mechanics by Pierre Simon Marquis de Laplace (1749–1827). In the
present application the Laplace transformation supplies a spectral analysis of the infinites-
simal generator of heat flow. The infinitessimal generator is a differential operator which
is converted by the Laplace transformation into a multiplication operator.

The Laplace transformation is fundamental to Fourier analysis because of its intimate
relationship to the Fourier transformation. In applications to orbital motion the Fourier
transformation acts on functions of position to produce functions of momentum. The
Laplace transform of a function and the Laplace transform of its Fourier transform are
easily computed from each other. This procedure is commonly employed in computations
of Fourier transforms.

The applications of the Laplace transformation in Fourier analysis demonstrate the fun-
damental nature of heat flow. An insight into the nature of the Laplace transformation is
supplied by Johann Radon (1887–1956). The Radon transformation formally factors the
Fourier transformation for a plane as a composition with the Fourier transformation for a
line. The Laplace transformation supplies a spectral analysis of the Radon transformation.
Since the Laplace transformation supplies a spectral analysis for the infinitessimal gener-
ator for the flow of heat, a relationship is found between the Radon transformation and
the infinitessimal generator for the flow of heat. The Radon transformation is formally the
inverse of the infinitessimal generator in the flow of heat.

An appreciation of the fundamental nature of heat flow is gained through its relationship
to the Radon transformation. If a space has the additive and topological properties which
permit Fourier analysis, then the Cartesian product of the space with itself also has these
properties. A Radon transformation relates Fourier analysis on the space with Fourier
analysis on the Cartesian product. Heat flow is therefore a general phenomenon in Fourier
analysis which competes in importance with the Fourier transformation. This observation
underlies the proof of the Riemann hypothesis.

An application of the Fourier transformation which discovers unexpected properties of
the real line is due to Denis Poisson (1781–1840). The Poisson formula states that the sum
of the values of an integrable function at the integers is equal to the sum of the values of
its Fourier transform at the integers when the Fourier transform is integrable and Fourier
inversion applies. The Poisson formula implies the functional identity for the Euler zeta
function.

Linear analysis is an aspect of mathematical analysis with applications in Fourier analy-
sis. The functions treated by Fourier analysis belong to vector spaces and are subjected to
linear transformations of which the Fourier transformation is a fundamental example. The
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treatment of linear transformations is difficult even in spaces of finite dimension without
a determination of invariant subspaces. A major contribution of Carl Friederich Gauss
(1777–1855) is a construction of invariant subspaces for linear transformations of a vector
space of finite dimension over the complex numbers into the same space. An invariant
subspace is constructed in every dimension which admits a subspace. The invariant sub-
spaces obtained are nested. If r is a positive integer, the integers modulo r inherit from the
integers the additive structure permitting Fourier analysis. The topology of the finite set
is discrete. The canonical measure assigns to every subset the number of its elements. The
functions with complex values which are defined on the integers modulo r form a vector
space of dimension r which is mapped linearily into itself by the Fourier transformation.

The Fourier transformation for the integers modulo r is more elementary than the
Fourier transformation for a line since it is defined by a finite sum. The Laplace transfor-
mation for the integers modulo r is applied by Gauss to compute Fourier transforms. The
Radon transformation decomposes the space of square integrable functions into orthogonal
eigenfunctions with positive eigenvalues. An application given by Gauss is a proof of the
Legendre law of quadratic reciprocity.

The polynomials of degree less than r form a vector space of dimension r to which
another application of invariant subspaces is made. Gaussian quadrature evaluates a non-
negative linear functional on polynomials, which is defined by integration on the real axis,
as a sum over a finite set of real numbers determined as the zeros of a polynomial of degree
r. Polynomials of degree r suitable for Gaussian quadrature are constructed from the hy-
pergeometric series, a generalization due to Euler of the Newton interpolation polynomials.
Gaussian quadrature competes with prior results of Legendre as does the Gauss estimate
for the number of primes with a given bound.

The representation of functions by power series is so useful as to serve effectively as a
definition of a function in complex analysis. An analytic function is defined as one which
is locally represented by power series. A fundamental theorem of complex analysis is due
to Augustin Cauchy (1789–1859). A function f(z) of z in a plane region is analytic if, and
only if, the function

[f(z)− f(w)]/(z − w)

of z is continuous in the region for every element w of the region when suitably defined at
w. The value at w defines the derivative at w in the sense of complex analysis. The Cauchy
formula, on which the characterization depends, states that the integral of a differentiable
function over a closed curve of finite length is equal to zero. The clarification of hypotheses
for the Cauchy formula assigns a purpose to complex analysis.

A theorem of Camille Jordan (1838–1921) states that a simple closed curve divides the
complex plane into a bounded region and an unbounded region. A necessary condition for
the validity of the Cauchy formula is differentiability in the bounded region. A sufficient
condition is observed by Bernhard Riemann (1826–1866). A Riemann mapping function
is a function which is analytic in the unit disk and which defines an injective mapping of
the disk. The Cauchy formula is valid when the bounded region is the image of the unit
disk under a Riemann mapping function.

Complex analysis explores the complex plane by methods applied by Newton to Carte-
sian space. The simple closed curves of complex analysis are treated as the paths of moving
particles. The plane regions generated minimize an integral discovered by Lejeune Dirichlet
(1805–1859). The Dirichlet principle is an analogue for the plane of the Alembert principle
for Cartesian space.

The properties of Dirichlet integrals led Riemann to state on inadequate proof that
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every plane region bounded by a simple closed curve is the image of the unit disk under
a Riemann mapping function. The proof given by Hermann Schwarz (1843–1921) applies
an estimation theory for functions analytic and bounded by one in the unit disk. The
interpolation theory of functions analytic and bounded by one in the unit disk obtained
by Léopold Fejér (1880–1959) and Frédéric Riesz (1880–1956) is a systematic application
of the initial Schwarz lemma which is given a definitive formulation by Issai Schur (1875–
1942).

A related estimation theory for Riemann mapping functions originates with Ludwig
Bieberbach (1886–1982). The Bieberbach conjecture states that the coefficients of a Rie-
mann mapping function

c0 + c1z + c2z
2 + . . .

satisfy the inequality
|cn| ≤ n

for every nonnegative integer n if the inequality is satisfied when n is zero and when n
is one. The elementary proof given by Bieberbach for the second coefficient permits a
simplified proof of the Schwarz theorem. The proof of the Bieberbach conjecture for the
third coefficient by Karl Löwner (1893–1968) parametrizes Riemann mapping functions
generated by the paths of moving particles issuing from the origin. The proof of the
Bieberbach conjecture for all coefficients obtained in 1984 by the author of the apology
applies the Löwner parametrization in conjunction with a variant of the Schur theory due
to Helmut Grunsky (1904–1986).

The Euler zeta function is constructed in Fourier analysis on the real line by Carl Jacobi
(1804–1851). The construction is an application of the Laplace transformation for the line
as it appears in the treatment of heat flow in the plane by Fourier. A compactification
of the line is implicit since the flow of heat is confined to a horizontal strip of width one.
The theta function is a sum of translates of the Laplace kernel for the line which produces
a function periodic of period one. The theta function permits a treatment of heat flow
in the strip which adapts the treatment of Fourier in the plane. The Poisson summation
formula implies a functional identity for the theta function which has no analogue for the
Laplace kernel in the plane. The Euler zeta function and its functional identity are derived
from the Jacobi theta function and its functional identity by the Mellin transformation,
obtained by change of variables from the Fourier transformation for the line.

A new interpretation of hypergeometric series is required for the properties of the theta
function. Hypergeometric series are treated by Gauss as formal power series which are so-
lutions of differential equations of second order with quadratic coefficients. The coefficients
of hypergeometric series satisfy recurrence relations familiar from the binomial formula.
Special functions appearing in Fourier analysis on the real line or the complex plane are
expressible in hypergeometric series. In applications made by Jacobi the hypergeometric
series is treated by the represented function. Hypergeometric functions have ambiguous
values since analytic continuation is applied for their definition.

Dirichlet zeta functions are constructed from Fourier analysis on the complex plane as a
generalization of the construction made by Jacobi for the Euler zeta function. The Gauss
determination of invariant subspaces for the Fourier transformation on the integers modulo
r prepares the concept of a character modulo r. A Dirichlet theta function is a sum of
translates of the Laplace kernel for the line which produces a function periodic of period
r determined by a character modulo r. The methods of Fourier are applied to the flow of
heat in a horizontal strip of width r. The Poisson summation formula implies a functional
identity for a Dirichlet theta function. Dirichlet zeta functions are obtained by the Mellin
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transformation from Dirichlet theta functions. A Dirichlet zeta function admits an Euler
product and functional identity similar to the Euler product and functional identity for
the Euler zeta function. Dirichlet zeta functions apply to Fourier analysis on cyclotomic
fields and supply estimates of the number of primes in an arithmetic progression which
have a given bound.

The Riemann hypothesis is a conjecture about the zeros of the Euler zeta function which
permits an application of the Cauchy formula to the counting of primes with a given bound.
The estimates due to Legendre and Gauss are deficient without an estimate of error. The
Euler product denies zeros in a half–plane of convergence. Zeros are denied in a symmetric
half–plane by the functional identity. A critical strip remains in which no information
about zeros is obtained. The critical line divides the critical strip into symmetric halves.
The Riemann hypothesis is the conjecture that the zeros of the Euler zeta function in the
critical strip lie on the critical line. Proofs that the Euler zeta function has no zeros on the
boundary of the critical strip are due independently to Jacques Hadamard (1865–1963) and
Charles de la Vallée–Poussin (1866–1962). The result confirms the Gauss and Legendre
estimates as asymptotically correct. The Riemann hypothesis improves the accuracy of
estimates.

The application of the Cauchy formula is made by Riemann to entire functions which
are not polynomials. The real axis is treated as boundary of the upper half–plane. A
limiting case of the Cauchy formula is applied since the upper half–plane is an unbounded
region.

The application of the Cauchy formula to entire functions is clarified by Charles Hermite
(1822–1909). The hypothesis of a zero–free upper half–plane for an entire function E(z)
is strengthened by the inequality

|E(z−)| ≤ |E(z)|

when z is in the upper half–plane. The inequality is strict when the functions E(z) and

E∗(z) = E(z−)−

are linearly independent. A polynomial satisfies the inequality if it has no zeros in the
upper half–plane. Hermite obtains a factorization for entire functions which are limits of
polynomials having no zeros in the upper half–plane.

A linear functional on polynomials is said to be nonnegative if it has nonnegative values
on polynomials whose values on the real axis are nonnegative numbers. A theorem of
Thomas Stieltjes (1856–1894) represents a nonnegative linear functional on polynomials as
a Stieltjes integral on the real line. A determination is made of all integrals which represent
the linear functional. The axiomatic treatment of integration applies the Hermite theory
of polynomials having a zero–free half–plane and justifies the Riemann application of the
Cauchy formula.

The Stieltjes representation of nonnegative linear functionals is applied by David Hilbert
(1862–1943) to the construction of invariant subspaces for continuous linear transforma-
tions of a Hilbert space into itself. An isometric transformation of a Hilbert space into
itself, which is not a scalar multiple of the identity transformation, admits a closed invari-
ant subspace, other than the smallest subspace and the largest subspace, which is also an
invariant subspace for every continuous linear transformation which commutes with the
given transformation. Hilbert interprets the Riemann hypothesis as the construction of a
transformation to which the invariant subspace theory applies.
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The Hilbert spaces in which the invariant subspace theory of isometric transformations
is formulated are not immediately applicable to the Riemann hypothesis because of their
distant relationship to complex analysis. Hilbert spaces whose elements are functions
analytic in the upper half–plane are introduced in Fourier analysis by Godfrey Hardy
(1877–1947). The Fourier transform of a function which is square integrable on the real
line and which vanishes on the negative half–line is a function which admits an analytic
extension to the upper half–plane. The Hardy space of functions analytic in the upper
half–plane characterizes Fourier transforms. The elements of the space are the analytic
functions f(z) of z in the upper half–plane for which the least upper bound

‖f‖2 = sup

∫ +∞

−∞
|f(x+ iy)|2dx

taken over all positive numbers y is finite. Weighted Hardy spaces are applied in the
proof of the Riemann hypothesis. An analytic weight function is a function W (z) which
is analytic and without zeros in the upper half–plane. Multiplication by W (z) acts as an
isometric transformation of the Hardy space onto a weighted Hardy space. If w is in the
upper half–plane, multiplication by

(z − w)/(z − w−)

is an isometric transformation of a weighted Hardy space into the same space. The trans-
formation fails to have an everywhere defined isometric inverse since its range is the set of
elements of the weighted Hardy space which vanish at w.

Functions analytic in the upper half–plane or in the lower half–plane are applied by
Torsten Carleman (1892–1949) in the Fourier analysis of functions of a real variable whose
Fourier transform is not defined by an integral. The Carleman method is applied to entire
functions. The application requires estimates which are special to Fourier analysis. A
theorem of Carleman states that the minimum modulus of two nonconstant entire functions
cannot remain bounded in the complex plane when the functions have less than exponential
growth. The proof applies a potential theory of subharmonic functions.

The transition from spaces of functions analytic in a half–plane to spaces of entire
functions is made in Fourier analysis by Norbert Wiener (1894–1964). Since his prediction
theory applies Fourier analysis in a time variable, functions analytic in the upper half–plane
describe future time whereas functions analytic in the lower half–plane describe past time.
Entire functions apply to a finite time segment. The construction of invariant subspaces by
factorization of analytic functions is a technique fundamental to prediction theory. Since
analytic functions with matrix values are factored, the construction of invariant subspaces
prepares an existence theorem for invariant subspaces of continuous linear transformations
of a Hilbert space into itself.

The proof of the existence of invariant subspaces for a continuous linear transformation
of a Hilbert space into itself prepares the proof of the Riemann hypothesis by introducing
techniques for the construction and application of Hilbert spaces whose elements are func-
tions analytic in the unit disk. The proof announced in joint work with James Rovnyak,
Bulletin of the American Mathematical Society 70 (1964), 718–721, contains a gap which
is filled when a plausible conjecture is shown true. Although more than forty years were
required to prove the conjecture, the proof is a consequence of information available when
the conjecture was made.

Hilbert spaces whose elements are entire functions are implicit in the Stieltjes integral
representation of nonnegative linear functionals on polynomials. Although the Stieltjes
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spaces have finite dimension, spaces of infinite dimension are accessible by approximation.
He might have explored the properties of spaces of infinite dimension had his career not
been ended prematurely by death from tuberculosis.

It remained for Wiener to construct the first interesting examples of Hilbert spaces of
entire functions of infinite dimension. The interest of the spaces lies in properties due to the
context of Fourier analysis in which they originate. The proof of the Riemann hypothesis
is a search for structure in Hilbert spaces of entire functions. The Hilbert spaces of entire
functions which appear in Fourier analysis are the simplest examples of spaces having the
special properties applied in the proof of the Riemann hypothesis. The spaces are invariant
under the shift which takes an entire function F (z) into the entire function F (z + ih) for
a positive number h. The resulting transformation is self–adjoint and nonnegative. These
properties characterize special spaces of Fourier analysis. A weakening of hypotheses is
made in the proof of the Riemann hypothesis.

The transition from finite to infinite dimensional Hilbert spaces of entire functions is
facilitated by an interpretation derived from the Newtonian equations of motion. Motion
of a particle in one dimension is instructive as preparation for motion in Cartesian space.
A vibrating string is the classical model of motion constrained to one dimension. The
Hilbert spaces of entire functions which appear in the Stieltjes integral representation of
nonnegative linear functionals on polynomials describe dynamical systems which include
strings. When the string is accepted as model, the string is initially a chain of masses
held together by springs. The transition to Hilbert spaces of entire functions of infinite
dimensions permits a continuous distribution of masses. A structural analysis of Hilbert
spaces of entire functions results which is made by Mark Krein (1907–1989).

The structure of Hilbert spaces of entire functions can be described without reference
to dynamical systems. Hilbert spaces of entire functions appear in totally ordered families.
The typical structure is illustrated by the Hilbert spaces of entire functions appearing in the
Stieltjes integral representation of a nonnegative linear functional on polynomials. Each
Hilbert space has finite dimension r for a positive integer r and consists of the polynomials
of degree less than r. Any two Hilbert spaces appearing are comparable in the sense that
one is contained isometrically in the other. Since the scalar product of a Hilbert space is
nondegenerate, a greatest positive integer r may exit for which an associated Hilbert space
of entire functions exists. If a Hilbert space exists for some positive integer, then it exists
for every smaller positive integer.

An analogous chain of Hilbert spaces of entire functions is constructed for any given
Hilbert space of entire functions. The chain of spaces is in general continuous. The entire
functions which belong to the spaces need not be polynomials. There need be no smallest
member of the chain. The Hilbert spaces of entire functions appearing in Fourier analysis
illustrate the structure of spaces of infinite dimension. Krein conjectured but did not prove
the uniqueness of the chain of Hilbert spaces of entire functions contained in a given space.

A finite set is characterized by the surjective property of injective transformations of
the set into itself. The existence of sets which are not finite is recognized as a hypothesis
of mathematical analysis. The set of nonnegative integers is a generating example of
an infinite set. The counting transformation, which takes each nonnegative integer into
its successor, is an injective transformation of the set into itself which is not surjective
since the origin is not the successor of a nonnegative integer. The expected properties
of nonnegative integers are derived from a systematic application of the properties of the
counting transformation by a process called induction. Invariance is a concept implicit in
the formulation of induction. A set of nonnegative integers is said to be invariant under
the counting transformation if it contains the successor to every nonnegative integer which
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it contains. Induction states that an invariant set contains all nonnegative integers if it
contains the origin.

A general formulation of induction is indicated by the observation of Georg Cantor
(1845–1918) that a set has more subsets than it has elements. The class of all subsets of a
set is accepted as a set whose elements are the subsets of the given set. No transformation
of a set into the class of its subsets is surjective. If a transformation J maps a set S into
the class of all subsets of S, then a subset S∞ of S is constructed which is not equal to
Js for an element s of S. The construction of the set is an application of invariance. An
element s of S belongs to S∞ if no elements sn of S can be chosen for all nonnegative
integers n such that s0 is equal to s and such that sn belongs to Jsn−1 when n is positive.
An element s of S belongs to S∞ if, and only if, Js is contained in S∞.

The cardinality of a set is a concept of size which is adapted to uncountable sets. The
cardinality of set A is said to be less than or equal to the cardinality of set B if an injective
transformation exists of A into B. If the cardinality of A is less than or equal to the
cardinality of B and if the cardinality of B is less than or equal to the cardinality of A,
then an injective and surjective transformation of A to B exists. Sets A and B are said to
have equal cardinality.

Effective analysis requires that arbitrary sets A and B are comparable in cardinality.
Either the cardinality of A is less than or equal to the cardinality of B or the cardinality
of B is less than or equal to the cardinality of A. This evident property of countable
sets is accepted as a hypothesis of mathematical analysis. The condition is formulated in
an equivalent way as the axiom of choice. If a transformation T of set A into set B is
surjective, then a transformation S of B into A exists such that the composition TS is
the identity transformation on B. For every element b of B the transformation selects an
element

a = Sb

of A such that

b = Ta.

Although the axiom of choice is appealing in simplicity, an equivalent formulation is
preferred in applications. A set S is said to be partially ordered if the assertion a is less
than or equal to b is meaningful for some elements a and b and has these properties: Every
element of the set is less than or equal to itself. Element a is less than or equal to element
c if a is less than or equal to b and b is less than or equal to c for some element b. Elements
a and b are equal if a is less than or equal to b and b is less than or equal to a. A partially
ordered set S is said to be well–ordered if every nonempty subset contains a least element.
The set of nonnegative integers is well–ordered in the ordering defined by the counting
transformation. The inequality a less than or equal to b for nonnegative integers a and b
means that every invariant set of nonnegative integers which contains a contains b.

The Kuratowski–Zorn lemma is an equivalent formulation of the axiom of choice. A
maximal element of a partially ordered set is an element for which no greater element
exists. A partially ordered set contains a maximal element if an upper bound exists
for every subset whose inherited partial ordering is a well–ordering. The proof of the
Kuratowski–Zorn lemma from the axiom of choice constructs a well–ordered subset whose
only upper bound lies in the subset.

The construction by Richard Dedekind (1831–1916) of the real numbers from the ra-
tional numbers prepares an application of the Kuratowski–Zorn lemma. Convexity is an
underlying concept of the construction. A set of rational numbers is said to be preconvex
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if it contains

a(1− t) + bt

whenever it contains a and b if t is a nonnegative rational number such that 1 − t is
nonnegative. The closure of a nonempty preconvex set B of rational numbers is the set
B− of rational numbers a such that the set whose elements are a and the elements of B
is preconvex. The empty set is a preconvex set whose closure is defined to be itself. The
closure of a preconvex set of rational numbers is a preconvex set of rational numbers whose
closure is itself. A preconvex set of rational numbers is said to be open if it is disjoint from
the closure of every disjoint preconvex set. The intersection of two open preconvex sets is
an open preconvex set. A set of rational numbers is said to be open if it is a union of open
preconvex sets. A set of rational numbers is said to be closed if its complement is open.
A preconvex set is closed if, and only if, its closure is equal to itself.

The Dedekind construction of the real numbers is based on an evident property of open
preconvex sets of rational numbers. If a nonempty open preconvex set A is disjoint from a
nonempty preconvex set B, then A is contained in an open preconvex set which is disjoint
from B and whose complement is preconvex. A real number which is not rational is
determined by every nonempty open preconvex set whose complement is a nonempty open
preconvex set. A similar construction of open sets and closed sets is made in any space
in which convexity is meaningful. The Kuratowski–Zorn lemma is applied to prove the
existence of open convex sets whose complement is convex. A formulation of the Hahn–
Banach theorem due to Marshall Stone (1903–1989) states that a nonempty open convex
set A which is disjoint from a nonempty convex set B is contained in an open convex set
which is disjoint from B and whose complement is convex.

Topology is an underlying concept in the proof of the Riemann hypothesis. Topology
is encountered at the most elementary level in the Dedekind construction of real numbers
from rational numbers. The topology of the real line is the structure given to it by its
open subsets or equivalently by its closed subsets. This structure, which is derived from
convexity, facilitates the transition from numbers which have a clear construction from in-
tegers to numbers which defy a comparable description in finite terms. Topology elucidates
properties which are essential to analysis.

An axiomatization of topology is due to Felix Hausdorff (1868–1942). A topology is
defined on a set by prescribing a class of open subsets or equivalently a class of closed sets
which are the complements of open sets. Unions of open sets are assumed to be open and
intersections of closed sets are assumed to be closed. Finite intersections of open sets are
assumed to be open and finite unions of closed sets are assumed to be closed. A Hausdorff
space is a set, for which open and closed sets are defined, such that distinct elements are
contained in disjoint open sets.

The Hausdorff axiomatization of topology is a discovery of structure. The Dedekind
topology of the rational numbers, which underlies the construction of the real numbers,
has a good relationship to the additive structure of the rational numbers. This property of
the topology permits the real numbers to acquire an additive structure. The relationship of
topology to additive structure is expressed in the continuity of addition, a transformation
which takes pairs (a, b) of rational numbers into rational numbers a + b. The Cartesian
product of the set of rational numbers with itself, which is the set of pairs (a, b) of rational
numbers, acquires a topology from the Dedekind topology of the rational numbers. The
topology of the Cartesian product space is defined using the coordinate projections (a, b)
into a and (a, b) into b of the Cartesian product space onto the rational numbers. An open
subset of the Cartesian product space is defined as a union of basic open subsets. A basic
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open subset of the Cartesian product space is defined by open subsets U and V of the set
of rational numbers and consists of the pairs (a, b) such that a belongs to U and b belongs
to V . The Cartesian product space is a Hausdorff space in the Cartesian product topology.
Continuity of addition means that for every open subset U of the set of rational numbers,
the set of pairs (a, b) of the Cartesian product space such that a+ b belongs to U is open.

Examples of Hausdorff spaces are obtained when the space admits a sufficiently large
class of sets which are both open and closed. The condition states that every open set is
a union of sets which are both open and closed and every closed set is an intersection of
sets which are both open and closed. A set is described by its characteristic function, a
function which has value one on the set and which has value zero elsewhere. The properties
of sets which are both open and closed are revealed by treating the characteristic function
as having values in the integers modulo two. The unique Hausdorff topology of the integers
modulo two is the discrete topology, for which every subset is both open and closed. The
characteristic functions of sets which are both open and closed are the continuous functions
with values in the integers modulo two.

The characteristic functions of sets form an algebra over the field of integers modulo two.
The addition of the characteristic functions of sets A and B is the characteristic function of
the set whose elements belong to the union of A and B but not to their intersection. The
multiplication of the characteristic functions of sets A and B is the characteristic function
of the intersection of A and B. The function which is identically zero is the characteristic
function of the empty set. The function which is identically one is the characteristic
function of the full space.

The rational numbers admit topologies, other than the Dedekind topology, which are
compatible with additive structure. These topologies are initially defined on the integers
but extend to the rational numbers because they are compatible with multiplicative struc-
ture. The construction of topologies applies a determination of ideals of integers resulting
from the Euclidean algorithm.

An example of an ideal is constructed from a positive integer r as the set of integers
which are divisible by r. The quotient space of integers modulo r contains r elements which
are represented by the nonnegative integers less than r. The addition and multiplication
of integers modulo r resembles the addition and multiplication of integers when these
representatives of equivalence classes are chosen. Integers which are divisible by r are
discarded so as to maintain the same representatives in equivalence classes. An ideal of
integers which contains a nonzero element contains a least positive element. If b is the
least positive element of the ideal and if a is an integer, then an integer c exists such that

a− bc

is a nonnegative integer less than b. When a belongs to the ideal,

a− bc = 0

since a − bc is an element of the ideal. The ideal is the set of integers which are divisible
by b.

A topology for the integers results from the computation of the ideals of integers. The
quotient space of the integers modulo a nontrivial ideal is a finite set which inherits addition
and multiplication from the integers. A finite set admits a unique topology, the discrete
topology, with respect to which it is a Hausdorff space. Every subset is both open and
closed with respect to this discrete topology. Addition and multiplication are continuous
as transformations of the Cartesian product of the set with itself into the set.
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The adic topology of the integers is defined by the requirement of continuity of the
projection into the quotient space modulo every nontrivial ideal. An example of a set
which is open and closed is constructed from a nontrivial ideal and a subset A of the
quotient space modulo the ideal. The open and closed set contains the integers which
project into an element of A. The class of open and closed sets is closed under finite
unions and finite intersection. A set is open if it is a union of open and closed sets. A set
is closed if it is an intersection of open and closed sets.

If r is a positive integer, multiplication by r is an injective transformation of integers
into integers. The image of the integers under the transformation is the ideal of integers
which are divisible by r. The ideal is an open and closed set for the adic topology. The
transformation maps every open set for the adic topology onto an open set for the adic
topology. A set of integers is open for the adic topology if the transformation maps it onto
an open set for the adic topology.

The adic topology of the rational numbers is derived from the adic topology of the
integers. A set A of rational numbers is open for the adic topology if for every positive
integer r the set of integers which are products ra with a in A is open. A set B of rational
numbers is closed for the adic topology if for every positive integer r the set of integers
which are products rb with b in B is closed. The rational numbers are a Hausdorff space
in the adic topology. Addition is continuous as a transformation of the Cartesian product
of the space of rational numbers with itself into the space of rational numbers when the
rational numbers are given the adic topology. Multiplication by a rational number is
a continuous transformation of the space of rational numbers into the space of rational
numbers when the rational numbers are given the adic topology. The adic line is the
Cauchy completion of the rational numbers in the uniform adic topology.

Fourier analysis differs from Newtonian analysis in the manner of collecting information.
The properties of space are discovered in both cases by the motion of particles in time
which constructs mappings of space into itself. In Fourier analysis functions of motion
are observed rather than the position of particles as in Newtonian analysis. The original
application of Fourier analysis is made to the flow of heat.

Although functions are as fundamental to Newtonian analysis as they are to Fourier
analysis, the functions which appear in Newtonian analysis are typically continuous. The
functions encountered in the infinitessimal calculus are continuous since continuity is a
consequence of differentiability. Polynomials are continuous functions as are functions
represented by power series. When discontinuities occur, they are caused by boundary
conditions as when a ray of light is bent at an interface between air and water. It is
possible in Newtonian analysis to treat singularities as exceptional phenomena.

Singularities of functions are of a more earnest nature in Fourier analysis since they
need not be isolated. Every singularity increases the work needed to define the integrals
of Fourier analysis. The techniques of integration need to be improved so as to minimize
the dependence on continuity. When this is done, it needs to be determined whether
integration applies to sufficiently many functions for the needs of Fourier analysis.

Answers to these questions were given by René Baire (1874–1932) whose contribution
can be treated as an achievement in cardinality. The construction of uncountable sets by
Cantor inspires an appreciation of countable sets. A nonempty open set of real numbers
is uncountable according to Cantor since it has the same cardinality as the class of all
subsets of a countable set. Baire shows that a nonempty open set of real numbers is large
in another sense. A set of real numbers is said to be dense if all real numbers belong to its
closure. Baire shows that a countable intersection of dense open sets of a closed interval
is dense.
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The applications of the least infinite cardinal number to properties of sets are also
applications of the same cardinal number to properties of functions. A function defined
on a Hausdorff space is said to be Baire measurable if it is a pointwise limit of a sequence
of continuous functions. A subset of a Hausdorff space is said to be Baire measurable if
its characteristic function is Baire measurable. A function defined on a Hausdorff space is
Baire measurable if, and only if, the inverse image of every open set is Baire measurable.

Baire measurable sets are applied by Emile Borel (1871–1956) in the construction of
measures. A measure is a countably additive function of sets which are measurable in the
sense of the application as the domain of a measure. Hypotheses are required of measur-
able sets for the application. A countable union of measurable sets is measurable. The
complement of a measurable set is measurable. The hypotheses are satisfied by the Baire
measurable subsets of a Hausdorff space. Nonnegative measures are of special importance
since other measures are constructed from them. A nonnegative measure is a function of
measurable sets, whose values are nonnegative numbers or infinity, such that the measure
of a countable union of disjoint sets is the sum of the measures of the sets.

Hausdorff spaces contain closed subsets which are accepted by Borel as Baire measurable
sets of finite measure. These subsets are said to be compact in the axiomatization of topol-
ogy. A Hausdorff space is said to be compact if a class of closed subsets has a nonempty
intersection whenever every finite subclass has a nonempty intersection. A subset of a
Hausdorff space is treated as a Hausdorff space whose open sets are the intersections of
the subset with open subsets of the full space. A subset of a Hausdorff space is said to be
compact if it is a compact Hausdorff space in the subspace topology. Compact subsets of
Hausdorff spaces are closed. An application of the Kuratowski–Zorn lemma is made in the
proof that a Cartesian product of compact Hausdorff spaces is a compact Hausdorff space.

The properties of compact sets are applied by Hausdorff in the axiomatization of topol-
ogy. A Hausdorff space is said to be completely regular if the topology of the space is
determined by its continuous functions. The requirement is that every open set is a union
of basic open sets. A basic open set is defined by a finite number of continuous real–valued
functions f0(s), . . . , fr(s) of s in the space and consists of the elements s which satisfy the
inequalities

−1 < fn(s) < 1

for n = 0, . . . , r. A compact Hausdorff is completely regular. The Baire measurable
subsets of a compact Hausdorff space are acceptable for the construction of measures.

An explicit integration theory is applied by Stieltjes in the representation of nonnegative
linear functions on polynomials. A nonnegative linear functional on polynomial functions
f(z) of a complex variable z is defined by a nondecreasing function µ(x) of real x as an
integral ∫

f(x)dµ(x)

which is a limit of finite linear combination of values of the polynomial on the real axis
with nonnegative coefficients determined by increments in µ. Stieltjes determines all non-
decreasing functions which represent the linear functional on polynomials of degree at most
r for some positive integer r. Some nondecreasing function applies without restriction on
degree. Such a function need not be essentially unique.

The integration of Baire measurable functions proceeds through the construction of
a nonnegative measure on Baire measurable sets of real numbers which is determined
on intervals by a nondecreasing function of a real variable. The integral defined by the
measure agrees on continuous functions with the Stieltjes integral. Fundamental properties
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of the integral were discovered by Henri Lebesgue (1875–1944). The Lebesgue monotone
convergence theorem states that the limit of the integrals of a sequence of functions is
equal to the integral of the limit function when the sequence of values of the functions is
nondecreasing everywhere on the real axis.

Lebesgue measure for the real line is the measure on Baire measurable sets defined by
the increasing function

µ(x) = x

of real x. The measure is essentially characterized by invariance under translation. If A
is a Baire measurable subset of the real line and if h is a positive number, then a Baire
measurable subset B is defined as the set of sums

b = a+ h

with a in A. The Lebesgue measure of B is equal to the Lebesgue measure of A. A
nonnegative measure on the Baire measurable subsets of the real line which is invariant
under translation is a constant multiple of Lebesgue measure.

The Hilbert space of equivalence classes of functions which are square integrable with
respect to Lebesgue measure is applied in the definition of the Fourier transformation for
the real line. A Baire measurable function f(x) of real x is said to be square integrable
with respect to Lebesgue measure if the integral∫

|f(x)|2dx

is finite. Square integrable functions f(x) and g(x) of real x are considered equivalent if
the integral ∫

|g(x)− f(x)|2dx

is zero. The space of equivalence classes of square integrable functions with respect to
Lebesgue measure is a complete metric space in which the integral is the square of the
distance from f to g. Since equivalent continuous functions are equal and since the con-
tinuous functions represent a dense set of square integrable functions, the space of square
integrable functions is a metric completion of the space of continuous functions which are
square integrable.

The Fourier transformation for the real line is a property of additive structure. Multi-
plicative structure appears in a construction of homomorphisms of additive structure. If t
is a real number, a homomorphism of additive structure of the real numbers into the real
numbers is defined by taking x into the product tx. The homomorphism is continuous
for the Dedekind topology of the real line. Every homomorphism of additive structure
of the real numbers into the real numbers which is continuous for the Dedekind topology
is defined by a unique real number t. Since homomorphisms can be added to produce
homomorphisms, the set of homomorphisms of the real line into itself admits an additive
structure. The dual space obtained is isomorphic to the real line in its additive structure.
The dual space acquires a topology through its action on the real line. The topology of
homomorphisms t is the weakest topology with respect to which tx is a continuous func-
tion of t for every real number x. The dual space is isomorphic in additive and topological
structure to the real line. Duality implements the concept of momentum introduced by
Newton. Momentum space is isomorphic to Cartesian space in additive and topological
structure. The action of momentum on position produces real numbers.
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The treatment of Fourier analysis for the real line presumes a knowledge of Fourier
analysis for the real numbers modulo 2π. Real numbers modulo 2π are familiar as angles
in the de Moivre definition of the exponential as a function of a complex variable. Functions
of an angle variable are functions f(x) of a real variable x which are periodic of period 2π.
An example of a continuous periodic function is the function

exp(2π inx)

of x for every integer n. The integral∫
exp(2πinx)dx

with respect to Lebesgue measure over the interval 2π is equal to zero when n is nonzero.
If a continuous function f(x) of real x is periodic of period 2π, the Lebesgue integral

2πan =

∫
f(x) exp(2πinx)dx

over the interval 2π defines a Fourier coefficient an for every integer n. The Lebesgue
integral ∫

|f(x)|2dx =
∑
|an|2

over the interval 2π is equal to the sum of squares of absolute values of Fourier coefficients.
Fourier inversion

f(x) =
∑

an exp(−2πinx)

applies almost everywhere when the sum is absolutely convergent.
Fourier saw the need for discontinuous functions which are periodic of period 2π. Ar-

bitrary periodic functions cannot be applied since integrability is required. The desired
class of functions is identified by Baire measurability, by the Borel formulation of measure,
and by the Lebesgue definition of integral. The desired space consists of the equivalence
classes of Baire measurable functions which are square integrable with respect to Lebesgue
measure over the interval 2π.

The Fourier transform for the real line of a function f(x) of real x, which is integrable
with respect to Lebesgue measure, is the bounded continuous function

g(x) =

∫
f(t) exp(2πixt)dt

of real x defined by integration with respect to Lebesgue measure. The identity∫
|f(x)|2dx =

∫
|g(x)|2dx

holds with integration with respect to Lebesgue measure if the function f(x) of real x is
square integrable with respect to Lebesgue measure. A dense set of elements of the space
of equivalence classes of square integrable functions with respect to Lebesgue measure
are represented by bounded integrable functions with respect to Lebesgue measure. The
Fourier transformation is extended as a transformation of equivalence classes of square
integrable functions into equivalence classes of square integrable functions which maintains
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the identity. If a square integrable function g(x) of real x is equivalent to the Fourier
transform of a square integrable function f(x) of real x, then the square integrable function
f(−x) of real x is equivalent to the Fourier transform of the square integrable function
g(x) of real x.

The Poisson summation formula∑
f(n) =

∑
g(n)

states that the sums over the integers n for an integrable function f(x) of real x and an
integrable function g(x) of real x are equal if the function g(x) of x is the Fourier transform
of the function f(x) of real x and if the function f(−x) of real x is the Fourier transform
of the function g(x) of real x.

The Poisson summation formula belongs to a formulation of Fourier analysis in which
the line is compactified by introducing a topology compatible with additive structure. The
topology combines the Dedekind topology with the adic topology of the rational numbers.
The mixing of topologies is made on a Cartesian product space.

The Cartesian product of the real line and the adic line is the set of pairs (c+, c−)
consisting of a real number c+ and an adic number c−. The sum of elements (a+, a−) and
(b+, b−) of the Cartesian product is the element (c+, c−) of the Cartesian product whose
real component

c+ = a+ + b+

is the sum of real components and whose adic component

c− = a− + b−

is the sum of adic components. The Cartesian product is given the Cartesian product
topology of the real line and the adic line. An equivalence relation is defined on the
Cartesian product space. Elements (a+, a−) and (b+, b−) of the Cartesian product space
are considered equivalent if b+−a+ and a−−b− are equal rational numbers. The elements of
the Cartesian product space which are equivalent to the origin form a discrete subset which
is closed under addition and which contains (−a+,−a−) whenever it contains (a+, a−). The
quotient space inherits an additive structure and a topology with respect to which it is
a compact Hausdorff space. A fundamental region is the set of elements (c+, c−) of the
Cartesian product space with c+ in the interval (−1

2 ,
1
2 ) and c− integral. The closure of

the fundamental region is the set of elements (c+, c−) of the Cartesian product space with
c+ in the interval [−1

2 ,
1
2 ] and c− integral. The fundamental region is an open subset of the

Cartesian product space whose closure is compact. An element of the Cartesian product
space is equivalent to an element of the closure of the fundamental region. Equivalent
elements of the fundamental region are equal. Each equivalence class is a closed subset of
the Cartesian product space which inherits a discrete topology.

The quotient space inherits an addition from the Cartesian product space and a multi-
plication by elements of the Cartesian product space whose coordinates are equal rational
numbers. The projection onto the quotient space is a homomorphism of additive structure.

An isomorphism of additive structure, which takes the real line into the quotient space,
is defined by taking c into (c, 0) for every real number c. Since the image of the real line
is dense in the quotient space, the quotient space is a compactification of the real line in a
topology which is compatible with additive structure and with multiplication by rational
numbers.
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An isomorphism of additive structure, which takes the adic line into the quotient space,
is defined by taking c into (0, c) for every element c of the adic line. Since the image of the
adic line is dense in the quotient space, the quotient space is a compactification of the adic
line in a topology which is compatible with additive structure and with multiplication by
rational numbers.

Since the rational numbers are dense in the real line and in the adic line, the quotient
space is a compactification of the rational numbers in a topology which is compatible with
additive structure and with multiplication by rational numbers. The compactification of
the rational numbers implied by the Poisson summation formula formulates consequences
of the multiplicative action of the rational numbers on the Fourier analysis of a line.

Fourier analysis is relevant to the Riemann hypothesis since the Poisson summation
formula is applied in the proof of the functional identity for Euler and Dirichlet zeta
functions. Fourier analysis is also relevant since the Poisson formula is applied to functions
originating in the flow of heat, which is treated by the Laplace transformation. Heat flow
is a different application of Fourier analysis since it is treated in a plane region. Hilbert
spaces of functions analytic in the upper half–plane appear in the characterization of
Laplace transforms.

The upper half–plane is a region conformally equivalent to the unit disk, a region pre-
ferred in Riemann mapping. An analytic function f(z) of z in the unit disk which maps
the disk injectively onto itself is a quotient

f(z) = (Az +B)/(Cz +D)

of linear functions for a matrix (
A B
C D

)
with complex entries which has the matrix(

A− −C−
−B− D−

)
as inverse. These transformations form a group under composition, which is computable
as a matrix product.

The unit disk admits an analytic structure whose automorphisms are computed by a
group of matrices. A generalization of Fourier analysis results in which additive structure
is lost but in which multiplicative structure is enriched by the noncommutative nature of
matrix multiplication. The special functions of the hyperbolic geometry of the unit disk
are hypergeometric series. The parabolic geometry of the complex plane is a limiting case
of the hyperbolic geometry of the unit disk as it is of the elliptic geometry of the unit
sphere. The special functions of the unit circle are more elementary than those of the unit
disk since the unit circle is compact. The special functions of the complex plane retain the
nontrivial nature of the special functions of the unit disk without loss of simplicity of the
special functions of the unit circle.

Since the unit disk is not compact, the space can be treated in the same way as the line
to produce compactifications. The construction applies discrete subgroups of the group of
automorphisms of the disk which were introduced by Felix Klein (1849–1925) and Henri
Poincaré (1854–1912). The quotient space of the disk under the group action is a Riemann
surface. The matrices which parametrize the elements of the subgroup resemble the integers
when the quotient space is compact. Examples of discrete groups which are related to theta
functions are best described in the hyperbolic geometry of the upper half–plane.
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An analytic function f(z) of z in the upper half–plane which maps the upper half–plane
injectively onto itself is a quotient

f(z) = (Az +B)/(Cz +D)

of linear functions for a matrix (
A B
C D

)
with complex entries which has the matrix(

D− −B−
−C− A−

)
.

as inverse. These transformations form a group under composition computable as a matrix
product. The modular group is the discrete subgroup whose elements are the matrices with
integer entries and determinant one.

The modular group is generated by the matrix(
0 1
−1 −1

)
of order three and the matrix (

0 −1
1 0

)
of order four. A homomorphism exists of the modular group into the complex numbers
of absolute value one whose value on the matrix of order three is a primitive cube root
of unity and whose value on the matrix of order four is a primitive fourth root of unity.
The matrices on which the homomorphism has value one form a normal subgroup whose
quotient group is isomorphic to the integers modulo twelve. The matrices on which the
homomorphism is a fourth root of unity form a normal subgroup whose quotient group
is isomorphic to the integers modulo four. The matrices on which the homomorphism is
a cube root of unity form a normal subgroup whose quotient group is isomorphic to the
integers modulo three.

A fundamental region for the action of the modular group is the set of elements z of
the upper half–plane which lie in the strip

−1 < z + z− < 1

and outside
z−z > 1

of the unit circle. An element of the upper half–plane is equivalent under the modular
group to an element of the closure of the region. Equivalent elements of the region are
equal. The element

−1
2

+ 1
2
i
√

3

on the boundary is left fixed by the generator of order three. The element

i
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on the boundary is left fixed by the generator of order four. Boundary elements of the
fundamental region are identified by the generator of order four and by the product of(

1 1
0 1

)
=

(
0 −1
1 0

)(
0 1
−1 −1

)
of the generator of order four and the generator of order three. The quotient space is
homeomorphic to a punctured sphere which is compactified by the addition of a single
point.

Modular forms are constructed to resemble theta functions without presuming an origin
in Fourier analysis. Modular forms of order ν are defined for nonnegative integers ν. A
modular form of order ν is an analytic function F (z) of z in the upper half–plane which
satisfies the identity

F (z) =
1

(Cz +D)1+ν
F

(
Az +B

Cz +D

)
for every element (

A B
C D

)
of the normal subgroup of index twelve in the modular group. A modular form of order
ν is a linear combination of modular forms of order ν which satisfy a related identity for
every element of the modular group. A homomorphism of the modular group into the
complex numbers of absolute value one is applied in the statement of the identity.

The resemblance to theta functions is heightened when the modular form is required to
have a power series expansion

F (z) =
∑

an exp(2πinz)

in the variable
exp(2πiz).

The power series expansion endows the fundamental region with an analytic structure to
produce a compact Riemann surface. These conditions are not easily satisfied. Eleven is
the least positive integer ν for which a nontrivial modular form of order ν exists with the
desired power series expansion. The modular form obtained is essentially unique since the
space obtained has dimension one. A zeta function with Euler product analogous to the
Euler product for Dirichlet zeta functions and for the Euler zeta function was constructed
from the modular form by Srinivasa Ramanujan (1887–1920). He conjectured an estimate
of coefficients which creates convergence of the Euler product in a half–plane analogous to
that for the Euler and Dirichlet zeta functions. A generalization of the Riemann hypothesis
is indicated by the resemblance to the Euler zeta function.

The construction made by Ramanujan fails when the space of modular forms of order ν
with the desired power series expansion has dimension greater than one. The coefficients
of modular forms need not have the properties required for a zeta function with Euler
product. A basis for the vector space of order ν is constructed by Erich Hecke (1877–1947)
whose elements are modular forms having the required properties. The zeta function has
an Euler product which indicates a generalization of the Riemann hypothesis when an
estimate of coefficients is satisfied which generalizes the conjecture made by Ramanujan.

The Hecke construction of modular forms with zeta function having an Euler product
deserves attention. Commuting operators are constructed on spaces of modular forms
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of order ν. The desired modular forms are found as eigenfunctions of Hecke operators.
Operators are defined by taking F (z) into

G(z) =
1

(Rz + S)1+ν
F

(
Pz +Q

Rz + S

)
for a matrix (

P Q
R S

)
with integer entries and positive determinant. The function obtained satisfies the identity

G(z) =
1

(Cz +D)1+ν
G

(
Az +B

Cz +D

)
for the subgroup of those matrices (

A B
C D

)
in the modular group such that the equation(

P Q
R S

)(
A B
C D

)
=

(
A′ B′

C′ D′

)(
P Q
R S

)
admits a solution (

A′ B′

C′ D′

)
in the modular group. The Hecke subgroup of the modular group associated with a positive
integer r is obtained when (

P Q
R S

)
=

(
r 0
0 1

)
The subgroup is the set elements of the modular group whose lower left entry is divisible
by r.

The Hecke subgroup has finite index in the modular group. The Hecke operator ∆(r)
takes a modular form F (z) of order ν into a modular form obtained by averaging

F (rz)

over the action of elements of the modular group which represent the cosets with respect
to the Hecke subgroup.

Hecke operators commute. The identity

∆(m)∆(n) =
∑

∆(mn/k2)

holds for all positive integers m and n with summation over the common positive divisors k
of m and n. Hecke operators apply Fourier analysis in a context without additive structure.
Commuting operators are produced in a noncommutative matrix context.

* * *
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The Riemann hypothesis was generally accepted as an underlying goal of research when
the author of the apology decided on a career in mathematical analysis. The choice of the
Riemann hypothesis as a research interest was however unusual since the research interests
of students are ordinarily determined by their teachers. A doctoral thesis is expected of
a student in preparation for a career of research and teaching. A student is admitted to
a doctoral program after demonstrating proficiency in qualifying examinations. When a
student is admitted, he is expected to find a member of the faculty who will supervise the
writing of the thesis. The faculty advisor is a participant in the choice of research objective
and often in its implementation. When the thesis is completed, he is a decisive source of
information concerning its suitability for publication.

The Riemann hypothesis was difficult as a research objective since it was not proposed
by faculty and received no encouragement. Academic freedom permitted research on the
Riemann hypothesis without permitting the statement of purpose of the work.

This apology describes exceptional circumstances which made the Riemann hypothesis
natural as a research objective. The exceptional individuals who were my father and my
mathematical mentor were influenced in similar ways, but with dissimilar effectiveness,
by the cultural traditions of the eighteenth century. A war replaced my father by my
mathematical mentor for the critical years of my education.

The feudal family de Branges originates in a crusader who died in 1199 leaving a coat
of arms for the city which he founded. The shield depicts three swords hanging over three
coins, in commemoration of a crusade, and the crown which designates a count. The
inscription Nec vi nec numero alludes to Zechariah 4:6, Not by might, nor by power, but
by my Spirit, sayeth the Lord of Hosts.

The family de Branges is documented in the archives of Franche–Comté, a part of
Burgundy when the army of Charles the Bold was defeated at the battle of Morat in 1476.
Marie de Bourgogne rescued Burgundy from the army of Louis XI by marriage to the
Habsburg Emperor Maximilien I. The wealth of Burgundy permitted the creation of an
empire which eventually enclosed France on the north and south as well as in the east.
Franche–Comté was included in the Spanish half of the empire on its division in 1556.
French armies were never successful in closing this line of communication between the two
halves of the empire.

The feudal title of count was created by Charlemagne for the defense of territory, a
defense which after the twelfth century required the construction of a stone castle. The
count was entitled to tribute from those who received his protection. The castle built
by the returning crusader marks the founding of Branges as a city. When the castle was
destroyed by the armies of Louis XI, the Comte de Branges lost his function and returned
to Saint–Amour, where his family has a distinguished record of service to church and state
beginning in the twelfth century.

Saint–Amour lies near the frontier of Franche–Comté with Bresse, which became part
of France in 1601 by the Treaty of Lyon. The family Coligny d’Andelot on the French side
of the frontier is significant in French history. François d’Andelot and his brother, Admiral
Gaspard de Coligny, were leaders of the Protestant Faction in Wars on Religion (1558–
1569). Gaspard de Coligny was assassinated in 1572 during the Massacre of Protestants
on Saint Bartholomew’s Eve.

Although Louis XIV maintained the most powerful army in Europe, he was unsuccessful
in extending French territory by force. Franche–Comté was never conquered by France but
became part of France in 1678 under the Treaty of Nijmegen. In 1679 François de Branges
of Saint–Amour acquired Bourcia, a castle on the Little Mountain which defends Franche–
Comté on its frontier with Bresse. Joachim Guyénard, privy counselor to Louis XIV,
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acquired Andelot, a castle on the other side of the Little Mountain, from the last Coligny
owner in 1702.

Andelot and Bourcia lost their purpose for defense when the Little Mountain ceased
to be an international frontier. An economic imbalance was created when the owners
of castles continued to receive revenue for a function which they no longer performed.
Although reasonable proposals were presented at the French court to restore equilibrium,
Louis XVI was unable to implement them. The stalemate was a cause of the French
Revolution. Bourcia was destroyed in 1792 during a Reign of Terror which followed the
revolution. Although Andelot was only lightly damaged, the last male Guyénard emigrated
to Philadelphia in 1793.

The Enlightenment stimulated mathematical analysis in France during the eighteenth
century without producing the political changes required to meet social needs. The per-
secution of Protestants caused an emigration of talent from France comparable to the
emigration of talent from Germany resulting from the persecution of Jews in the twenti-
eth century. European countries which benefited from French culture looked favorably on
political evolution in France until the French Revolution demonstrated the dangers of unre-
stricted freedom. When the Declaration of Independence was signed in 1776, Philadelphia
attracted those who sought peaceful democratic change. The political economist Pierre
Samuel du Pont de Nemours emigrated to Philadelphia during the Reign of Terror. To-
gether with his son Eleuthère Irénée du Pont de Nemours he founded a powder mill on the
Brandywine near Philadelphia which is the origin of the present Du Pont Company.

The Comte de Branges de Bourcia returned to Franche–Comté with only a loss of
property after escaping to Geneva with his family during the Reign of Terror. His sons
Henri and Octave were born in Poligny in 1823 and 1825.

The consequences of revolution were as severe overseas as in metropolitan France despite
the absence of a feudal structure to dismantle. Guadeloupe is significant in this apology
because of its proximity to the United States. An informative account of events there was
compiled by Jean–Baptiste Granger Joly de Boissel.

His ancestors emigrated to Guadeloupe before or at the beginning of the eighteenth cen-
tury. Ten generations of a family tree contain 2047 entries, not all distinct members of the
family since some may have multiple entries. Guadeloupe kept a record of births, deaths,
and marriages without discrimination of wealth or race for more than three centuries.

The contest between Spain, England, and France for possessions in the Antilles was
settled by the treaties of Utrecht (1713–1715). A prosperous sugar economy based on
slavery developed in Guadeloupe under French rule. Trade with Europe passed through
Bordeaux.

Armed revolutionaries arrived on Guadeloupe in 1794 on a mission to abolish slavery.
They had authority from Paris to confiscate property and to kill owners who resisted.
The revolutionaries were expelled in 1798 after losing their support in Paris. Slavery was
tolerated under the Napoleonic Code.

The members of the de Vernou family were large landowners whose origins in Poitou–
Charentes are recorded in the twelfth century. Since property and titles of nobility passed
to the eldest son under feudal law, younger sons were required to make their own way. Al-
though most settlers in Guadeloupe arrived in poverty and acquired independence through
six year contracts of menial work, the members of the de Vernou family arrived with the
means to buy land and slaves.

In 1814 Maximilien de Vernou de Bonneuil, born 1777 in Pointe–à–Pitre and married
1813 to Félicie de Bébian de Pachin, left Guadeloupe with his wife and his daughter
Adeläide for an extended visit to Boston. Commercial reasons are conjectured for the visit
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since Boston, like Philadelphia, was a principal port for trade with Guadeloupe.
The Catholic community was small in Puritan Boston before the arrival of the Irish.

The Catholic bishop of Boston, Monseigneur Lefebre de Cheverus, was an exile from the
French Revolution. In the absence of a congregation he established a mission for the
Penobscot and Passamacody Indians and learned their language. In Boston he cared for
the sick during an outbreak of yellow fever.

The resulting friendship determined the future course of events. When Maximilien
returned with his wife to Guadeloupe in 1817, he left Adeläide in the care of her godfather
since she seemed too frail for the climate in Guadeloupe. Monseigneur de Cheverus brought
her to France when he was recalled to become Bishop of Montauban and later of Bordeaux.
In 1832 Maximilien brought his son to Bordeaux on the advice of Monseigneur de Cheverus
to be educated at the Catholic school de Bazas. He returned with Adeläide to Guadeloupe
where she was married in 1834. Monseigneur de Cheverus is remembered for converting
his episcopal residence into a hospice during an outbreak of cholera in Bordeaux. He died
in 1836 before he could accept his appointment as cardinal.

The first Granger arrived in Guadeloupe with his wife from Rennes early in the eigh-
teenth century. His date and place of birth are unknown. Poverty and religious persecution
were principal causes of emigration to Guadeloupe. Typical immigrants founded mètisse
families since they did not bring wives. Conjectured métisse entries in the family tree
cannot be verified since indications of race and color are not given in marital records.
The Grangers became salaried civil servants in a bourgeois society dominated by large
landowners.

Paul Granger was born 1804 in Pointe–à–Pitre and was educated at the Jesuit school of
Sortèze in the Tarn. He went on to complete doctoral studies with a thesis in 1821 at the
medical faculty of the University of Paris. His life was untypical for Guadeloupe since he
delayed marriage in favor of a medical career until he was over fifty. His medical abilities
were tested during the severe earthquake of 1843. The earthquake may have been a reason
why his mother, as a widow in 1844, bought the château Fayard at Pian–sur–Garonne near
Bordeaux. In 1856 Paul Granger married Laure, fourth child of Maximilien and Félicie de
Vernou de Bonneuil. She was a widow who had lost her three sons as well as her husband.

The former governor of Guadeloupe, François Claude Marquis de Bouillé (1739–1800)
was the companion of the Marquis de Lafayette who prepared the flight of Louis XVI from
France in 1791. The king was recognized at Varennes before he could cross the border and
was brought back a prisoner to Paris. He was guillotined in 1793.

Jules–Amour de Bouillé, grandson of the marquis, married Eudoxie, third child of Max-
imilien and Félicie de Vernou de Bonneuil. Maximilien spent the remainder of his life at
his son–in–law’s house in Paris after the loss of his wife and the abolition of slavery in the
Revolution of 1848.

In 1850 Louise Caussade, granddaughter of Maximilien and Félicie de Vernou de Bon-
neuil through their second child, Victoire, married Franklin Atlee, a medical student in
Paris who was the grandson of Augustus Atlee, first Judge of the Supreme Court of Penn-
sylvania. Ford Hook, the Atlee estate in Wayne became their home. The successful career
of Dr. Atlee is due not only to advanced medical knowledge but also to the energy which
he applied to his work even in old age.

Octave de Branges de Bourcia married Félicie, eighth child of Maximilien and Félicie
de Vernou de Bonneuil. Their sons Paul and Louis were born 1875 and 1877 in Neuilly–
sur–Seine.

In 1892 Adèle Atlee, daughter of Franklin and Louise Atlee, made a first visit to her
grandmother Victoire Caussade and her aunt Félicie Caussade Vicomtesse de la Jaille at
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the château de La Fautraise in the Mayenne. Adèle spoke French. She was an actress of
classical drama at the Chestnut Street Theater near Independence Hall where Judge Atlee
wrote the law of Pennsylvania. She crossed the Atlantic with her mother on steamships of
the Compagnie Générale Transatlantique.

Louis de Branges de Bourcia came to Philadelphia to marry Adèle Atlee in 1900. He
became an officer of the Gerard Trust Company, a major bank of Philadelphia, and built
his home, Bel Abri, on the Atlee estate in Wayne. Louis and Adèle had four children of
which the one male child was named Louis. When France declared war on Germany in
1914, Louis père enlisted as a private in the French army and was promoted to sergeant for
bravery in action. Although discharged for medical reasons before the armistice, he never
recovered from gas and shell–shock and died in Paris soon after.

On his death in 1910 Franklin Atlee left the bulk of his estate to his daughter Adèle in
preference to his son John and his daughter Marie. Adèle died four years after her husband
from consequences of a riding accident as a girl. The proceeds from the sale of the Atlee
estate were divided between three surviving children.

At the age of twenty–five Louis fils sailed to France never to return to the United States.
He was welcomed in Paris by his uncle Paul, by descendants of Laure and Victoire de
Vernou de Bonneuil, and by the most recent Comte Henri de Branges de Bourcia. Family
connections obtained a position for him in the Compagnie Générale Transatlantique. The
Paris office was in the Grand Hôtel, Place de l’Opéra, as it was when his mother arrived
in 1892. He supplemented a dollar income by selling transatlantic fares on the de Grasse,
the Champlain, the Normandie, and the Ile–de–France.

The dollar was strong against other currencies during the Great Depression. Before
leaving for France, Louis fils married Diane Mc Donald, whose knowledge of French was
acquired at the Agnes Irwin School, Bryn Mawr. Wayne and Bryn Mawr are adjacent
suburbs of Philadelphia. Her fluency in French was tested by the exclusive use of that
language with her husband. They had three children, Louis born 1932 in Neuilly–sur–
Seine, Elise born 1935, and Eléonore born 1938. The first of these is the author of the
present apology.

My mathematical mentor entered my life at such an early time that memory fails to
record it. I opened the door of my grandparents’ home in Swarthmore to him and to his
wife when I was two years old. Swarthmore is a suburb of Philadelphia comparable to
Wayne and Bryn Mawr. The meeting is remembered by my mother because I was naked.

Irenée du Pont was an executive officer of the du Pont Company, later its president
and on retirement a member of the board, who was instrumental in the transition from a
national producer of gunpowder to an international chemical giant. Nothing in his behavior
betrayed the responsibilities he carried as the company met the challenges of depression
and war. Although he spoke with light humor, there was an underlying seriousness and
content to what he said. His face was tanned as if he had just returned from vacation.
He met the heat of summer by drinking orange juice flavored with rhum and by puffing
a curved mahogany pipe. As a display of nonchalance he would blow smoke rings. He
escaped the cold of winter by going to Xanadu, his vacation home on Varadeiro Beach,
Cuba.

Irene du Pont had a face wrinkled like a frog. I have seldom met anyone of more
benevolent character. Irene du Pont participated as donor when her brother Felix du Pont
founded Saint Andrew’s School, an Episcopal boarding school in Middletown, Delaware.
And she supported the Episcopal Diocese of Delaware by donations to the cathedral in
Wilmington.

The lives of Irénée and Irene du Pont emulate in an American context the lives of their
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French ancestors. An analogy can be found between Granogue, their home near Wilming-
ton, and a French château. The relationship is not shown in external appearance but in the
functional conception of both residences. In both cases the construction is subordinated
to the natural setting in which it is made. Children are raised in an environment which
preserves family tradition. Granogue lies on a hill which descends to the Brandywine, the
river on which Eleuthère Irénée du Pont de Nemours built the first powder mill. His lifesize
portrait was displayed in the Granogue living room.

The lives of Irénée and Irene du Pont emulate the lives of their French ancestors in
another way since they had as many children as Maximilien and Félicie de Vernou de
Bonneuil. All but two of them were girls. Since one boy and one girl died before I was
born, the one surviving boy was left with seven older sisters.

Irene du Pont enlisted the assistance of a schoolmate, Rebecca Motte Frost, for raising
her daughters. Since more than a century has passed since the Civil War, some Americans
have forgotten the devastation and poverty caused for those who lost the war. Aunt
Reba was the daughter of a Confederate general from Charleston, South Carolina. The
daughters learned the best traditions of a vanished aristocracy. The relationship between
Irene du Pont and Aunt Reba seldom revealed the difference in fortune between those on
the winning side and those on the losing side of the war.

Irénée du Pont was, like Alexander von Humboldt, an amateur scientist who expended a
personal fortune on his research interests. Like Humboldt he had a professional as a close
friend in his scientific exploration. That scientist was my maternal grandfather, Ellice
Mc Donald. My grandfather was an associate professor at the University of Pennsylvania
when he began his association with Mr. du Pont. My grandfather acquired a reputation
as a surgeon by removing cancers which other surgeons considered hopeless. He developed
a research interest in the causes of cancer and its treatment by nonsurgical means. He
became Founder and Director of the Biochemical Research Foundation of the Franklin
Institute, a research center funded by Mr. du Pont. In 1941 the research center moved
from its initial building in Philadelphia to a new building adjacent to the campus of the
University of Delaware. A cyclotron was built which was later used under the Manhattan
Project to measure neutron effects on animals.

My grandfather served Mr. du Pont in the same way that his father served the Hudson’s
Bay Company as a Chief Factor in Alberta. When Sitting Bull crossed the border into
Canada after annihilating the Custer Cavalry in the Little Big Horn, the Chief Factor
rode into the Indian Camp with other precursors of the Royal Canadian Mounted Police
to explain the Queen’s Law in Canada. In so doing they pushed aside drunken Indians
celebrating their booty in scalps and horses. My grandfather served Mr. du Pont in the
same way that his father served the Queen and that his brother served the Queen as a
Canadian general in the First World War.

My grandfather never submitted research proposals to Mr. du Pont. Instead my grand-
father described recent advances in research, not restricting himself to those made by his
own organization. He met Mr. du Pont informally at Granogue. Discussions continued at
the Concord Country Club after a round of golf on Sunday morning. Sometimes Mr. du
Pont arrived in a small black Cadillac at the house which my grandfather built near Wilm-
ington when the Biochemical Research Foundation moved to Delaware. My grandparents
accompanied Mr. and Mrs. du Pont when they took their winter vacation in Cuba. Dis-
cussion of research continued on Varadeiro Beach. Mr. du Pont awarded funds to research
which attracted his interest.

A privilege awarded to my father by the Compagnie Générale Transatlantique was a
yearly round–trip passage to New York. My father never availed himself of this privilege
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but let it be applied to my mother and to children as they appeared. A Vicomtesse de
Branges de Bourcia travels first–class. When my mother returned to France in 1933, she
happened to fall into conversation with Pierre du Pont, the older brother of Irénée du
Pont who preceded him as president of the du Pont Company. Mr. du Pont described
the purchase of Andelot. My information is taken from a letter subsequently written by
my father to my grandmother. According to the archives of Franche–Comté, Andelot was
bought in 1926 by Lammot Belin. Alice Belin is the wife of Pierre du Pont. Alice and her
brother Lammot Belin are descended in a maternal line from the Guyénard who emigrated
to Philadelphia.

The outbreak of war had consequences for my family which my mother describes with
accurate detail in her Wartime Experiences, 1939–1941. This memoir permits me to recall
those events, confirming her account. A fundamental change occurred in her life and
mine. By writing this memoir she underwent a therapy which permitted the acceptance
of diminished circumstances.

Diane Mc Donald, Vicomtesse de Branges de Bourcia, at age sixty.

My father enlisted in the French Army when France declared war and was assigned
as a liason officer with the Grenadier Guards. He was evacuated from Dunkirk after the
German breakthrough in the spring of 1940.

I completed a second year of schooling in Louveciennes during the first winter of the
war. When spring arrived, I left with my mother and sisters for a summer vacation at the
château de La Fautraise. The current Vicomtesse de la Jaille lost her husband in the First
World War. Her daughters Audette and Simone were comparable in age and appearance
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Château de la Fautraise, pen and ink drawing, signed Diane de Branges de Bourcia,

June, 1940.

to my mother. My mother was given a room, suitable for a museum, with canopied bed,
which had once been used by Louis–Philippe, king of France before the revolution of 1848.

Our hostess responded to distressing war news by playing Chopin on her piano. The
château de La Fautraise filled with refugees as war progressed. The Germany Army arrived
as my sister Elise was shrieking protests at my threats to push her into a pond. An officer
in a staff car, accompanied by a truckload of soldiers, inspected our château before deciding
on another for his headquarters. I learned that he was German after Audette had taken
me by the hand to feed the ducks.

The armistice which ended hostilities was celebrated in Argenton–Notre–Dame by open-
ing bottles of vintage wine. The château de La Fautraise was emptied of refugees. We
returned to Paris on a slow train filled with people and luggage. When we arrived in the
morning at the Gare Montparnasse, my mother was unable to order a breakfast of coffee
and croissants. When we arrived in Louveciennes, we found our house occupied by German
soldiers. It was not returned without breakage and loss.

My father returned to France by ship to Bordeaux, passing on his way the sunken Cham-
plain in the Pointe de la Chèvre, a favorite vacation spot near Cherbourg. The Compagnie
Générale Transatlantique lost its offices in the Grand Hôtel, when its guests became high–
ranking German officers. The company survived as a support group distributing reserves
of food to former employees.

My third school year in Louveciennes was successfully completed despite the use of the
school building as a German military headquarters. Classes were held in the mairie. I do
not recall any hindrance resulting from improvised equipment. Madame Jammet taught
me the most important skill which can be acquired in education at any level, which is a
love for the material taught. My career as a professor of mathematics has been facilitated
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by my own ability to teach this skill since the Riemann hypothesis has over fifty years
received minimal acceptance as a research aim.

In the spring 1941 my grandfather insisted that his daughter and grandchildren return
to Philadelphia. My grandfather expected that my father would return for active duty as
second lieutenant in the United States Army Reserve. The decision made by my father
to remain in France is not understandable without a knowledge of European history. The
arrival of Adolf Hitler to power in Germany created an unprecedented political situation.
A Winston Churchill was required to identify a political leader who aimed to reverse
centuries of social progress. A Charles de Gaulle was required to unite France into effective
resistance. Cooperation between French speaking and English speaking peoples removed
an enmity created by centuries of political and economic competition.

My mother took the train to Lisbon with her three children to await passage on a
ship bound for New York. Since I was the only male of the remaining family, I acquired
responsibilities which later restricted my ability to pursue a career. Since my next meeting
with my father occurred after more than twenty years of postdoctoral research on the
Riemann hypothesis, he has no further place in this apology.

The remainder of the war was spent at a summer cottage in Rehoboth Beach, Delaware.
The transition to English as a language seems to have stimulated mathematical ability.
The first signs were an ability to decode cryptograms in the Philadelphia Enquirer. Words
provide a stimulus which escapes the logical function of the mind by penetrating into
the subconscious. The logical function is boosted when it benefits from the subconscious
function.

The end of childhood was caused by two events when I was twelve. I entered the second
form at Saint Andrew’s School as the cottage in Rehoboth was sold. My new home was the
house near Wilmington which my grandparents were building when I came from France.
My grandmother replaced my mother as the central person in family life.

My grandmother was the daughter of a German immigrant who made a successful career
in Philadelphia. Philip Hübner was born in Mosbach, a village upstream from Heidelberg
on the Neckar. He avoided conscription in the Franco–Prussian War of 1870 by escaping to
Scotland with the help of a Quaker organization. In Paris after the war he was of assistance
to an American with a deficient knowledge of French. He accepted the invitation to join
him in business in Philadelphia. The devout integrity of Philip Hübner was well seen in
Quaker Philadelphia. He eventually became a partner in the business and married one of
the Izzard daughters.

His daughter, Ann Heebner, grew up in Chestnut Hill, a suburb of Philadelphia com-
parable to Wayne. She attended the same art school in Philadelphia as Mary Cassatt.
Oil paintings of that time indicate talent. The First World War may be the reason why
she did not become a professional artist. Germans in America lost the sympathy which
lubricates business relations. After the war she did not have the means to travel to Italy
and Spain as Mary Cassatt did in the nineteenth century. She spent a winter in Paris as
a student of Whistler before war began.

My grandmother produced good paintings after she married my grandfather. The tulips
of her Swarthmore garden are painted with an intensity of color reminiscent of Renoir. A
vivid self–portrait competes with the best I have seen. But her energies were given to sup-
port of my grandfather in his work. She was an excellent cook and gardener. Her friendship
with Irene du Pont and Aunt Reba complemented the friendship of my grandfather with
Irénée du Pont.

The challenges of war and the arrival of my mother in America tested the best qualities
of my grandmother. Inflation caused a reduction in purchasing power not compensated by
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Dr. and Mrs. Ellice Mc Donald at Invercoe, the home built near Wilmington in 1941.

Photo taken circa 1954.

increases in salary. My mother caused a reduction of disposable income. My grandmother
decided to do her own cooking and sent her maid to help my mother in Rehoboth. Agnes
was a young woman from the Appalachians who was loved by my sisters. She returned
home to be married when Nora no longer required her attention.

My mother and sisters were received by the mother of a classmate, Mary Read, at the
Agnes Irwin School. Mrs. Read and her sister Miss Marion Wood owned adjacent estates
in Bryn Mawr on a hill which descended through woods to the Schuylkill River. Across the
river the Alan Wood Steel Company supplied work to the Poles, Ukrainians, Hungarians,
Czechs, and Slovaks who lived in the colorful houses of Conshohocken. The discordant
sounds of the factory were carried by the wind to the hilltop. Mrs. Read and her sister
were Quakers who gave a high priority in their lives to charitable actions. My mother was
treated as if she were a daughter.

Years were required for my mother to free herself from dependence on parents. Aware-
ness of the burden on my grandmother made me treat my studies at Saint Andrew’s School
seriously. I was disappointed by my performance in algebra. In a summer vacation I solved
several hundred problems in an exercise book on algebra. The experience was instructive
because I had no text explaining how to solve problems. I performed sufficiently well in a
proficiency examination to be advanced to plane geometry when I returned to school.

Saint Andrew’s School offered a study incentive of weekends off campus to students who
obtained satisfactory grades. I used this means to visit my grandparents in Wilmington.
I would then caddy for my grandfather as he played golf on Sunday morning with Mr. du
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Pont. One morning, as Mr. du Pont was drinking his usual glass of rhum and orange juice
after the game, he asked me to find positive integers a, b, and c such that

a3 + b3 = 22c3.

There was no explanation that this was a variation due to Lagrange of a problem of Fermat.
Nor was any hint given as to how the problem should be approached.

The solution of the problem required more than a year. In the process I learned the
available sources of information about mathematics. Some discoveries were surprising. On
summer days my sister Elise liked to play the piano in the Read home at the top of the hill.
Her favorite piece by Beethoven is dedicated to a woman of like name. As she played, I
read well written and historically interesting articles on mathematics in the Encyclopedia
Britannica. There was enough detail given for me to reconstruct the representation of
positive integers in the form

a2 + b2.

I then constructed for myself the representation of positive integers in the form

a2 − ab+ b2

as required for the solution of the Lagrange problem.
I do not remember receiving approval for my solution of the Lagrange problem. In solv-

ing the problem I became effectively a member of the Biochemical Research Foundation.
The challenges of Saint Andrew’s School were secondary to life with my grandfather. The
Lagrange problem taught me to work without expecting reward and yet believing that I
would benefit from the work done. The Lagrange problem also taught me to search for
mathematical information from nonmathematical sources.

Mathematicians, like Mr. du Pont, do not like to commit themselves to a meaning for
their actions since any such explanation is necessarily subjective and open to criticism.
Their intentions are concealed in precise detail which exhausts the patience of a reader.
Explanations of meaning require a decision as to the purpose of mathematics. I learned
the Euler theory of the gamma function and the Mark Krein theory of the vibrating string
from The Mathematics of Physics and Chemistry by Henry Margenau and George Murphy.
Since the proof of the Riemann hypothesis is a continuation of both theories, experience
at the Biochemical Research Foundation prepared the proof of the Riemann hypothesis.

In school years I benefited from the good will of friends of the Atlee and de Branges
families in Wayne. The principal one for me (since others benefited my sisters) was Colonel
Harrison Smith, a lawyer and reserve army officer who served in the American Expedi-
tionary Force during the First World War. A lover of nature, he was my father’s scoutmas-
ter in Wayne. It disturbed Colonel Smith, as it disturbed Mrs. du Pont, that sons should
grow up without a father. He supported Camp Pasquaney in the White Mountains of New
Hampshire for the same reasons that Mrs. du Pont supported Saint Andrew’s School. The
two summers I spent at Camp Pasquaney were at his expense. If the five years I spent at
Saint Andrew’s School were at the expense of Mrs. du Pont, the secret is buried with my
grandmother.

Camp Pasquaney and Saint Andrew’s School made contributions to my mathematical
career. In school I learned the Christian concepts of faith and of the forgiveness of sins. For
mathematicians an error is a sin. I do not expect from myself a performance which is free
of error any more than I would of another sin. I am unlike a majority of mathematicians
in believing that the sin of error can be forgiven. I acknowledge my errors and learn from
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them. I have seldom made an error which does not contain some grain of truth. Faith is
the capacity to maintain the search for truth despite error.

In camp I learned the pleasure of hiking through mountainous terrain, a pleasure height-
ened by gifts of bittersweet chocolate from Colonel Smith. These are conditions which are
known to stimulate thought. For me the stimulus lies in the changing perspectives of sur-
faces which are not flat. Major mathematical contributions of my career have been made
in summer months when hiking was possible.

Two events prepared the future as I approached graduation from Saint Andrew’s School.
My grandfather decided that I should have a university education. In retrospect it seems
to me that Mr. du Pont made the decision since my grandfather had obligations which took
precedence over my education. The choice of the Massachusetts Institute of Technology
is consistent with a decision by Mr. du Pont since it was his university. I had scores on
entrance examinations which cleared obstacles to admission. My grandfather and I flew
to Boston for a speech given by Winston Churchill. Our holiday mood is preserved in
my memory by its association with the melody Greensleeves played in our Brookline hotel.
Then we crossed the Charles to examine the campus which was to give me four determining
years of education.

The other event concerned the property which my father inherited from his mother. The
income from these stocks and bonds became available to my mother when she returned
to the United States in 1941. The provision remained in force in the expectation that
my father would return. It became clear that my father had no intention of returning.
Colonel Smith, with information from Colonel Lyle on active duty in Germany, concluded
that my father had deserted wife and children by not returning to the United States. He
represented her in a divorce suit which awarded her possession of my father’s inherited
property. Inflation left a diminished sum which was nevertheless sufficient to buy a house
in Wayne. Our family was united for years in which my mother and sisters required my
presence.

When I arrived in Boston in September 1949, I was asked to join the fraternity which
had been that of Mr. du Pont, but declined in favor of the Boston branch of the fraternity
which had been that of my father at the University of Pennsylvania. The Number Six
Club, originally located at number six Louisburg Square, was then an international center
patterned on a Harvard club. Its members were favored guests at parties where formal
dress was worn in an aura of New Orleans jazz.

I treated my undergraduate studies as if I were a graduate student. George Thomas was
writing a text on the calculus and analytic geometry which was tested on the incoming
freshman class. Professor Thomas himself taught the section in which I was placed. I
worked through the exercises for all four semesters and was exempted from the remaining
three semesters by a proficiency examination. Professor Thomas was pleased by my reading
of his untested lecture notes. I remember that he attended a wrestling match against
Boston University in which I pinned an opponent in a weight class above my own 155
pounds.

I was freed in the second semester to take a graduate course in linear analysis taught
by Witold Hurewicz. The text by Garrett Birkhoff and Saunders Mac Lane was familiar
as it had been in the library of the Biochemical Research Foundation. It must have been
ordered for my benefit as no other reader is conceivable.

In the summer break I read the recently published Lectures on Classical Differential
Geometry by Dirk Struik. When my knowledge was tested in a proficiency examination,
Professor Struik gave me more than a perfect score since I had to correct the statement
of one of the problems before solving it. The differential geometry of Cartesian space is
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a continuation of Newtonian analysis made in the eighteenth century. Professor Struik
notes that mathematical contributors made contributions to the political changes which
culminate in the French Revolution. His interest in politics was sufficient for him to be
investigated as a communist by the un–American Activities Committee of the Senate. In
an extended sabbatical leave he wrote A Concise History of Mathematics, which attempts
a coherent view of mathematical analysis.

In my sophomore year I took a course from Walter Rudin on the Principles of Mathe-
matical Analysis. His exemplary teaching was funded by a C.L.E. Moore Instructorship.
For the first time I took careful lecture notes as later in graduate courses. The Theory
of Functions by Edward Titchmarsh however treats the material in a more stimulating
way. The Riemann hypothesis is an underlying theme for Titchmarsh as well as for Taylor
Whittaker and Neville Watson in their classical text Modern Analysis.

The decision to prove the Riemann hypothesis begins as a search for purpose in my
junior year. Substantial mathematical sources were available at a time when the quality of
books was not measured by circulation. Books on Diophantine analysis were obtainable in
the library of Saint Andrew’s School, in the Wilmington Public Library, and in the library
of the University of Delaware. The applications to Diophantine analysis of the structure
of algebras were available in the University of Chicago monograph by Eugene Dickson on
Algebras and their Arithmetics. When I read the lecture notes of George Thomas, I was
aware that he was applying the Hamiltonian theory of quaternions. These hypercomplex
numbers, which in Diophantine analysis are applied to the representations of a positive
integer as a sum of four squares, clarify the Newtonian analysis of Cartesian space. Their
application in electromagnetism is a challenge to those who have an interest in Newtonian
analysis. In an undergraduate thesis I proposed an interpretation of electric and magnetic
vectors as Christoffel symbols of a Riemannian manifold.

A continuation was made in graduate years at Cornell University, where I obtained a
teaching assistantship on the recommendation of George Thomas. I approached graduate
studies as if I were a postdoctoral fellow. My grandfather died in January of my second
year as I was taking doctoral qualifying examinations. The lecture notes of Emil Artin
and Amelia Noether, taken by Bartel van der Waerden and published by Springer–Verlag
as Moderne Algebra, were stimulating preparation for the examinations. I was impressed
by the relationship between convexity and topology in the geometric formulation of the
Hahn–Banach theorem, due to Marshall Stone and presented by Jean Dieudonné under
the pseudonym Nicolas Bourbaki as Espaces Vectoriels Topologiques. My teaching duties
were reduced by a fellowship in the academic year following the qualifying examinations.

The Riemann hypothesis emerged as a research objective because of its link through
Fourier analysis to quantum mechanics. The Introduction to the Theory of Fourier Integrals
by Edward Titchmarsh led me into Eigenfunction Expansions Associated with Second–
Order Differential Equations and The Theory of the Riemann Zeta–Function. An opening
for research appeared in a symposium on harmonic analysis held at Cornell University in
the summer 1956.

Mathematical symposia are ordinarily quiet events whose dullness is compensated by
the beauty of the places where they are held. Szolem Mandelbrojt of the Hebrew Uni-
versity Jerusalem gave a polished lecture on the Carleman method in the spectral theory
of unbounded functions. The lecture became interesting after the furious rebuttal given
by Arne Beurling of the Institute for Advanced Study. The Carleman method applies
two functions, one analytic above the real axis and another analytic below the real axis,
whereas the Wiener operational calculus requires a function defined on the real axis. A
clarification is needed of the auxiliary functions introduced by Carleman.
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Louis and Elise de Branges de Bourcia, Prince Akihito, and another guest of Eliz-

abeth Gray Vining, author of Windows for the Crown Prince, for breakfast at her

home in Mount Airy, Philadelphia. Prince Akihito brought his English teacher a

miniature replica of a golden chariot on returning to Japan from a European tour.

The mothers of Elizabeth Gray Vining and Ann Heeber Mc Donald were sisters.

Their common grandmother was a descendant of a Quaker immigrant who obtained

land from William Penn across the Delaware River from Philadelphia.

An explanation is given in my doctoral thesis, written in the academic year 1956–1957.
I would not have accepted the problem without the encouragement of Harry Pollard, who
organized the symposium, and of Wolfgang Fuchs, who guided me through literature in
complex analysis. The monograph by Ralph Boas on Entire Functions prepared me in
a mathematical specialty which includes the classical approach to the Riemann hypoth-
esis. My thesis, Local operators on Fourier transforms, clarifies the appearance of entire
functions in the spectral theory of unbounded functions.

My last visit to Mr. du Pont was made with my grandmother and my sister Nora when
I had become a doctor of philosophy and had completed active duty as a lieutenant in the
United States Army Reserve. Daughters arrived to see their mother, in bed upstairs with
a terminal illness. Mr. du Pont, blinded by cataracts in his eyes, drank rhum and orange
juice as he joked about the revolution in Cuba. Xanadu was converted by Fidel Castro
into a museum of capitalist decadence with the former butler as curator. The amusement
shown by Mr. du Pont at my mathematical career is a hint of a subsidy of my education
in Boston.

* * *

The issue in the Riemann hypothesis is the extension of a function, which is analytic
and without zeros in a half–plane, to a function which is analytic and without zeros in a
larger half–plane.

An analytic weight function is a function which is analytic and without zeros in the
upper half–plane. The weighted Hardy space associated with an analytic weight function
W (z) is the set F(W ) of functions F (z), analytic in the upper half–plane, such that the
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least upper bound

‖F‖2F(W ) = sup

∫ +∞

−∞
|F (x+ iy)/W (x+ iy)|2dx

over all positive numbers y is finite. The weighted Hardy space is a Hilbert space which
contains the function

W (z)W (w)−/[2πi(w− − z)]

as reproducing kernel function for function values at w when w is in the upper half–plane.
Multiplication by

(z − w)/(z − w−)

is an isometric transformation of the space onto the subspace of functions which vanish at
w when w is in the upper half–plane.

A sufficient condition for analytic continuation without zeros of the analytic weight
function W (z) to the half–plane

−1 < iz− − iz

is given by a hypothesis on the weighted Hardy space F(W ). The condition states that
a maximal dissipative transformation is defined in the space by taking F (z) into F (z + i)
whenever the functions of z belong to the space.

An example of an analytic weight function

W (z) = Γ( 1
2 − iz)

which satisfies the condition for analytic continuation is defined from the gamma function.
The gamma function is a function Γ(s) of s which is analytic in the complex plane with
the exception of singularities at the nonpositive integers. The function has no zeros and
satisfies the recurrence relation

sΓ(s) = Γ(s+ 1).

The identity

[W (z − 1
2 i)W (w + 1

2 i)
− +W (z + 1

2 i)W (w − 1
2 i)
−]/[2πi(w− − z)]

= W (z − 1
2 i)W (w − 1

2 i)
−/(2π)

is a consequence of the recurrence relation. The limit of

yF (iy)/W (iy)

exists as y increases to infinity whenever the functions F (z) and F (z + i) of z belong to
the space F(W ). The identity

〈F (t+ i), G(t)〉F(W ) + 〈F (t), G(t+ i)〉F(W ) = 2π lim yF (iy)/W (iy) limyG(iy)−/W (iy)−

holds whenever the functions F (z) and G(z) of z belong to the space and the functions
F (z + i) and G(z + i) of z also belong to the space. The identity implies that a maximal
dissipative transformation is defined in the space by taking F (z) into F (z + i) whenever
the functions of z belong to the space.
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The extension of an analytic weight function to a larger half–plane is a limiting case
of a construction which applies in Hilbert spaces of entire functions. The spaces are
characterized by three axioms.

(H1) Whenever F (z) is in the space and has a nonreal zero w, the function

F (z)(z − w−)/(z − w)

belongs to the space and has the same norm as F (z).
(H2) A continuous linear functional on the space is defined by taking F (z) into F (w)

for every nonreal number w.
(H3) The function

F ∗(z) = F (z−)−

belongs to the space whenever F (z) belongs to the space, and it always has the same norm
as F (z).

If an entire function E(z) satisfies the inequality

|E∗(z)| < |E(z)|

when z is in the upper half–plane, then it has no zeros in the upper half–plane. A weighted
Hardy space F(E) exists. The set of entire functions F (z) such that F (z) and F ∗(z) belong
to the space F(E) is a Hilbert space H(E) which is contained isometrically in the space
F(E) and which satisfies the axioms (H1), (H2), and (H3). The space H(E) contains the
entire function

E(z)E(w)− − E∗(z)E(w−)

2πi(w− − z)
of z as reproducing kernel function for function values at w for all complex numbers w. A
Hilbert space, whose elements are entire functions, which satisfies the axioms (H1), (H2),
and (H3), and which contains a nonzero element, is isometrically equal to a space H(E).

A Hilbert space of entire functions which satisfies the axioms (H1), (H2), and (H3)
is said to be an Euler space of entire functions if for h in the interval [0, 1] a maximal
dissipative transformation in the space is defined by taking F (z) into F (z + ih) whenever
F (z) and F (z + ih) belong to the space. The defining function of a space H(E) which is
an Euler space of entire functions admits no distinct zeros w− and w − ih with h in the
interval [0, 1].

If W (z) is an Euler weight function, the set of entire functions F (z) such that F (z)
and F ∗(z) belong to the weighted Hardy space F(W ) is an Euler space of entire functions
which is contained isometrically in the space F(W ) and which contains a nonzero element.

There are many Hilbert spaces of entire functions which satisfy the axioms (H1), (H2),
and (H3) and which are contained isometrically in the space F(W ). Interesting spaces have
the property that an entire function F (z) belongs to the space if (z−w)F (z) belongs to the
space for some complex number w and if F (z) belongs to the space F(W ). A fundamental
theorem states that such Hilbert spaces of entire functions are totally ordered by inclusion.
All such spaces are Euler spaces of entire functions. Many such spaces exist in the sense
that the elements of the weighted Hardy space are recovered by an expansion similar to a
Fourier expansion.

The Riemann hypothesis is proved for a Dirichlet zeta function by constructing a Hecke
zeta function whose zeros contain the zeros of the Dirichlet zeta function. The same
construction is applied in the proof of the Riemann hypothesis for the Euler zeta function.
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A modification is required since an Euler weight function cannot have a singularity at the
origin. The weighted Hardy space obtained fails to have the required maximal dissipative
properties.

If a Hilbert space of entire functions satisfies the axioms (H1), (H2), and (H3), the
entire function E(z) which defines the resulting space H(E) can be chosen with a zero
anywhere in the lower half–plane. The function E(z) is then unique within a constant
factor of absolute value one.

A condition on a space H(E) implies that the entire function E(z) admits no distinct
zeros w− and w − i symmetric about a horizontal line at distance one–half below the real
axis. The condition is that a maximal dissipative transformation is defined in the space
by taking F (z) into F (z + i) whenever the functions of z belong to the space.

A Hilbert space H(E) which is contained isometrically in a weighted Hardy space F(W )
exists if a nontrivial entire function F (z) exists such that the functions F (z) and F ∗(z) of
z belong to the space. The space H(E) contains all such entire functions. If a maximal
dissipative transformation is defined in the space F(W ) by taking a function F (z) of z
into the function F (z+ i) of z whenever the functions belong to the space, then a maximal
dissipative transformation is defined in the space H(E) by taking a function F (z) of z into
the function F (z + i) of z whenever the functions belong to the space.

The Fourier transformation for the complex plane is a source of motivating examples
of Hilbert spaces of entire functions which admit maximal dissipative transformations.
The Fourier transformation takes functions of distance from the origin into functions of
distance from the origin. The Hankel transformation of order zero is the restriction of
the Fourier transformation to such functions. The transformation is applied to square
integrable functions with respect to plane measure which vanish in a disk z−z < a and
whose transform vanishes in the disk. Nontrivial functions with these properties exist for
every positive number a. The theorem is due to Nikolai Sonine, Recherches sur les fonctions
cylindriques et le développement des fonctions continues en séries, Mathematische Annalen
16 (1880), 1–80.

Computations of Hankel transforms are made using the Laplace transformation. Hilbert
spaces of entire functions which satisfy the axioms (H1), (H2), and (H3) appear on applica-
tion of the Mellin transformation. A space which contains a nontrivial element is obtained
for every positive number a. The space is defined by an entire function E(a, z) of z which
satisfies the identity

E∗(a, z) = E(a, z − i)

and whose zeros like on the horizontal line

z − z− = −i

at distance one–half below the real axis. The spaces are defined by the analytic weight
function

W (z) = Γ( 1
2 − iz).

Multiplication by a−iz is an isometric transformation of the space of parameter a into the
space F(W ). The space of entire functions contains every entire function F (z) such that
the functions

a−izF (z)

and
a−izF ∗(z)
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of z belong to the space F(W ).
The Hilbert spaces of entire functions associated with the Hankel transformation of order

zero are motivation for the proof of the Riemann hypothesis which was published as Self–
reciprocal functions in the Journal of Mathematical Analysis and Applications 9 (1964),
433–457. A parametrization is made of all square integrable functions which vanish in a
neighborhood z−z < a of the origin and whose Hankel transform vanishes in the neighbor-
hood. The parametrization is derived without the use of Hilbert spaces of entire functions
by Virginia Rovnyak in her thesis on Self–reciprocal functions which was published in the
Duke Mathematical Journal 33 (1966), 363–378. Maximal dissipative transformations for
Hilbert spaces of entire functions were introduced as The Riemann hypothesis for Hilbert
spaces of entire functions in the Bulletin of the American Mathematical Society 15 (1986),
1–17. A proof of the Riemann hypothesis is proposed for Dirichlet zeta functions. A good
choice of Hilbert spaces of entire functions is essential to the success of the method.

A Dirichlet character χ modulo ρ is defined for a positive integer ρ as a function χ(n)
of integers n which is periodic of period ρ, which satisfies the identity

χ(mn) = χ(m)χ(n)

for all integers m and n, which has nonzero values at integers relatively prime to ρ, and
which vanishes elsewhere.

A character χ modulo ρ is said to be primitive modulo ρ if no character modulo a proper
divisor of ρ agrees with χ at integers relatively prime to ρ.

A principal character modulo ρ is a character whose only nonzero value is one. The
principal character modulo ρ is primitive modulo ρ if, and only if, ρ is equal to one.

The Dirichlet zeta function associated with a nonprincipal character χ modulo ρ is an
analytic function

ζ(s) =
∑

χ(n)n−s

of s in the complex plane which is represented as a sum over the positive integers n in the
half–plane Rs > 1 and by the Euler product

ζ(s)−1 =
∏

(1− χ(p)p−s)

over the primes p which are not divisors of ρ. The Euler zeta function is defined with χ
the principal character modulo ρ. The Euler zeta function is analytic in the complex plane
with the exception of a singularity at one. The product

(s− 1)ζ(s)

is analytic in the complex plane.
A character modulo ρ is an even or an odd function of integers. The Dirichlet zeta

functions and the Euler zeta function satisfy functional identities when the character is
primitive modulo ρ. The functional identity relates the zeta function of character χ modulo
ρ and the zeta function of character χ− modulo ρ. When χ is an even character, the
function

(ρ/π)
1
2 sΓ( 1

2s)ζ(s)

of s associated with the zeta function ζ(s) of character χ is analytic in the complex plane
if χ is a nonprincipal character and is analytic with the exception of singularities at zero
and one if χ is the principal character. A linearly dependent function of s is obtained when
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s is replaced by 1− s and χ is replaced by χ−. Equality of the functions is obtained when
χ is the principal character. When χ is an odd character, the function

(ρ/π)
1
2s+

1
2 Γ( 1

2s+ 1
2 )ζ(s)

of s associated with the zeta function ζ(s) of character χ is analytic in the complex plane.
A linearly dependent entire function is obtained when s is replaced by 1 − s and χ is
replaced by χ−.

The Euler duplication formula

2sΓ( 1
2s)Γ( 1

2s+ 1
2 ) = 2Γ( 1

2 )Γ(s)

for the gamma function is applied in the construction of analytic weight functions which
are associated with Dirichlet zeta functions and which admit maximal dissipative trans-
formations. The weight function

W (z) = (2π/ρ)
1
2−izΓ( 1

2 − iz)ζ( 1
2 − iz)ζ( 3

2 − iz)

is associated with the Dirichlet character χ. A modification of the proof of the Riemann
hypothesis is required for the Euler zeta function because of its singularity.


