CHAPTER 2. THE PROOF OF THE BIEBERBACH CONJECTURE

A complex valued function f(z) of z = x + iy in a region of the complex plane is said
to be differentiable at an element w of the region if the function

[f(2) = f(w)]/(z — w)

is continuous at w when suitably defined at w. The value at w is taken as the definition
of the derivative f/'(w) at w. A function is continuous at w if it is differentiable at w.

A square summable power series f(z) with complex coefficients converges in the unit
disk and defines a function in the unit disk. The value

flw) =(f(2),(1 —w=2)7")

at w of the function represented by a square summable power series f(z) is a scalar product
in the space of square summable power series with the square summable power series

(1-—w2) =14+ w)z+ (w)?2%+...
The function represented by a square summable power series is continuous since the identity
FB) — fla)=(f(2),(1 - p72)" ~ (1 -a"2)7")
holds when « and 3 are in the unit disk and since the square summable power series
1-B72) ' 1-a2)t=Ba) 2+ (B> a?) 22 +...
satisfies the inequality

=B 2) =1 —a2) Y P<|B-al0+|a+B+ | +aB+ B2 +...)

If f(z) is a square summable power series, a sequence of square summable power series
frn(2) is defined inductively by

and
fat1(2) = [fn(2) — fn(0)]/2

for every nonnegative integer n. Since the inequality

a2 < [1£(2)]]

holds for every nonnegative integer n, the square summable power series

[f(2) = [(@)]/(z = ) = fl(lz) +afy(z) + o’ fa(2) + ...
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is a sum in the metric topology of the space of square summable power series when « is
in the unit disk. Since the power series represents a continuous function in the disk, the
power series f(z) represents a differentiable function in the disk. The function

[f(w) = f(a)l/(w — o)

of w in the disk is continuous at @ when given a definition f'(«) at «.

Square summable power series which represent the same function are identical since
the coefficients of a square summable power series are all zero if the function represented
vanishes identically. A square summable power series is identified with the function it
represents. The reproducing kernel function

(1w 2)™*

for function values at w in the space of square summable power series is the element of
the space which in a scalar product determines the value of the represented function at w
when w is in the unit disk.

If W (z) is a nontrivial power series such that multiplication by W(z) is a contractive
transformation of the space of square summable power series into itself, then

W)W (w) /(1w z)

is the reproducing kernel function for function values at w in the range space M(W') when
w is in the unit disk. For if

9(z) =W(2)f(2)
is an element of the space M (W), the identity

is a consequence of the identity

flw) = (f(2),(1 —w=2)7")

since multiplication by W (z) is an isometric transformation of the space C(z) onto the
space M(W) and since the identity

is satisfied. The reproducing kernel function
W(E)W(w) /(1 —w 2)

for function values at w in the space M(W) is obtained from the reproducing kernel
function
(1—w z)*
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for function values at w in the space of square summable power series under the adjoint of

the inclusion of M(W) in C(z).
The reproducing kernel function
[1=WEHW(w) [/(1 -w z)
for function values at w in the space H (W) is obtained from the reproducing kernel function
(1w 2)™"

for function values at w in the space of square summable power series under the adjoint of
the inclusion of the space H (W) in C(z). The identity

flw) = (f(2), [t = W)W (w) " ]/(1 = w 2))w)
holds for every element f(z) of the space H(W). Since the identity applies when
fz) =1 =W(EW(w) [/(1 —w" z),
the function represented by the power series W(z) is bounded by one in the unit disk.

Reproducing kernel functions are applied to determine the structure of a Hilbert space
H whose elements are functions in the unit disk. A continuous linear functional on the
space is assumed to be defined for every element w of the unit disk by taking function
values at w. The reproducing kernel function for function values at w is th unique element
K (w, z) of the space which represents the value

flw) = (f(2), K(w,2))x

for every element f(z) of the space. The indeterminate z is treated as a dummy variable
in the notation for a function. The function

K(a, B) = (K(a, 2), K(B, 2))n

of @ and B in the unit disk is treated as an infinite matrix. The symmetry of a scalar
product implies the Hermitian symmetry

K(B, ) = K(a, )"

of the matrix. The infinite matrix is nonnegative in a sense which is determined by its
finite square submatrices. If v1,...,7, are in the unit disk, then the r x r matrix with
entry

K (i, ;)

in the i—th row and j—th column is nonnegative. A nonnegative number results when the
matrix is multiplied on the right by a column vector with r entries and on the left by the
conjugate transpose row vector. The nonnegative number is a sum of products

c; K(vi,vj)e;
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taken over 7 and j equal to 1,...,r for complex numbers cq,... ,c,..

Reproducing kernel functions are applied in interpolation. If ~q,...,7, are distinct
elements of disk, the set of elements of the Hilbert space which vanish at these elements
is a closed vector subspace whose orthogonal complement consists of functions which are
determined by their values at these elements. A function on the finite set is extended to
the unit disk so as to be orthogonal to functions which vanish on the finite set. The space
of functions on the finite set is a Hilbert space in the scalar product inherited from the
full space. Every function on the finite set is a linear combination of reproducing kernel
functions which represent values taken on the set. A reproducing kernel function for values
on a set is its own extrapolation to the full space. The nonnegativity of a reproducing
kernel function is the condition for the existence of a scalar product for the functions on
the finite set which creates a Hilbert space compatible with the reproducing property. The
finite linear combinations of reproducing kernel functions form a dense vector subspace of
the Hilbert space of functions defined on the unit disk. The Hilbert space is the metric
completion of the dense subspace. The reproducing property permits the elements of the
completion to be realized as functions defined on the unit disk.

The Jordan curve theorem states that the complex complement of a simple closed curve
in the complex plane is the union of a bounded region and an unbounded region. The
Cauchy formula states that the Stieltjes integral

/f(z)dz ~0

of a continuous function over the closed curve is equal to zero if the curve has finite length,
if the function has a continuous extension to the closure of the bounded region, and if
the function is differentiable at all but a finite number of elements of the bounded region.
An example of a simple closed curve is the unit circle, which bounds the unit disk. The
Cauchy formula for the unit circle is proved by decomposing the unit disk into regions
which are bounded by circles centered at the origin and straight lines through the origin.

Points of nondifferentiability are constructed for a function f(z) of z in the unit disk,
which has a continuous extension to the closed disk, when the Cauchy integral

27
S(1) = f(e®)ie? dp
0

for the unit circle is nonzero. A point of nondifferentiability is constructed in the annulus
a<|z|<b

when the inequality

27 2w
(b—a)|S(1)] < | f(be™)ibe dh — f(ae®)iae™ db)|
0 0
is satisfied. If the length of an interval («, ) is less than 27, a simple closed curve is
constructed from ae’® to be'™ along a radial line away from the origin, from be’® to be’”
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counterclockwise along a circle of radius b centered at the origin, from be’® to ae’® along
a radial line towards the origin, and from ae™® to ae’® clockwise along a circle of radius a
about the origin. The Cauchy integral for the curve is

S(a,b; o, B)
b o b - B _ _ B . .
:/ f(rem)ew‘dr—/ f(re’ﬂ)e’ﬂdqu/ f(be’e)ibe’edﬁ—/ f(ae®)iae®ds.

The Cauchy integral is zero for a linear function since it is zero for a constant and for
z. The nonzero nature of the integral measures the difficulty in approximating the given
function by a linear function.

A point of nondifferentiability is found in the region bounded by the curve when the
inequality
(8 —a)(b—a)[S(1)| < 27[S(a, b;a, B)|
is satisfied. A point w of nondifferentiability is obtained when the regions containing w

and satisfying the inequality form a basis for the neighborhoods of w. If the inequality

1f(2) = 9(2)| < €[z — w|
holds in the region for some linear function g(z) for a positive number e, then

S(1)| <e

since the inequality

27(S(a, b, B)] < (B — a)(b— a)e
is satisfied.

The maximum principle states that the real part of a function f(z) of z in the unit
disk, which is differentiable at all but a finite number of points in the disk and which has
a continuous extension to the closed disk, vanishes in the unit disk if it is nonpositive on
the unit circle and nonnegative at the origin. The function f(z)/z is differentiable at all
but a finite number of points in the annulus

a<l|z| <1

when a is in the interval (0,1). Since the identity

27 ) 27 )
fae®)do = | f(e)do
0 0

holds by the proof of the Cauchy formula, the value of the function at the origin is an
average

27
2rf(0) = | f(e")do
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of values on the boundary. If the real part of the integrand is nonpositive and real part
of the integral is nonnegative, then the real part of the integral and the real part of the
integrand are zero. The function is a constant since its real part vanishes in the unit disk.

An example of a function which is differentiable and bounded by one in the unit disk is
W(z)=(a—2)/(1—a 2)

when « is in the unit disk. A Hilbert space H of functions in the unit disk exists whose
reproducing kernel function for function values at w is

1-WERWw) /1w 2)=01a o)1 -—a 2) (1 aw )

when w is in the unit disk. The space is contained isometrically in the space of square
summable power series since
(1—a2)7!

is the reproducing kernel function for function values at « in C(z). The orthogonal com-
plement of H in C(z) is a Hilbert space M which is contained isometrically in C(z) and
which contains the functions which vanish at a. Since the reproducing kernel function for
function values at w in M is

W)W (w)” /(1 —w™ z),

multiplication by W (z) is an isometric transformation of C(z) onto M. Since M is con-
tained isometrically in C(z), multiplication by W (z) is an isometric transformation of C(z)
into itself.

Applications of the maximum principle are made when a continuous function W(z) of
z in the unit disk is bounded by one and differentiable at all but a finite number of points
in the disk. If the inequality
[W(a)| <1

holds for some « in the disk, then it holds for all o in the disk. If the inequality holds
for a point « of differentiability, then a continuous function W’(z) of z in the unit disk,
which is bounded by one and differentiable at all but a finite number of points in the disk,
is defined by the identity

W(z)(a— 2)/(1 — a”z) = [W(a) ~ W(2)]/[1 - W(a)”W(2)].

The identity is applied as a parametrization of the continuous functions V' (z), which are
bounded by one in the unit disk and differentiable at all but a finite number of points in
the disk, such that

V(a) = W(a).

Such a function is obtained on replacing W(z) by V(z) in the identity and replacing W'(z)
by a continuous function V’(z) which is bounded by one in the unit disk and differentiable
at all but a finite number of points in the disk.
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If a continuous function W (z) of z in the unit disk is bounded by one in the disk and
is differentiable at all but a finite number of points in the disk and if a Hilbert space H
exists whose elements are functions of z in the disk and which has the function

[1-W(E)W(w) /(1 —w™ 2)

of z as reproducing kernel function for function values at w when w is in the unit disk,
then multiplication by W (z) is an isometric transformation of C(z) onto a Hilbert space
M whose elements are functions of z in the unit disk and which has the function

W)W (w) /(1 - w" z)

of z as reproducing kernel function for function values at w when w is in the unit disk. A
Hilbert space H V M exists in which the spaces H and M are contained contractively as
complementary spaces. The elements of the space H V M are functions defined in the unit
disk. Since the reproducing kernel function for function values at w in the space H V M is
the sum of the reproducing kernel functions for function values at w in the spaces H and
M, the function

(1—w z)*

of z is the reproducing kernel function for function values at w in the space HV M when w
is in the unit disk. The space H V.M is isometrically equal to C(z) since the space of square
summable power series has the same reproducing kernel functions. Since the space M is
contained contractively in C(z), multiplication by W (z) is a contractive transformation of
C(z) into itself. The function W (z) is represented by a square summable power series. The
space H is isometrically equal to the space H(W). The space H(W) is interpreted as C(z)
when W(z) is identically zero.

If a continuous function U(z) of z in the unit disk is bounded by one and is differentiable
at all but a finite number of points in the disk and if the inequality

U(a)| <1
holds at a point « of the disk, then the continuous function
V(z) = [U(e) —U(2)]/[1 =U(2)U(e) "]

of z is bounded by one in the disk and is differentiable at all but a finite number of points
in the disk. Multiplication by U(z) is a contractive transformation of C(z) into itself if,
and only if, multiplication by V(z) is a contractive transformation of C(z) into itself. For a
Hilbert space H(U) exists whose elements are functions of z in the disk and which contains
the function

1-U(z)U(w)"|/(1—w™z)

of z as reproducing kernel function for function values at w when w is in the disk if, and
only if, a Hilbert space H (V) exists whose elements are functions of z in the disk and
which contains the function

[1=V(EV(w) /(1 -w2)
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of z as reproducing kernel function for function values at w when w is in the disk. Since
the identity
[1=UEU() ][I =V(z)V(w) ]l - U(a)U(w)"]

—[1- U(@U() L~ U(2)U(w) ]

is satisfied, multiplication by
[1=U(a)U(e) ] 2[1 = U(2)U(a)"]

is an isometric transformation of the space H (V') onto the space H(U).

If a continuous function U(z) of z in the disk is bounded by one and differentiable at
all but a finite number of points in the disk and if

Ulw) =0
at a point « of differentiability, then the identity
Ulz)=V(Ez)(a—2)/(1-a 2)

holds for a continuous function V(z) of z in the disk which is bounded by one and which
is differentiable at all but a finite number of points in the disk. Multiplication by U(z) is
a contractive transformation of C(z) into itself if, and only if, multiplication by V(z) is a
contractive transformation of C(z) into itself. A space H(U), whose elements are functions
of z in the unit disk and which contains the function

1-UR)U(w) /(1 —-w 2)

of z as reproducing kernel function for function values at w when w is in the disk, exists
if, and only if, a Hilbert space H (V') exists whose elements are functions of z in the disk
and which contains the function

1-V(E)V(w) /(1w 2)

of z as reproducing kernel function for function values at w when w is in the disk. The
space H (V') is contained isometrically in the space H(U) and contains the elements of the
space H(U) which vanish at a.

If a continuous function W(z) of z in the unit disk is bounded by one in the disk and is
differentiable at all but a finite number of points in the disk and if a4, ..., «, are distinct
points of differentiability in the disk, then continuous functions W,,(z) of z in the disk,
which are bounded by one in the disk and which are differentiable at all but a finite number
of points in the disk, are defined inductively by

and

Wi (2)(an — 2) /(1 — o, 2) = Wy 1(an) = Wi 1(2)]/[1 = W 1(2)Wh 1 (an) ]
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when n is positive and W,,_1(z) is not a constant of absolute value one. A parametrization
results of the continuous functions of z in the unit disk, which are bounded by one in the
disk and which are differentiable at all but a finite number of points in the disk, having the
same values as W (z) at the points ay,...,a,. Such functions are obtained on replacing
W, (z) by an arbitrary continuous function of z which is bounded by one in the unit disk
and which is differentiable at all but a finite number of points in the disk. A Hilbert space
H(W), whose elements are functions of z in the disk and which contains the function

[1-WEe)W(w)"]/(1—-w2)

of z as reproducing kernel function for function values at w when w is in the disk, exists
if, and only if, a Hilbert space H(W,) exists whose elements are functions of z in the disk
and which contains the function

1 - W,.(2)W,(w)"]/(1 - w™ 2)

of z as reproducing kernel function for function values at w when w is in the disk. If W,.(2)
is a constant of absolute value one, the space H(W,.) contains no nonzero element and the
space H(W) has dimension r. The condition that the space H (W) has dimension at least
r is necessary and sufficient for the construction of the function W, (z).

A theorem of Cauchy states that a continuous function of z in the unit disk is represented
by a power series if it is differentiable at all but a finite number of points in the disk. If
a continuous function W(z) of z is bounded by one in the disk and is differentiable at all
but a finite number of points in the disk, then multiplication by W (z) is a contractive
transformation of C(z) into itself. A proof is given by showing that for every finite set
of distinct points aq, ..., , in the disk the matrix whose entry in the —th row and j—th
column is

[1 = W(ai)W(a;)"1/(1 = o ai)

is nonnegative. The conclusion is immediate when aq, ... , a, are points of differentiability
since multiplication by V' (z) is a contractive transformation of C(z) into itself for a power
series V (z) representing a function which agrees with W (z) at the given points. The same
conclusion holds by continuity when the points are not points of differentiability.

A function f(z) of z is said to be analytic in the unit disk if it is represented by a power
series. The Cauchy theorem states that a function f(z) of z is analytic in the unit disk if
it is continuous in the disk and is differentiable at all but a finite number of points in the
disk.

A function ¢(z) of z, which is analytic and has nonnegative real part in the unit disk,
admits a Poisson representation. When the function is continuous in the closed disk, the
integral representation

¢(2) +(w)” [ p(e®) +p(e?)”
27r——/0 i df

1—wz — e W2)(1 — w—ei)
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holds when z and w are in the unit disk. The Poisson representation is an application of
the Cauchy integrals
2T 0
B(e™)df
o= [ 7
and o
0 /27r ¢>(e19)e’9d9
Jo 1 weif

When the function ¢(z) of z is not continuous in the closed disk, a nonnegative measure
i on the Baire subsets of the real line is constructed whose value

u(B) = tim [ Hp(ei* ) + ple) o

is a limit as y decreases to zero of integrals of the real part of

p(e'”Y).

The Poisson representation reads

O AC) . /2" dp(e”)
Jo

11— w2z 1—e2)(1 —we)

when z and w are in the unit disk.

A Hilbert space is constructed whose elements are equivalence classes of Baire measur-
able functions f(e*) of ¢! on the unit circle for which the integral

21
2| £ = / () [2dpu(e?)

is finite. A partially isometric transformation of the space onto the Herglotz space L(¢) is
defined by taking a function f(e®) of €’ on the unit circle into the function

L2 f(e®)dp(e)

2r 1—e 2
of z in the unit disk. Multiplication by e~% in the Hilbert space of functions on the
boundary corresponds to the difference quotient transformation in the Herglotz space. A
related isometric transformation exists of the Hilbert space of functions on the unit circle
onto the extension space of the Herglotz space. Multiplication by e?® in the Hilbert space
of functions on the unit circle corresponds to multiplication by z in the extension space

E(¢) to the Herglotz space L(¢).

A Riemann mapping function is a power series

f(z) = a12+a222 +a323 + ...
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with vanishing constant coefficient which represents an injective mapping of the unit disk
into the complex plane.

The area theorem is the source of estimates of coefficients of Riemann mapping functions.
Analyticity and injectivity imply a contractive property of composition in a Hilbert space
whose elements are functions analytic in the unit disk.

An isomorphic Hilbert space G is the set of equivalence classes of power series
h(z) = co+c1z + ez + ...

such that the sum
||h(z)||é = \cl|2 + 2|cz|2 + 3|03\2 + ...

converges. Power series are defined a equivalent if they have equal coefficients of 2™ for
every positive integer n. Representatives are chosen in equivalence classes with vanish-
ing constant coefficient for the definition of analytic functions. An element of the space
represents an analytic function A(z) of z in the unit disk such that the integral

()13 = / W (2)|2drdy

with respect to area measure in the unit disk computes the scalar self-product.

Contractive composition is obtained for a Riemann mapping function f(z) which maps
the unit disk onto a region which is contained in the unit disk. If

h(z) = co+ c1z + caz® + ...
is an element of the space G,

9(2) = co+eif(z) +eaf(2)” + ...

is an element of the space whose scalar self product is computed by the integral

wlo@E = [ [ Iy dsdy

with respect to area measure for the unit disk. Since the chain rule

applies to complex differentiation and since the mapping defined by f(z) is injective, the
change of variable theorem produces the integral

rllg(=)[3 = / W (=) 2ddy
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with respect to area measure over the region onto which f(z) maps the unit disk. Since
the region is contained in the unit disk, the integral

w1 - o) B = [ [ 1) Paady

with respect to area measure over the complement of the region in the unit disk verifies
the contractive property of composition.

The Hilbert space G is contained isometrically in a Krein space ext G whose elements
are equivalence classes of Laurent series. Laurent series are defined as equivalent if the
coefficients of 2™ are equal for every nonzero integer n. The orthogonal complement of the
Hilbert space G in the Krein space ext G is the anti—space of a Hilbert space which is the
anti-isometric image of G under the transformation which takes f(z) into f(z 1).

If h(z) is an element of ext G whose coefficient of z™ vanishes for all but a finite number
of negative integers n, then h(z) represents a function which is analytic in the region
obtained from the unit disk on deleting the origin. The composition

9(2) = h(f(2))

is an element of ext G whose coefficient of 2™ vanishes for all but a finite number of negative
integers n. The integral

MM%M@MW—MM%MMMQZ/IﬂMWMy

with respect to area over the complement in the unit disk of the region onto which f(z)
maps the unit disk verifies the contractive property of composition on a dense set of
elements of ext G. The contractive property follows by continuity for all elements of ext G.

A proof of the contractive property of composition in the Krein space is not essential
at the outset since this property is taken as a hypothesis.

The Grunsky transformation is defined under hypotheses of contractivity. If W (z) is a
power series with vanishing constant coefficient such that a contractive transformation of
the space G into itself is defined by taking f(z) into f(W(z)), then the composition acts
a a partially isometric transformation of the Hilbert space G onto a Hilbert space which
is contained contractively in G. The Grunsky space G(W) is defined as the Hilbert space
which is the complementary space in G to the range of the transformation.

Elements of G define functions analytic in the unit disk when representatives with vanish-
ing constant coefficient are chosen in equivalence classes. The reproducing kernel function
for function values at w is the function

1 — —\2 —\3
_ (zw™) N (zw™) N (zw™)
1—zw— 1 2 3
of z when w is in the unit disk. The reproducing kernel function for function values at w
in the range of the transformation is the function
1 W)W (w)~] N (W (2)W (w) ] N (W (2)W (w)~]3
1-WEW(w)~ 1 2 3

log

log
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of z when w is in the unit disk. The reproducing kernel function for function values at w
in the space G(W) is the function

1 W)W (w)~

K(w.z) =log 1—zw~

of z when w is in the unit disk.

Multiplication by W(z) is a contractive transformation of C(z) into itself since W (z)
represents a function which is analytic in the unit disk and which is bounded by one by the
positivity properties of reproducing kernel functions. A relationship between the Grunsky
space G(W) and the space H (W) of the invariant subspace construction is implied by the
resemblance between reproducing kernel functions.

For every positive integer r a Hilbert space is constructed whose elements are functions
of the complex variables z1,...,z,. in the unit disk for each variable. The reproducing
kernel function at wy, ..., w, is the function

K(wy,21) ... K(wy, 2)

of z1,..., 2 for wy,...,w, in the unit disk. A partially isometric transformation of the

product space onto a Hilbert space G" (W) whose elements are functions analytic in the

unit disk is defined by taking a function f(z1,...,2.) of z1,..., 2, into the function
flz,...,2)

of z. The reproducing kernel function for function values at w in the space G" (W) is the
function
K(w,z)"

of z when w is in the unit disk.

The complex numbers are a Hilbert space G®(W) of functions analytic in the unit disk
whose reproducing kernel function for function values at w is the function

1= K(w,z)°

of z in the unit disk when the scalar product is determined by the choice of absolute value
as norm.

If an element f,.(z) of the space G"(W) is chosen for every nonnegative integer r, the
sum

1 1
f(z) = fo(z) + 1 fi(z) + o1 fa(z) + ...

is an element of the space H (W) which satisfies the inequality

1 1
1wy < o gowy + 37 171G owy + 551122 lg2 gy + - -
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whenever the sum converges. Every element f(z) of the space H (W) admits a representa-
tion for which equality holds. If f(z) is an element of the space G(W), then

exp f(z)

is an element of the space H (W) which satisfies the inequality

lexp £ (2) 3w < exp lf (2) 12 w)-

If W(z) is a power series with vanishing constant coefficient such that a contractive
transformation of the space G into itself is defined by taking f(z) into f(W(z)), then

is a power series with vanishing constant coefficient such that a contractive transforma-
tion of the space G into itself is defined by taking f(z) into f(W*(z)). If a contractive
transformation of the space ext G into itself is defined by taking f(z) into f(W(z)), then
a contractive transformation of the space ext G into itself is defined by taking f(z) into

FW=(2)).

The Grunsky transformation of the space G(W) into the space G(W*) is defined when
the composition f(z) into f(W (z)) is contractive in ext G.

Theorem 18. If for a power series W (z) with vanishing constant coefficient a contractive
transformation of ext G into itself is defined by taking f(z) into f(W (z)), then the function

1—W(w™)/W(z)
1—w/z

log

of z is represented by an element of the space G(W) and the function

1= W= (2)/W(w)~
1—z/w~

log

of z is represented by an element of the space G(W*) when w is in the unit disk. The
Grunsky transformation is a contractive transformation of the space G(W) into the space
G(W™) which takes f(z) into g(z) when the identity

o) = () log I,

holds for w wn the unit disk and whose adjoint is a contractive transformation of the space
G(W™) into the space G(W) which takes f(z) into g(z) when the identity

o) = () log g
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holds for w in the unit disk.

Proof of Theorem 18. Since a contractive transformation of ext G into itself is defined by
taking f(z) into f(W(z)), the transformation acts as a partially isometric transformation
of ext G onto a Krein space which is contained contractively in ext G. Since the transfor-
mation takes G contractively into itself, it acts as a partially isometric transformation of
G onto a Hilbert space which is contained contractively in G and whose complementary
space in ext G is the orthogonal sum of G(W) and the orthogonal complement of G in
ext G. The transformation acts as a partially isometric transformation of the orthogonal
complement of G in ext G onto a Krein space M which is contained contractively in the
orthogonal sum of the space G(W) and the orthogonal complement of G in ext G.

An element

f(2) +9(2)

of M is the sum of an element f(z) of the space G(W) and an element g(z) of the orthogonal
complement of G in ext G which satisfies the inequality

1F(Gewy + (9(2): 9(2))ext 6 < (F(2) + 9(2), £(2) + g(2)) m-

An anti-isometric transformation of G onto the orthogonal complement of G in ext G is
defined by taking f(z) into f(z~!). The transformation takes
log(1 — zw ™)~ *

into
log(1 —w /2)*

when w is in the unit disk. Since the identity
flw) = (f(2),log(1 - zw™)"H)g
holds for every element f(z) of G, the identity
f(/w) = (f(2),log(1 —w™ /z))ext g

holds for every element f(z) of the orthogonal complement of G in ext G. Since the function
represented by W (z) maps the unit disk into itself,

log(1 — W(w™)/z)
is an element of the orthogonal complement of G in ext G which satisfies the identity
FA/W*(w)) = (f(2), log(l = W(w™)/2))ext g

for every element f(z) of the orthogonal complement of G in ext G.
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Since a partially isometric transformation of the orthogonal complement of G in ext G
onto M is defined by taking f(z) into

the element
log(1 = W(w™)/W(z))

of M satisfies the identity

FA/W*(w)) = (g(2), log(1 = W (w™)/W(2))) m
for every element g(z) of M. The element f(z) of the orthogonal complement of G in ext G
is uniquely determined by its image g(z) in M.
Since the element

1—W(w™)/W(z)

log(1 — W(w )/W(z)) = log w2

+log (1 —w /2)

of M is the sum of an element of G and an element of the orthogonal complement of G in
ext G and since the identities

(log(1 —w ™ /2),log(1 —w ™ /2))ext ¢ = log(1 — ww ™)
and
(log(1 —W(w™)/W(z)),log(1 — W (w™)/W(2)))m = log(l — W(w™ )W*(w))
are satisfied, the element

1-W(w™)/W(z)
1—w/z

log

of G is an element of the space G(W') which satisfies the inequality

1—-W(w ) /W(z)
1—w/z

1—W(w )W*(w)

1 — ww—

[log Igow) < log

A contractive transformation of the space G* (W) into the space G(W) exists which takes
a finite linear combination

S ot L@V )

l—zwk

of reproducing kernel functions for the space G(W*) into the finite linear combination

S oy 1og LW /W)

1 —w, /2
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of elements of the space G(W) since the identity

1—W*( )W (w,, _ 1— W*(w; )W (w,
||Z cr log =W k)Hé(W*):Z cre,; log (wi) W ()

1 — 2w, 1 — wyw,
and the inequality

1 — W*(w;))W (wy, )

1 — wyw,

IS e log . Vlv(“;'j__)g””)
k

15wy < Z cre; log

are satisfied.

The adjoint transformation of the space G(W) into the space G(W*) takes f(z) into
g(z) when the identity

o) = () log I,

holds for w in the unit disk. This completes the construction of the Grunsky transformation
of the space G(W) into the space G(W™*).

Since the transformation takes

1 W)W (w)~

1—zw—

log

into
1—W*(z)/W(w)~
1—z/w~

log

when w is in the unit disk, the adjoint transformation of the space G(W™*) into the space
G(W) takes f(z) into g(z) when the identity

1—W*(z)/W(w)~

g(w) = (f(2),log 2w )g(w+)

holds for w in the unit disk.

The Grunsky transformation originates as a characterization of power series W (z) with
vanishing constant coefficient which represent injective mappings of the unit disk. Since
the function

1—-W(w™)/W(z)
1—w/z

of z admits an analytic logarithm in the unit disk when w is in the unit disk, the numerator
is nonzero whenever the denominator is nonzero. In the present formulation the contractive
property of the composition f(z) into f(w(z)) in ext G implies that the function represented
by W (z) is not only injective but bounded by one in the unit disk. The converse implication
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has not yet been verified. The original Grunsky transformation is a limiting case of the
present, transformation which gives a weaker conclusion under a weaker hypothesis.

The Koebe function as a power series

f(z2)=2+222 4323+ ...

represents a function
fz) =2/(1 - 2)?

which maps the unit disk injectively onto a region obtained from the complex plane on
deleting the real numbers not greater than minus one—quarter. The analytic function

2f'(2)/f(z) = (1 +2)/(1 = 2)
of z in the unit disk has positive real part and has value one at the origin.
A related power series
f(z) = a1z + agz® + asz® + ...

with vanishing constant coefficient is defined by

2f'(2)/f(2) = 1/d(2)

for every analytic function of z in the unit disk which has positive real part and which has
value one at the origin. The series represents an injective mapping of the unit disk onto
a region which contains the origin and which contains every convex combination of one of
its elements with the origin. When ¢ is positive and not greater than one, the function

tf(2)

of z maps the unit disk injectively onto a region which is contained in the given region.
A power series W (t,z) with vanishing constant coefficient which represents an injective
mapping of the unit disk into itself is defined by the composition

tf(z) = fF(W(L, 2)).
The composing functions form a semi group under composition: The identity
W(ab,z) = W(a, W (b, 2))

holds when a and b are positive and not greater than one. The evolution equation

t % W(t,z) = ¢(z) z % W(t, z)

generates the functions belonging to the semi group. The function W (¢, z) has derivative
at the origin equal to t.
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The Grunsky spaces of analytic functions are Hilbert spaces of analytic functions derived
from the spaces applied in the construction of invariant subspaces on a hypothesis of
injectivity for the transfer function. Exponentiation is contractive from the initial Grunsky
space G into the initial space C(z) of the invariant subspace construction. If

f(z) = G1Z+a222 +a3z3 + ...

is an element of G, then
exp f(2) = bo + b1z + baz® + ...

is an element of C(z) which satisfies the inequality
> lbal? < exp(d n(an]?).

A generalization is due to Lebedev and Milin.

Theorem 19. Assume that a nonincreasing sequence of nonnegative numbers p, has a
convergent positive sum, that

00 00
Or = Z P/ Z Pn
n=r n=0

18 defined for every positive integer r, and that the sum

Zan/n

over the positive integers n converges. If
f(2) = a1z 4+ azz® +azz® + ...

and
exp f(2) = bo + b1z + boz® + ...,

then the inequality

(Z pr|bn|?) eXp(Z on/n) < (Z Pn) eXp(Z noplan|?)

18 satisfied.

Proof of Theorem 19. The inequality is verified by maximizing

eXP(* Znon\anF) anwn‘z

under the constraint of convergent sums. If a differentiable function o, (¢) of positive ¢ is
given for every positive integer n, a differentiable function 3, (t) of positive ¢ is defined for
every nonnegative integer n by the equation

D Ba(t)2" = exp(D _ an(t)2").
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The differential equation
Bi(t) = Buk(t)aj,(t)

is satisfied for every nonnegative integer n with summation over the positive integers k
which are not greater than n.

The derivative with respect to ¢ of the sum

10g(D _ paBn(t) Bu(t) = > nonan(t) au(t)

is the sum
> Isw(t) = kowow (D)™ 0g (1) + Y [sk(t) — kowan(t)]ag ()

over the positive integers k£ with

s (t) _ anﬁ-kﬁn-kk(t)ﬁn(t)i
o S onBn (1) B (1)~

defined by sums over the nonnegative integers n.

The derivative is nonnegative when «ay(t) is defined as the solution of the differential
equation
ay(t) = sp(t) — kogag(t)
with initial condition
ai(0) = ag

for every positive integer k. The inequality

1 — exp(—koyt)

lag (t) — ag exp(—koyt)| < hon

applies when t is positive since
si(t)] < 1.

Since the inequality

exp(— Z”0n|an\2) an‘bn‘z < exp(— Znan\an(t)\z) an|5n(t)|2

is satisfied, it is sufficient to obtain an estimate of

exp(— Znan\an|2) an|bn‘2

when the inequality
kO’k‘(J,k| S 1

is satisfied. A maximum of the continuous function is obtained by compactness. The
maximum is attained on the set of coefficients defined by the equations

Z Prtkbnyrby,
> pubnbn

kakak =
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The set of noncritical points is mapped continuously into the set of critical points by
the solutions of the differential equations. Since the set of noncritical points is connected,
the set of noncritical points is mapped onto a compact connected set of critical points.

The function
exp(— Y _koglak?) Y pnlbal’

of coefficients is a constant on the set of critical points. This computes the maximum value
since an element of the set of critical points is defined by

kaj = w

for every positive integer k£ with
b, = w
for every nonnegative integer n.
This completes the proof of the theorem:.
Lebedev and Milin state the inequality only when the coefficients p,, are a sequence
of zeros and ones. The inequality is the motivation for contractive properties of compo-

sition which are found in the Koebe function and related mappings defining composition
semigroups.

If a power series f(z) has vanishing constant coefficient, the power series

f(tz/(1 Z ap (t

has vanishing constant coefficient for every positive number ¢. Since the differential equa-

tion
t 2 Fltz/(1+2)%) = 1+Z ;Z (tz/(1+ 2)?)

is satisfied, the coefficients «,, () satisfy the differential equations

tal, () = sn(t) + sna (1)

in terms of the coefficients s, (t) of the power series

(1422 2 Jla2/(1+27) = 3 salt)e”

which satisfy the equations
n an(t) = sp(t) — sn_1(t).

Nonnegative differentiable functions o,,(¢) of ¢ > 1, defined for positive integers n, are
said to be admissible as a family if the differential equations

) o

t
Un()+ n n+1
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are satisfied and if the solutions are nonincreasing functions of ¢. These conditions imply
that the sum

S gty 10— 0o o) — 3o 0)

n

is a nondecreasing function of ¢ since the inequality

[sn(t) = sn—1(t)] [sn(t) = sn—1(F)] < 285 (t) sn(t) + 255-1(f) sn-1(?)

is satisfied. The sum
> o (t)om () an(t)
is a nondecreasing function of .

The formal sum

Z 7n(t) (z"+2z")

n

over the positive integers n satisfies the differential equation

t 9 Z on(?) (z"+27") Lz 9 Z 7n(t) (z"+27")

ot n :1+ZZ£ n

Lz Z on(t) (2" —2z7").

:1+z

The equation admits a unique solution defining an admissible family for initial conditions
0,(1) an arbitrary nonincreasing sequence of nonnegative numbers such that the incre-
ments

on(1) = ont1(1)

are nonincreasing and have finite sum. It is sufficient to make the verification when a
positive integer r exists such that

on(l)=r+1-n

when n is not greater than r and such that o, (1) vanishes otherwise.
Since the identity
Zn+1

— 2z 2TT2 22 TZ
]_— Tl: fry —
DR EIIEE P .

holds with summation over the positive integers n which are not greater than r; the identity

2Ll o+ ) (22 Y
2

(5 = 7)

Z (r+1—-n)(z"—-2")=

holds with summation over the positive integers n which are not greater than r.
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Since the identity

(2T+1*k)' 1 —_ 1l 9p _ r —r—
(2r+2)z R(2r 11 28)] (25— o= 3)2r42-2k _ jr4l g o1l

holds with summation over the nonnegative integers & which are not greater than r + 1,
the identity

12 o (2T‘+1*k)' 1 1 -
v RO A L 1l 2422k
T2 INEDD R 12 )

holds with summation over the nonnegative integers £ which are not greater than r.

The solution of the differential equation is

8 Jn(t) n —ny __ (2T+1*k)' k—r % f% 2r—2k
tatz n (2" + 2 )_Z k!(2r+1—2k)!t (2% —z72)

with summation over the nonnegative integers k& which are not greater than r. Since the
binomial expansion

(2r — 2k)!

(Z% - 27%)%7% - Z (=)™ m!(2r — 2k — m)! me
applies with summation of the integers m such that
E—r<m<r-—Ek,
the identity
I —n—Fk
! % anrft) =2 U k!@(ﬂﬂiéﬁ k)! 2nt+ 1+ 2k

holds for every positive integer n which is not greater than r with summation over the
nonnegative integers £ which are not greater than » — n. The equation reads

. d on(t)  (r+n+1)t™"
ot n (r—n)!2n+1)!

F(n—r,n+2+r,n+%;n+g,2n+1;t*1)

in the hypergeometric notation

abc a(a+1)b(b+ 1)c(c+ 1)

2
Tde ° T " 2Md+ De(er ) - T

F(a,b,c;d,e;z) =1+

Another derivation of the equation appears in A proof of the Bieberbach conjecture, Acta
Mathematica 154 (1985), 137 152.
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Since

(r+mn+k)!

(r+n+1+k)! (r+mn+k)!
a (r—mn—kF)!

(r—n—k)! (r—l—n—k)!:(

2n + 1+ 2k)

when n + £ is less than r, the identity reads

" 0 o,(t m +n)! _
—(2n)! 1"t B n():Z HF(nm,n+l+m;2n+1;t h

with summation over the positive integers m which are not greater than r.

The hypergeometric series

ab ala+1)b(b+1) ,
F ) b o =1 N
((]7 ,(‘, Z) -I_ 1'(3 Z-I_ 2'C(C+]~) ?

satisfies the differential equations
F'(a,b;c;z) = a[F(a+1,b;¢;2) — F(a,b;c; 2)]/2

and
F'(a,b;¢;2) = b[F(a,b+1,¢2) — F(a,b;¢;2)]/2

and
F'(a,b;c;2) = (c— V)[F(a,bjc—1;2) — F(a, b;c; 2)]/2

as well as the differential equations

(1—2)F'(a,b;c;2) —bF(a,b;c;2) = (a — ¢)[F(a,b;c;2) — Fla—1,b;¢;2)]/ 2

and

(1 —2)F'(a,b;c;2) —aF(a,b;c;2) = (b—¢)[F(a,b;c;z) — F(a,b—1;¢)2)]/2
and

(1—2)F'(a,b;¢;2) — (a+b—c)F(a,b;c;2) = W F(a,bjc+1;2)

which imply the differential equation
z(1 = 2)F"(a,b;c;2) + [c — (a+ b+ 1)2]F'(a,b;¢; 2) — abF(a,b;c;2) = 0

and the recurrence relation

b a—c
a—b—1 a—-0

a b—c
+b—a,—1 T [Fla+1,b— 1;¢;2) — F(a,b;c; 2)]/ 2.

F(a,b;c;z) =

[F(a—1,b+ 1;¢;2) — F(a,b;c; 2)]/2
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Another consequence is the identity
I'(c)T'(¢c—a—10)

Fla-beil) = 50— o 0)

when ¢ — a — b has positive real part.

For every integer r» which is not less than a given positive integer n the polynomial
Fn—rn+1+r;2n+1;z2)
of degree r — n is an eigenfunction of the differential operator taking F'(z) into
2(1 = 2)F"(2) +[2n+1— (2n + 2)2]F'(2)
for the eigenvalue
(n—r)(n+1+r).

The operator on polynomials admits a unique self adjoint extension in the Hilbert space
of functions defined in the interval (0,1) which are square integrable with respect to the
measure whose value on a Baire subset of the interval is the integral

2n+1 om
(2n)!(2n)! / et

taken over the set. An orthonormal basis for the Hilbert space is the set of polynomials
(r +mn)!
(r —mn)!
for integers r which are not less than n. A computation of scalar products is made from
the identity

Fn—rn+1+4r2n+1;2)

(n+r+1)2 (r —n)? | |
2r+1)(2r+2) (2r)(2r+1) —Z] Fn—r,n+1+r;2n+1;z)
 (n+r41)? L I
_(27-+1)(27,_|_2) F(n r 1; + 2+ ,2 -|'1,)
(r —n)?

—— F(n— 1 12 1;
2@+ 1) (n—r+1,n+r2n+1;2)

from which the recurrence relation

1
(n+r+1)> / 2" |F(n —r — 1,n+2+r;2n+ 1;t)|%dt
0

1
:(r+1—n)2/ t2"|F(n —r,n 41420+ 1;t)%dt
0
follows.

A theorem of Richard Askey and George Gasper, Positive Jacobi sums II, American
Journal of Mathematics 98 (1976), 709-737, states that, for every positive integer n and
every integer r which is not less than n, the sum

Z M Fn—m,n+14+m;2n+1;2)
(m —n)!
over the integers m such that n < m < r is a polynomial whose values in the interval (0, 1)
are positive.
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CHAPTER 3. CONFORMAL MAPPING

The Lagrange skew plane is a generalization of the Gauss plane. A Lagrange number
E=d+ia+ jb+ ke

has rational numbers a,b,c, and d as coordinates. The addition and multiplication of
Lagrange numbers are defined from the addition and multiplication of rational numbers
by the multiplication table

ij =k, Jk =1, ki =g,
1w =—1, jg = -1, kk = —1.
The properties of the Lagrange skew—plane resemble those of the Gauss plane except for

the noncommutativity of multiplication.

The associative law
(a+pB)+y=a+(B+7)

holds for all Lagrange numbers «, 3, and . The commutative law
a+ =8+«

holds for all Lagrange numbers a and . The origin 0 of the Lagrange skew plane, which
has vanishing coordinates, satisfies the identity

O+y=9=~9+0

for every element ~ of the Lagrange skew plane. For every element « of the Lagrange
skew plane a unique element

f=-o
of the Lagrange skew—plane exists such that
a+pB=0=0+ .
The identity
(a+ )" =a” + 57
holds for all Lagrange numbers o and f.

Multiplication by a Lagrange number 7 is a homomorphism of additive structure. The
identity
Y+ B) =ya+p

holds for all Lagrange numbers a and . The parametrization of homomorphisms is con-
sistent with additive structure: The identity

(a+B)y = oy + By
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holds for all Lagrange numbers «, 3, and v. Multiplication by v is the homomorphism
which annihilates every element of the Lagrange skew—plane when ~ is the origin. Multi-
plication by 7 is the identity homomorphism when -~ is the unit.

The composition of homomorphisms is consistent with multiplicative structure: The
associative law

(aB)y = a(Bv)

holds for all Lagrange numbers «, 3, and 7. Conjugation is an anti-homomorphism of
multiplicative structure: The identity

(aB)” =B o
holds for all Lagrange numbers o and .
A rational number is a Lagrange number
Y=

which is self conjugate. If
v =d+ia+ jb+ kc

is a nonzero Lagrange number, then
YTy =a?+ b+ + d?
is a positive rational number. A nonzero Lagrange number « has an inverse
f=a/(a"a)

such that
fa=1=af.

A Lagrange number is said to be integral if its coordinates are either all integers or all
halves of odd integers. Sums and products of integral Lagrange numbers are integral. The
conjugate of an integral Lagrange number is integral. If £ is a nonzero integral Lagrange
number, £~¢ is a positive integer. The Euclidean algorithm is adapted to the search for
integral Lagrange numbers £ which represent a given positive integer

r=¢ &.

If o is an integral Lagrange number and if 8 is a nonzero integral Lagrange number,
then an integral Lagrange number v exists which satisfies the inequality

(= By) (= By) <p B
The choice of the coordinates of v is made so that the coordinates of

B a— B By=d+ia+ jb+ kc
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satisfy the inequalities

—B7B < 2a < B0,
and

—B7B <20 < BT,
and

—B7B <2< BT,
and

BT <2d< BT

and so that a strict inequality
(B~ BB a— B By) < (B H)?

is obtained.

A nonempty set of integral Lagrange numbers is said to be a left ideal if it contains the
sum

a+

of any elements o and 8 and if it contains the product

af

of any element 3 with an integral Lagrange number «.

A nonempty set of integral Lagrange numbers is said to be a right ideal if it contains
the sum

a+ B

of any elements « and 3 and if it contains the product

af

of any element « with an integral Lagrange number f.

Conjugation transforms a left ideal into a right ideal and a right ideal into a left ideal.
A determination of structure is made for right ideals.

A nonzero integral Lagrange number 8 belongs to a right ideal whose elements are the
products By with integral Lagrange numbers . A right ideal which contains a nonzero
element contains a nonzero element 8 which minimizes the positive integer S~ 3. If o is an
element of the ideal, an integral Lagrange number « exists which satisfies the inequality

(@ —By) (a— By) < B™B.

The identity
o= By
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follows since a — (7 is an element of the ideal which is not nonzero.

The Euclidean algorithm solves the equation
r=¢§¢

for an integral Lagrange number £ when r is a given positive integer. The solution is
obtained from an approximate solution in a quotient ring of the ring of integral Lagrange
numbers.

A ring of Lagrange numbers is a nonempty set of Lagrange numbers which contains the
difference

a—p
and the product
af
of any elements o and 8 of the set. The set of integral Lagrange numbers is a conjugated

ring: The ring contains £~ whenever it contains &.

A quotient ring of the ring of integral Lagrange numbers is defined for every positive
integer r. Integral Lagrange numbers o and [ are said to be congruent modulo r if

f—a=ry

is divisible by r: The equation admits an integral Lagrange number ~ as solution. Con-
gruence modulo r is an equivalence relation on integral Lagrange numbers. The ring is a
union of disjoint equivalence classes.

Equivalence classes inherit addition and multiplication since aq + 81 and ag + (o are
congruent modulo 7 and since 87 and a2 are congruent modulo » whenever «; and «s
are congruent modulo r and 8; and (5 are congruent modulo r. Equivalence classes inherit
conjugation since y; and v, are congruent modulo r whenever v; and v, are congruent
modulo r. Addition and multiplication of equivalence classes have the properties required
of a ring:

The associative law
(a+pB)+y=a+(B+7)

holds for all integral Lagrange numbers «, 3, and v modulo r. The commutative law
a+ =0+«

holds for all integral Lagrange numbers « and 8 modulo r. The image of the origin of the
Lagrange numbers is an origin 0 for the Lagrange numbers modulo r: The identity

O+y=9=79+0

holds for every integral Lagrange number v modulo r. For every integral Lagrange number
a modulo r an integral Lagrange number

B =—«a
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modulo r exists such that
a+pB=0=0+a.

Multiplication by an integral Lagrange number v modulo r is a homomorphism of
additive structure: The identity

Y+ B) =ya+ B

holds for all integral Lagrange numbers a and 8 modulo r. The parametrization of homo-
morphisms is consistent with additive structure: The identity

(a+ B)y = ay + By

holds for all integral Lagrange numbers «, 3, and v modulo r. Multiplication by v is the
homomorphism which annihilates every integral Lagrange number modulo » when -y is the
origin. Multiplication by ~ is the identity homomorphism when v is the image 1 of the
unit of the Lagrange numbers.

The composition of homomorphisms is consistent with multiplicative structure: The
associative law

(aB)y = a(Bv)
holds for all integral Lagrange numbers «, 3, and v modulo 7.

The ring of integral Lagrange numbers modulo r is conjugated: The identity
(aB)” =B o
holds for all integral Lagrange numbers « and 8 modulo r.

There are twenty four integral Lagrange numbers & which represent
1=¢¢.

These Lagrange units form a group under multiplication. The eight elements of the group
which are fourth roots of unity form a normal subgroup whose quotient is a cyclic group
of three elements.

If r is an odd positive integer, every integral Lagrange number is congruent modulo r
to a unique Lagrange number whose coordinates are nonnegative integers less than r. The

number of integral Lagrange numbers modulo 7 is equal to 7.

If » and s are relatively prime positive integers, the equation
1=ra+sb

admits a solution in integers a and b. A canonical homomorphism of the ring of integral
Lagrange numbers modulo s onto the ring of integral Lagrange numbers modulo r exists
whose kernel is the conjugated ideal of elements divisible by s. A canonical homomorphism
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of the ring of integral Lagrange numbers modulo rs onto the ring of integral Lagrange
numbers modulo s exists whose kernel is the conjugated ideal of elements divisible by 7.
The conjugated ring of integral Lagrange numbers modulo rs is canonically isomorphic to
the Cartesian product of the conjugated ring of integral Lagrange numbers modulo r and
the conjugated ring of integral Lagrange numbers modulo s.

The ring of integral Lagrange numbers modulo two contains sixteen elements. The in-
vertible elements of the ring are represented by Lagrange units. There are twelve integral
Lagrange numbers modulo two since a Lagrange unit w and its negative —w are congruent
modulo two. A canonical homomorphism exists of the ring of integral Lagrange numbers
modulo 27 onto the ring of integral Lagrange numbers modulo r whose kernel is the con-
jugated ideal of elements divisible by r. Since the ideal contains sixteen elements, every
integral Lagrange number modulo r is represented by sixteen integral Lagrange numbers
modulo 2r. The number of integral Lagrange numbers modulo r is equal to r* for every
positive integer r.

The multiplicative group of nonzero integers modulo p is cyclic for every odd prime

p. The number of nonzero integers modulo p which are square of integers modulo p is

%(p — 1) as is the number of integers modulo p which are nonsquares. The product of two

squares and the product of two nonsquares are squares. The product of a square and a
nonsquare is a nonsquare. Since a nonsquare exists, some sum of two squares exists which
is a nonsquare.

A skew conjugate integral Lagrange number
L =1a+ jb
modulo p is defined by the choice of integers a and b modulo p such that the equation
a2+ =¢?
admits no solution ¢ in the integers modulo p. If v and v are integers modulo p such that

(u+iv) "~ (u+iv) = u? — 120?

vanishes, then u and v both vanish. A conjugated field of p? elements is obtained whose
elements are integral Lagrange numbers

U+ Lv

modulo p with integers v and v modulo p as coordinates.

An integer a modulo p exists such that

—1—a?

is a square since %(p—k 1) integers modulo p are represented whereas there are only %(p— 1)
nonsquares. A skew—conjugate integral Lagrange number

k=1a+3b+k
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modulo p exists for some integer b modulo p such that

Kk Kk =0.

Every integral Lagrange number is represented as
a+ kf
for unique elements o and (3 of the field. The identity
(a+KB) " (a+KB) —a~a

is satisfied.

If p is a prime, a canonical homomorphism of the ring of integral Lagrange numbers
modulo rp onto the ring of integral Lagrange numbers modulo r exists whose kernel is the
conjugated ideal of elements divisible by r.

If I is a right ideal of the ring of integral Lagrange numbers modulo r, then the set
of integral Lagrange numbers which represent elements of the ideal is a right ideal which
contains 7. An integral Lagrange number £ exists such that the elements of the ideal are
the products £n with 1 an integral Lagrange number. The representation

r=¢§7¢
holds if I contains no nonzero element which is self conjugate.

The number of right ideals of the ring of integral Lagrange numbers modulo r which
contain no nonzero self-conjugate element is equal to the sum of the odd divisors of r.
The number of integral Lagrange numbers £ which represent

r=¢§¢§
is equal to twenty—four times the sum of the odd divisors of r.

The Lagrange skew plane admits topologies which are compatible with addition and
multiplication. The Dedekind topology is derived from convex structure.

A convex combination
(1 -t)E+1tn

of elements & and 7 of the Lagrange skew—plane is an element of the Lagrange skew—plane
when ¢ is a rational number in the interval [0,1]. A subset of the Lagrange skew-plane
is said to be preconvex if it contains all elements of the Lagrange skew plane which are
convex combinations of elements of the set. The preconvex span of a subset of the Lagrange
skew—plane is defined as the smallest preconvex subset of the Lagrange skew—plane which
contains the given set.

The closure in the Lagrange skew plane of a preconvex subset B is the set B~ of
elements ¢ of the Lagrange skew plane such that the set whose elements are £ and the
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elements of B is preconvex. The closure of a preconvex set is a preconvex set which is its
own closure.

A nonempty preconvex set is defined as open if it is disjoint from the closure of every
disjoint nonempty preconvex set. The intersection of two nonempty open preconvex sets
is an open preconvex set if it is nonempty.

A subset of the Lagrange skew—plane is said to be open if it is a union of nonempty
open preconvex sets. The empty set is open since it is an empty union of such sets. Unions
of open subsets are open. Finite intersections of open sets are open.

An example of an open set is the complement in the Lagrange skew—plane of the closure
of a nonempty preconvex set. A subset of the Lagrange skew—plane is said to be closed if it
is the complement in the Lagrange skew plane of an open set. Intersections of closed sets
are closed. Finite unions of closed sets are closed. The Lagrange skew plane is a Hausdorff
space in the topology whose open and closed sets are defined by convexity. These open
and closed sets define the Dedekind topology of the Lagrange skew—plane.

If a nonempty open preconvex set A is disjoint from a nonempty preconvex set B, then
a maximal preconvex set exists which contains B and is disjoint from A. The maximal
preconvex set is closed and has preconvex complement. The existence of the maximal
preconvex set is an application of the Kuratowski—Zorn lemma.

Addition and multiplication are continuous as transformations of the Cartesian prod-
uct of the Lagrange skew plane with itself into the Lagrange skew plane. Conjugation is
continuous as a transformation of the Lagrange skew—plane into the Lagrange skew—plane.
The Dedekind skew—plane is the completion of the Lagrange skew—plane in the uniform
Dedekind topology. Neighborhoods of a Lagrange number are determined by neighbor-
hoods of the origin. If an open set A contains the origin and if £ is a Lagrange number,
then the set of sums of £ and elements of A is an open set which contains £&. Every open
set which contains ¢ is obtained from an open set which contains the origin.

A Cauchy class of closed subsets of the Lagrange skew plane is a nonempty class of
closed subsets such that the intersection of the members of any finite subclass is nonempty
and such that for every open set A containing the origin some member B of the class exists
such that all differences of elements of B belong to A.

A Cauchy class of closed subsets is contained in a maximal Cauchy class of closed subsets.

A Cauchy sequence is a sequence of elements &1, &5, &3, . .. of the Lagrange skew plane such
that a Cauchy class of closed subsets is defined whose members are the closed preconvex
spans of &.,&.41,&+2,... for every positive integer r. A Cauchy sequence determines a

maximal Cauchy class. Every maximal Cauchy class is determined by a Cauchy sequence.

An element of the Dedekind skew plane is defined by a maximal Cauchy class of elements
of the Lagrange skew—plane. An element of the Lagrange skew—plane determines the
maximal Cauchy class of closed sets which contain the element. The Lagrange skew—plane
is contained in the Dedekind skew plane.

If B is a closed subset of the Lagrange skew plane, the closure B~ of B in the Dedekind
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skew—plane is defined as the set of elements of the Dedekind skew—plane whose maximal
Cauchy class has B as a member. A subset of the Dedekind skew—plane is defined as open
if it is disjoint from the closure in the Dedekind skew plane of every disjoint closed subset
of the Lagrange skew plane. Unions of open subsets of the Dedekind skew plane are open.
Finite intersections of open subsets of the Dedekind skew—plane are open. A subset of
the Lagrange skew—plane is open if, and only if, it is the intersection with the Lagrange
skew—plane of an open subset of the Dedekind skew—plane.

A subset of the Dedekind skew plane is defined as closed if its complement in the
Dedekind skew—plane is open. Intersections of closed subsets of the Dedekind skew—plane
are closed. Finite unions of closed subset of the Dedekind skew—plane are closed. The
closure of a subset of the Dedekind skew—plane is defined as the smallest closed set con-
taining the given set. The closure in the Lagrange skew plane of a subset of the Lagrange
skew plane is the intersection with the Lagrange skew plane of the closure of the set in
the Dedekind skew—plane.

The Dedekind skew—plane is a Hausdorff space in the topology whose open sets and
closed sets are determined by convexity. These open sets and closed sets define the
Dedekind topology of the Dedekind skew plane.

The Lagrange skew—plane is dense in the Dedekind skew—plane. Addition and multipli-
cation admit unique continuous extensions as transformations of the Cartesian product of
the Dedekind skew plane with itself into the Dedekind skew plane. Conjugation admits a
unique continuous extension as a transformation of the Dedekind skew plant into itself.

Properties of addition in the Lagrange skew—plane are preserved in the Dedekind skew—
plane. The associative law

(@+B)+y=a+(B+7)

holds for all elements «, 3, and v of the Dedekind skew plane. The commutative law
a+ =8+«

holds for all elements a and (8 of the Dedekind skew-plane. The origin 0 of the Lagrange
skew plane satisfies the identities

O+y=9=79+0

for every element v of the Dedekind skew—plane. For every element « of the Dedekind
skew—plane a unique element

B=—a
of the Dedekind skew plane exists such that
a+pB=0=p+a.

Conjugation is a homomorphism of additive structure: The identity

(a+B8) =a +p5
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holds for all elements a and 8 of the Dedekind skew—plane.

Multiplication by an element v of the Dedekind skew—plane is a homomorphism of
additive structure: The identity

Y+ B) =ya+ B

holds for all elements o and 3 of the Dedekind skew plane. The parametrization of homo-
morphisms is consistent with additive structure: The identity

(a+B)y = oy + By

holds for all elements «, 8, and v of the Dedekind skew—plane. Multiplication by - is the
homomorphism which annihilates every element of the Dedekind skew—plane when + is
the origin. Multiplication by -y is the identity homomorphism when ~ is the unit 1 of the
Lagrange skew plane.

The composition of homomorphisms is consistent with multiplicative structure: The
associative law

(aB)y = a(B)

holds for all elements «a, 3, and v of the Dedekind skew—plane. Conjugation is an anti—
homomorphism of multiplicative structure: The identity

(aB)” =B a”

holds for all elements « and [ of the Dedekind skew plane.

The inclusion of the complex plane in the Dedekind skew—plane is a homomorphism
of additive and multiplicative structure which commutes with conjugation. The com-
plex plane is a closed subset of the Dedekind skew plane. The Dedekind topology of
the Dedekind plane is the subspace topology of the Dedekind topology of the Dedekind
skew—plane.

If v is a nonzero element of the Dedekind skew—plane, the real number

v

is positive. If « is a nonzero element of the Dedekind skew plane, the nonzero element
f=a /(e a)

satisfies the identities

The Dedekind skew plane is complete in the uniform Dedekind topology: Every Cauchy
class of closed subsets of the Dedekind skew plane has a nonempty intersection. Closed
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and bounded subsets of the Dedekind skew—plane compact: A subset of the Dedekind
skew—plane is said to be bounded if a positive number ¢ exists such that the inequality

Y ysc

holds for every element ~ of the set. A nonempty class of closed subsets has a nonempty
intersection if every finite subclass has a nonempty intersection and if some member of the
class is bounded.

The axiomatization of topology has consequences which are unfamiliar to those whose
experience is limited to Dedekind topologies. A topology is defined for a set by a class of
subsets which are said to be open or equivalently by a class of subsets which are said to be
closed. The two formulations of topology are equivalent since a set is assumed to be open
if, and only if, its complement is closed. The union of every class of open sets is assumed to
be open. Equivalently the intersection of every class of closed sets is assumed to be closed.
The intersection of every finite class of open sets is assumed to be open. Equivalently the
union of every finite class of closed sets is assumed to be closed. This definition of topology
is supplemented by a condition which defines a Hausdorff space: Distinct elements a and b
of the space are contained in disjoint open sets A and B, a contained in A and b contained
in B.

A trivial example of such a topology is defined for a finite set. A finite set is a Hausdorff
space in a unique topology: All subsets are both open and closed. This discrete topology
of a finite set is applied in the construction of nontrivial topologies.

If a nonempty class C of nonempty sets is given, the Cartesian product of the sets is
defined as the set of all functions defined on the members of the class such that the value
of the function on a member set is always an element of the set. The usual function
notation is however replaced by the notation applied to sequences: if N is a member of the
class, the value of the function at N is written C'y. When the members of the class are
parametrized by positive integers, the notation C,, means C'y with n the positive integer
which parametrizes the member set N. The concept of a Cartesian product is applied
to classes C which are unlimited in cardinality. The class C need not be finite. If it is
infinite, it need not be countable. The concept of a Cartesian product can be applied more
generally when the class C is empty or when some member of the class is empty. The
Cartesian product is then defined to be empty. (The graph of the function contains no
element.)

When the member sets are Hausdorff spaces, the Cartesian product is a Hausdorff space
in the Cartesian product topology. The product topology is defined by two conditions:
The projection of the product onto each factor space is continuous. A transformation of a
topological space into the product space is continuous whenever every composition with a
projection into a factor space is continuous.

When the factor spaces are compact Hausdorff spaces, the Cartesian product is a com-
pact Hausdorff space. The proof of compactness is an application of the axiom of choice.
The axiom of choice is equivalent to the assertion that a Cartesian product of nonempty
sets is nonempty. The Kuratowski Zorn lemma is a consequence of the axiom of choice: A



COMPLEX ANALYSIS 37

partially ordered set contains a maximal element if every well-ordered subset admits an
upper bound in the set.

Compactness of a Hausdorff space is formulated as the assertion that a nonempty class of
closed subsets has a nonempty intersection whenever every finite subclass has the property.
Every such class is contained in a maximal such class by the Kuratowski-Zorn lemma.
When the class is maximal, the intersection of the members of the class contains a unique
element.

If C is a maximal such class of closed subsets of the Cartesian product, then a maximal
such class is seen in every factor space. Seen in a factor space are those closed sets whose
inverse image in the Cartesian product are members of the class C. The element determined
in every factor space defines the desired element of the Cartesian product.

The adic topology of the Lagrange skew plane resembles the Dedekind topology in its
good relationship to addition and multiplication. The open sets are defined as unions of
sets which are both open and closed. The closed sets are defined as intersections of sets
which are both open and closed. A basic example of a set which is both open and closed
and which contains a given Lagrange number £ is defined by a positive rational number A
and consists of the Lagrange numbers 7 such that

AE—m)T(§—n)

is integral. Every open set is a union of finite intersections of basic open and closed sets.
Every closed set is an intersection of basic open and closed sets.

The Lagrange skew—plane is a Hausdorff space in the adic topology. Addition and
multiplication are continuous as transformations of the Cartesian product of the Lagrange
skew plane with itself into the Lagrange skew plane. Conjugation is continuous as a
transformation of the Lagrange skew plane into itself.

The adic skew—plane is defined as the Cauchy completion of the Lagrange skew—plane
in the uniform adic topology. Addition and multiplication admit unique continuous exten-
sions as transformations of the Cartesian product of the adic skew plane with itself into
the adic skew plane. Conjugation admits a unique continuous extension as a transforma-
tion of the adic skew—plane into itself. An element of the adic skew—plane is said to be
integral if it belongs to the closure of the integral elements of the Lagrange skew—plane.
The adic skew plane is a conjugated ring which contains the set of integral elements as a
conjugated subring. Compactness of the subring is proved by a construction as a closed
subset of a Cartesian product of compact Hausdorff spaces.

The Cartesian product of the conjugated ring of integral Lagrange numbers modulo r
is taken over the positive integers r. The Cartesian product is a conjugated ring whose
addition, multiplication, and conjugation are defined by addition, multiplication, and con-
jugation of projections in factor rings. Since the factor rings are compact Hausdorff spaces
in the discrete topology, the Cartesian product is a compact Hausdorff space in the Carte-
sian product topology. When 7y is a divisor of 75, a canonical homomorphism exists of the
factor ring modulo 75 onto the factor ring modulo r; whose kernel is the conjugated ideal
of elements divisible by 7.
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A closed subring of the Cartesian product is defined as the set of elements of the Carte-
sian product such that the projection of the factor ring modulo ro is mapped into the
projection in the factor ring modulo r; whenever 7y is a divisor of ro. The subring is
conjugated and is a compact Hausdorff space in the subspace topology. A continuous
conjugated homomorphism of the subring onto the ring of integral elements of the adic
skew-plane is defined by taking an element of the subring into the limit of a Cauchy se-
quence whose r—term is an integral element of the Lagrange skew—plane which represents
the projection in the factor ring modulo 7.

The adic skew—plane is a ring of quotients of the subring of its integral elements. A
conjugated isomorphism of additive structure of the adic skew—plane onto itself is defined
on multiplication by r for every positive integer r. The transformation is continuous and
has a continuous inverse. Every element of the adic skew plane is mapped into an integral
element on multiplication by some positive integer.

An integral element of the adic skew—plane is said to be p—adic for some prime p if its
quotient by r is integral for every positive integer r which is not divisible by p. The set
of p adic elements of the ring of integral elements of the adic skew plane is a conjugated
ideal which is closed in the adic topology. The conjugated ring of integral elements of the
adic skew—plane is isomorphic to the Cartesian product of its p—adic ideals taken over all
primes p. The topology of the ring of integral elements is the Cartesian product topology
of its p adic ideals.

A decomposition of the adic skew plane results from the decomposition of its ring of
integral elements. An element of the adic skew—plane is said to be p—adic if for some prime
p its product with a positive integer is a p—adic integral element of the adic skew—plane.
The set of p adic elements of the adic skew plane is a conjugated ideal of the adic skew
plane which is closed in the adic topology. The p adic component of an element of the
adic skew—plane is integral for all but a finite number of primes p. If a p—adic element of
the adic skew—plane is chosen for every prime p and if all but a finite number of elements
are integral, an element of the adic skew plane exists whose p adic component is the given
p adic element for every prime p.

The p—adic skew—plane is defined for a prime p as the conjugated ring of p—adic elements
of the adic skew—plane. The p—adic topology of the ring is defined as the subspace topology
of the adic topology of the adic skew plane. The set of self conjugate elements of the ring
is the field of p adic numbers. An element

E=d+ta+ jb+ ke

of the p adic skew plane has coordinates a, b, ¢, and d in the p adic field which do not all
vanish when £ does not vanish. The product

£—£:a2+b2+62+d2

is a p—adic number which does not vanish when the coordinates of & do not all vanish. An
inverse

1 =¢7/(€7¢)



COMPLEX ANALYSIS 39

exists in the p—adic skew—plane which satisfies the identities

£le=1=¢"1

with 1 the unit of the p adic field and also of the p adic skew plane.

The value of the adic skew plane lies in its relationship to the Dedekind skew plane
which is found in their Cartesian product. The product skew—plane is the set of pairs
£ = (€4,&) of elements £y of the Dedekind skew—plane and elements {_ of the adic
skew plane. The sum

y=a+p
of elements o and S is defined by
Y+ =t + B4
and
Y- =a-+ [-.
The product
v =af
of elements o and S is defined by
Y+ = By
and
vy =a [
The conjugate
p=u
of an element « is defined by
Py =ay
and
B =a_.

The product skew—plane is a Hausdorff space in the Cartesian product topology of the
Dedekind skew—plane and the adic skew—plane.

The Dedekind skew plane and the adic skew plane are spliced by the construction of a
quotient space. A closed subset of the product skew plane consists of the elements whose
components in the Dedekind skew—plane and the adic skew—plane are elements of the
Lagrange skew—plane with vanishing sum. If o and 3 are elements of the subset, then so is
a+ B. If a is an element of the subset and if A is an element of the Lagrange skew plane,
then an element

b= A

of the subset is defined by
By = Aoy
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and

b_ = Aa_.

If « is an element of the subset, then an element

B=a"
of the subset is defined by
Py =ay
and
- =a”

An equivalence relation is defined of the product skew plane by defining elements «
and S to be equivalent when S — « belongs to the subset. A fundamental domain for
the equivalence relation is the set of elements & of the product skew—plane whose adic
component is integral and whose Dedekind component satisfies the inequality

1€ < (€4 —w) (€4 —w)

for every integral element w of the Lagrange skew—plane with integral inverse. Every
element of the product skew plane is equivalent to an element of the closure of the funda-
mental domain. Equivalent elements of the fundamental domain are equal.
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APPENDIX. CARDINALITY

The cardinality of set A is said to be less than or equal to the cardinality of set B if an
injective transformation of set A into set B exists. If the cardinality of set A is less than
or equal to the cardinality of set B and if the cardinality of set B is less than or equal
to the cardinality of set A, then an injective transformation exists of set A onto set B.
Sets A and B are said to have the same cardinality. The cardinality of set A is said to be
less than the cardinality of set B if A and B are sets of unequal cardinality such that the
cardinality of set A is less than or equal to the cardinality of set B.

Experience with finite sets creates the expectation that any two sets are comparable in
cardinality. If A and B are sets of unequal cardinality, then either the cardinality of set A
is less than the cardinality of set B or the cardinality of set B is less than the cardinality
of set A. The desired conclusion, or its equivalent, is accepted as a hypothesis in the
axiomatic definition of sets.

The axiom of choice is the most plausible of the hypotheses which are equivalent to the
desired comparability of cardinalities of sets. If a transformation T takes set A onto set B,
then a transformation S of set B into set A exists such that the composed transformation
TS is the inclusion transformation of set B in itself.

The axiom of choice displaces the previous hypothesis which is equivalent to the compa-
rability of cardinalities of sets. A partial ordering of a set S is determined by distinguished
pairs (a,b) of elements a and b of S. The inequality a < b is written when (a,b) is a
distinguished pair. It is assumed that the inequality a < ¢ holds whenever a and c are
elements of the set for which the inequalities a < b and b < ¢ hold for some element b of
the set. The inequality ¢ < ¢ is assumed for every element ¢ of the set. Elements a and b
of the set are assumed to be equal if the inequalities ¢ < b and b < a are satisfied. A set is
said to be well-ordered if every nonempty subset contains a least element. An equivalent
of the axiom of choice is the hypothesis that every set admits a well-ordering.

The Kuratowski Zorn lemma is a flexible formulation of the principle of induction im-
plicit in well ordering. A partially ordered set admits a maximal element if every well
ordered subset has an upper bound in the set.

The proof of the Kuratowski—Zorn lemma from the axiom of choice is an application
of induction. Assume that S is a partially ordered set in which every well ordered subset
has an upper bound. An augmentation of a well ordered subset A is a well ordered subset
B whose elements are the elements of A and some upper bound of A which does not
belong to A. The axiom of choice is applied to a set whose elements are the pairs (A, B)
consisting of an augmentable well ordered subset A and an augmentation B of A. The set
is mapped onto the set of augmentable well ordered subsets by taking (A, B) into A. The
axiom of choice asserts the existence of a transformation which takes every augmentable
well-ordered subset A into an augmentation (A, A’) of A.

The proof of the Kuratowski Zorn lemma is facilitated by the introduction of notation.
A ladder is well ordered subset A which is constructed by the chosen augmentation pro-
cedure. For every element b of A the augmentation of the set of elements of A which are
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less than b is the set of elements of A which are less than or equal to b. The intersection
of ladders A and B is a ladder which is either equal to A or equal to B. If A and B are
ladders, then either A is contained in B or B is contained in A. The union of all ladders
is a ladder which contains every ladder. Since the greatest ladder is assumed to have an
upper bound, it has a greatest element. The greatest element of the greatest ladder is a
maximal element of the given partially ordered set S.

Cardinal numbers are constructed by a theorem of Cantor which states that no trans-
formation maps a set onto the class of all its subsets. If a transformation 7" maps a set S
into the subsets of §, then a subset S, of § is constructed which does not belong to the
range of T'. The set Sy, is the set of elements s of S for which no elements s,, of S can be
chosen for every nonnegative integer n so that sg is equal to s and so that s, belongs to
T's,, 1 when n is positive. An element s of S belongs to S, if, and only if, T's is contained
in Sy. This property implies that S, is not equal to T's for an element s of S.

If v is a cardinal number, a continuum of order 7 is defined as a set of least cardinality
which has the same cardinality as the class of its subsets which are continua of order less
than y. The empty set is a continuum of order equal to its cardinality. A set with one
element is a continuum of order equal to its cardinality. No other finite set is a continuum
of order « for a cardinal number . A countably infinite set is a continuum of order equal
to its cardinality.

A parametrization of a continuum S of order v is an injective transformation J of S
onto the class of its subsets which are continua of order less than v such that no elements
sp of § can be chosen for every nonnegative integer n so that s, belongs to Js,_1 when n
is positive. A continuum of order v admits a parametrization since an injective transfor-
mation T exists of S onto the class of its subsets which are continua of order less than ~.
Since S, is then a continuum of order +, it has the same cardinality as S. The restriction
of T to Sy is a parametrization of So. If W is an injective transformation of S onto S,
then a parametrization .J of S is defined so that Ja is the set of elements b of S such that
Wb belongs to TWa.

A parametrization J of a continuum S of order -y is essentially unique. If an injective
transformation 7' maps S onto the class of its subsets which are continua of order less than
v, then an injective transformation W of § onto S, exists such that Ja is always the set
of elements b such that Wb belongs to TWa. The construction of T' is an application of
the Kuratowski Zorn lemma. Consider the class C of injective transformations W with
domain contained in § and with range contained in S,, such that every element of Ja
belongs to the domain of W whenever a belongs to the domain of W and such that Ja is
always the set of elements b of S such that Wb belongs to JWa. The class C is partially
ordered by the inclusion ordering of the graph. A well ordered subclass of C has an upper
bound in C whose graph is a union of graphs. A maximal member of the class C has S as
its domain.

A nonempty set of cardinal numbers contains a least element since a ladder of well-
ordered sets can be constructed with these cardinalities.

A continuum of order « exists when 7 is the cardinality of an uncountable set. It
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is sufficient to construct a set which has the same cardinality as the class of its subsets
which are continua of cardinality less than . If a cardinal number « is greater than the
cardinality of every continuum of order less than +, it is sufficient to construct a set which
has the same cardinality as the class of its subsets of cardinality less than «. Such a set
is constructed when « is the least cardinality greater than the cardinality of an infinite
sett §. The class C of all subsets of § is a set which has the same cardinality as the class
of its subsets of cardinality less than a. The cardinality of the class of all subsets of C of
cardinality less than « is less than or equal to the cardinality of all transformations of S
into the set of functions defined on S with values zero or one. The cardinality of the class
of all subsets of C with values zero or one is less than or equal to the cardinality of the set
of all functions defined on the Cartesian product S x & with values zero or one. Since S is
an infinite set, the cardinality of S X § is equal to the cardinality of §. The cardinality of
the class of all subsets of C of cardinality less than « is less than or equal to the cardinality
of C.

A hypothesis is required for the determination of cardinalities of continua. The choice
of hypothesis depends on the desired applications. When the largest logical structure is
wanted in which the accepted methods of analysis apply, then the cardinalities of continua
are dependent on hypotheses whose consistency is necessarily untested (as are the accepted
hypotheses of analysis). When the smallest logical structure is wanted in which the ac-
cepted methods of analysis apply (which is the conventional view in mathematics), then
the cardinalities of continua are determined. This is the best choice for a student since
it establishes a logical structure with minimal hypotheses which can serve as a guide to
generalizations should he want this direction of research. A minimal structure is therefore
chosen here.

When a minimal structure is chosen, there are essentially only two ways in which a new
cardinality can be constructed from given cardinalities. The cardinality of the class of all
subsets of a set is greater than the cardinality of the set. A set of cardinality v can be
obtained as a union of a class of cardinality less than v of sets whose cardinalities are less
than . Both constructions produce continua from continua. It follows that every infinite
set is a continuum whose order is equal to its cardinality. An uncountable continuum is
either the class of all subsets of an infinite set in cardinality or it is a union of a class of
smaller cardinality of sets of smaller cardinality.



44

LOUIS DE BRANGES

REFERENCES

A. Beurling, On two problems concerning linear transformations in Hilbert space, Acta Mathematica
81 (1949), 239 255.

L. de Branges, Factorization and invariant subspaces, Journal of Mathematical Analysis and Appli-
cations 29 (1970), 163-200.

, The invariant subspace problem, Integral Equations and Operator Theory 6 (1983), 488 505.

, A proof of the Bieberbach conjecture, Acta Mathematica 154:1-2 (1985), 137 152.

, Complementation in Krein spaces, Transactions of the American Mathematical Society 305
(1988), 277-291.

, Krein spaces of analytic functions, Journal of Functional Analysis 81 (1988), 219 259.

L. de Branges and J. Rovnyak, The existence of invariant subspaces, Bulletin of the American Math-
ematical Society 70 (1964), 718-721; 71 (1965), 396.

, Square Summable Power Series, Holt, Rinehart, and Winston, New York, 1966.

G. Herglotz, Uber Potenzreihen mit positivem Realteil im Einheitskreis, Verhandlungen der Sachsischen
Akademie der Wissenschaffen zu Leipzig, vol. 65, Mathematisch Physische Klasse, 1911, pp. 501 511.



