
Chapter 2. The Proof of the Bieberbah ConjetureA omplex valued funtion f(z) of z = x + iy in a region of the omplex plane is saidto be di�erentiable at an element w of the region if the funtion[f(z)� f(w)℄=(z � w)is ontinuous at w when suitably de�ned at w. The value at w is taken as the de�nitionof the derivative f 0(w) at w. A funtion is ontinuous at w if it is di�erentiable at w.A square summable power series f(z) with omplex oeÆients onverges in the unitdisk and de�nes a funtion in the unit disk. The valuef(w) = hf(z); (1� w�z)�1iat w of the funtion represented by a square summable power series f(z) is a salar produtin the spae of square summable power series with the square summable power series(1� w�z)�1 = 1 + (w�)z + (w�)2z2 + : : :The funtion represented by a square summable power series is ontinuous sine the identityf(�)� f(�) = hf(z); (1� ��z)�1 � (1� ��z)�1iholds when � and � are in the unit disk and sine the square summable power series(1� ��z)�1 � (1� ��z)�1 = (� � �)�z + (�2 � �2)�z2 + : : :satis�es the inequalityk(1� ��z)�1 � (1� ��z)�1k2 � j� � �j2(1 + j�+ �j2 + j�2 + �� + �2j2 + : : : )If f(z) is a square summable power series, a sequene of square summable power seriesfn(z) is de�ned indutively by f0(z) = f(z)and fn+1(z) = [fn(z)� fn(0)℄=zfor every nonnegative integer n. Sine the inequalitykfn(z)k � kf(z)kholds for every nonnegative integer n, the square summable power series[f(z)� f(�)℄=(z � �) = f1(z) + �f2(z) + �2f3(z) + : : :1



2 LOUIS DE BRANGESis a sum in the metri topology of the spae of square summable power series when � isin the unit disk. Sine the power series represents a ontinuous funtion in the disk, thepower series f(z) represents a di�erentiable funtion in the disk. The funtion[f(w)� f(�)℄=(w � �)of w in the disk is ontinuous at � when given a de�nition f 0(�) at �.Square summable power series whih represent the same funtion are idential sinethe oeÆients of a square summable power series are all zero if the funtion representedvanishes identially. A square summable power series is identi�ed with the funtion itrepresents. The reproduing kernel funtion(1� w�z)�1for funtion values at w in the spae of square summable power series is the element ofthe spae whih in a salar produt determines the value of the represented funtion at wwhen w is in the unit disk.If W (z) is a nontrivial power series suh that multipliation by W (z) is a ontrativetransformation of the spae of square summable power series into itself, thenW (z)W (w)�=(1� w�z)is the reproduing kernel funtion for funtion values at w in the range spae M(W ) whenw is in the unit disk. For if g(z) = W (z)f(z)is an element of the spae M(W ), the identityg(w) = hg(z);W (z)W (w)�=(1� w�z)iM(W )is a onsequene of the identityf(w) = hf(z); (1� w�z)�1isine multipliation by W (z) is an isometri transformation of the spae C(z) onto thespae M(W ) and sine the identityg(w) = W (w)f(w)is satis�ed. The reproduing kernel funtionW (z)W (w)�=(1� w�z)for funtion values at w in the spae M(W ) is obtained from the reproduing kernelfuntion (1� w�z)�1



COMPLEX ANALYSIS 3for funtion values at w in the spae of square summable power series under the adjoint ofthe inlusion of M(W ) in C(z).The reproduing kernel funtion[1�W (z)W (w)�℄=(1� w�z)for funtion values at w in the spaeH(W ) is obtained from the reproduing kernel funtion(1� w�z)�1for funtion values at w in the spae of square summable power series under the adjoint ofthe inlusion of the spae H(W ) in C(z). The identityf(w) = hf(z); [1�W (z)W (w)�℄=(1� w�z)iH(W )holds for every element f(z) of the spae H(W ). Sine the identity applies whenf(z) = [1�W (z)W (w)�℄=(1� w�z);the funtion represented by the power series W (z) is bounded by one in the unit disk.Reproduing kernel funtions are applied to determine the struture of a Hilbert spaeH whose elements are funtions in the unit disk. A ontinuous linear funtional on thespae is assumed to be de�ned for every element w of the unit disk by taking funtionvalues at w. The reproduing kernel funtion for funtion values at w is th unique elementK(w; z) of the spae whih represents the valuef(w) = hf(z); K(w; z)iHfor every element f(z) of the spae. The indeterminate z is treated as a dummy variablein the notation for a funtion. The funtionK(�; �) = hK(�; z); K(�; z)iHof � and � in the unit disk is treated as an in�nite matrix. The symmetry of a salarprodut implies the Hermitian symmetryK(�; �) = K(�; �)�of the matrix. The in�nite matrix is nonnegative in a sense whih is determined by its�nite square submatries. If 1; : : : ; r are in the unit disk, then the r � r matrix withentry K(i; j)in the i{th row and j{th olumn is nonnegative. A nonnegative number results when thematrix is multiplied on the right by a olumn vetor with r entries and on the left by theonjugate transpose row vetor. The nonnegative number is a sum of produts�i K(i; j)j



4 LOUIS DE BRANGEStaken over i and j equal to 1; : : : ; r for omplex numbers 1; : : : ; r.Reproduing kernel funtions are applied in interpolation. If 1; : : : ; r are distintelements of disk, the set of elements of the Hilbert spae whih vanish at these elementsis a losed vetor subspae whose orthogonal omplement onsists of funtions whih aredetermined by their values at these elements. A funtion on the �nite set is extended tothe unit disk so as to be orthogonal to funtions whih vanish on the �nite set. The spaeof funtions on the �nite set is a Hilbert spae in the salar produt inherited from thefull spae. Every funtion on the �nite set is a linear ombination of reproduing kernelfuntions whih represent values taken on the set. A reproduing kernel funtion for valueson a set is its own extrapolation to the full spae. The nonnegativity of a reproduingkernel funtion is the ondition for the existene of a salar produt for the funtions onthe �nite set whih reates a Hilbert spae ompatible with the reproduing property. The�nite linear ombinations of reproduing kernel funtions form a dense vetor subspae ofthe Hilbert spae of funtions de�ned on the unit disk. The Hilbert spae is the metriompletion of the dense subspae. The reproduing property permits the elements of theompletion to be realized as funtions de�ned on the unit disk.The Jordan urve theorem states that the omplex omplement of a simple losed urvein the omplex plane is the union of a bounded region and an unbounded region. TheCauhy formula states that the Stieltjes integralZ f(z)dz = 0of a ontinuous funtion over the losed urve is equal to zero if the urve has �nite length,if the funtion has a ontinuous extension to the losure of the bounded region, and ifthe funtion is di�erentiable at all but a �nite number of elements of the bounded region.An example of a simple losed urve is the unit irle, whih bounds the unit disk. TheCauhy formula for the unit irle is proved by deomposing the unit disk into regionswhih are bounded by irles entered at the origin and straight lines through the origin.Points of nondi�erentiability are onstruted for a funtion f(z) of z in the unit disk,whih has a ontinuous extension to the losed disk, when the Cauhy integralS(1) = Z 2�0 f(ei�)iei�d�for the unit irle is nonzero. A point of nondi�erentiability is onstruted in the annulusa < jzj < bwhen the inequality(b� a)jS(1)j � j Z 2�0 f(bei�)ibei�d� � Z 2�0 f(aei�)iaei�d�jis satis�ed. If the length of an interval (�; �) is less than 2�, a simple losed urve isonstruted from aei� to bei� along a radial line away from the origin, from bei� to bei�



COMPLEX ANALYSIS 5ounterlokwise along a irle of radius b entered at the origin, from bei� to aei� alonga radial line towards the origin, and from aei� to aei� lokwise along a irle of radius aabout the origin. The Cauhy integral for the urve isS(a; b;�; �)= Z ba f(rei�)ei�dr � Z ba f(rei�)ei�dr + Z �� f(bei�)ibei�d� � Z �� f(aei�)iaei�d�:The Cauhy integral is zero for a linear funtion sine it is zero for a onstant and forz. The nonzero nature of the integral measures the diÆulty in approximating the givenfuntion by a linear funtion.A point of nondi�erentiability is found in the region bounded by the urve when theinequality (� � �)(b� a)jS(1)j � 2�jS(a; b;�; �)jis satis�ed. A point w of nondi�erentiability is obtained when the regions ontaining wand satisfying the inequality form a basis for the neighborhoods of w. If the inequalityjf(z)� g(z)j � �jz � wjholds in the region for some linear funtion g(z) for a positive number �, thenjS(1)j � �sine the inequality 2�jS(a; b;�; �)j � (� � �)(b� a)�is satis�ed.The maximum priniple states that the real part of a funtion f(z) of z in the unitdisk, whih is di�erentiable at all but a �nite number of points in the disk and whih hasa ontinuous extension to the losed disk, vanishes in the unit disk if it is nonpositive onthe unit irle and nonnegative at the origin. The funtion f(z)=z is di�erentiable at allbut a �nite number of points in the annulusa < jzj < 1when a is in the interval (0; 1). Sine the identityZ 2�0 f(aei�)d� = Z 2�0 f(ei�)d�holds by the proof of the Cauhy formula, the value of the funtion at the origin is anaverage 2�f(0) = Z 2�0 f(ei�)d�



6 LOUIS DE BRANGESof values on the boundary. If the real part of the integrand is nonpositive and real partof the integral is nonnegative, then the real part of the integral and the real part of theintegrand are zero. The funtion is a onstant sine its real part vanishes in the unit disk.An example of a funtion whih is di�erentiable and bounded by one in the unit disk isW (z) = (�� z)=(1� ��z)when � is in the unit disk. A Hilbert spae H of funtions in the unit disk exists whosereproduing kernel funtion for funtion values at w is[1�W (z)W (w)�℄=(1� w�z) = (1� ���)(1� ��z)�1(1� �w�)�1when w is in the unit disk. The spae is ontained isometrially in the spae of squaresummable power series sine (1� ��z)�1is the reproduing kernel funtion for funtion values at � in C(z). The orthogonal om-plement of H in C(z) is a Hilbert spae M whih is ontained isometrially in C(z) andwhih ontains the funtions whih vanish at �. Sine the reproduing kernel funtion forfuntion values at w in M is W (z)W (w)�=(1� w�z);multipliation by W (z) is an isometri transformation of C(z) onto M. Sine M is on-tained isometrially in C(z), multipliation by W (z) is an isometri transformation of C(z)into itself.Appliations of the maximum priniple are made when a ontinuous funtion W (z) ofz in the unit disk is bounded by one and di�erentiable at all but a �nite number of pointsin the disk. If the inequality jW (�)j < 1holds for some � in the disk, then it holds for all � in the disk. If the inequality holdsfor a point � of di�erentiability, then a ontinuous funtion W 0(z) of z in the unit disk,whih is bounded by one and di�erentiable at all but a �nite number of points in the disk,is de�ned by the identityW 0(z)(�� z)=(1� ��z) = [W (�)�W (z)℄=[1�W (�)�W (z)℄:The identity is applied as a parametrization of the ontinuous funtions V (z), whih arebounded by one in the unit disk and di�erentiable at all but a �nite number of points inthe disk, suh that V (�) = W (�):Suh a funtion is obtained on replaing W (z) by V (z) in the identity and replaing W 0(z)by a ontinuous funtion V 0(z) whih is bounded by one in the unit disk and di�erentiableat all but a �nite number of points in the disk.



COMPLEX ANALYSIS 7If a ontinuous funtion W (z) of z in the unit disk is bounded by one in the disk andis di�erentiable at all but a �nite number of points in the disk and if a Hilbert spae Hexists whose elements are funtions of z in the disk and whih has the funtion[1�W (z)W (w)�℄=(1� w�z)of z as reproduing kernel funtion for funtion values at w when w is in the unit disk,then multipliation by W (z) is an isometri transformation of C(z) onto a Hilbert spaeM whose elements are funtions of z in the unit disk and whih has the funtionW (z)W (w)�=(1� w�z)of z as reproduing kernel funtion for funtion values at w when w is in the unit disk. AHilbert spae H _M exists in whih the spaes H and M are ontained ontratively asomplementary spaes. The elements of the spae H_M are funtions de�ned in the unitdisk. Sine the reproduing kernel funtion for funtion values at w in the spae H_M isthe sum of the reproduing kernel funtions for funtion values at w in the spaes H andM, the funtion (1� w�z)�1of z is the reproduing kernel funtion for funtion values at w in the spae H_M when wis in the unit disk. The spae H_M is isometrially equal to C(z) sine the spae of squaresummable power series has the same reproduing kernel funtions. Sine the spae M isontained ontratively in C(z), multipliation by W (z) is a ontrative transformation ofC(z) into itself. The funtion W (z) is represented by a square summable power series. Thespae H is isometrially equal to the spae H(W ). The spae H(W ) is interpreted as C(z)when W (z) is identially zero.If a ontinuous funtion U(z) of z in the unit disk is bounded by one and is di�erentiableat all but a �nite number of points in the disk and if the inequalityjU(�)j < 1holds at a point � of the disk, then the ontinuous funtionV (z) = [U(�)� U(z)℄=[1� U(z)U(�)�℄of z is bounded by one in the disk and is di�erentiable at all but a �nite number of pointsin the disk. Multipliation by U(z) is a ontrative transformation of C(z) into itself if,and only if, multipliation by V (z) is a ontrative transformation of C(z) into itself. For aHilbert spae H(U) exists whose elements are funtions of z in the disk and whih ontainsthe funtion [1� U(z)U(w)�℄=(1� w�z)of z as reproduing kernel funtion for funtion values at w when w is in the disk if, andonly if, a Hilbert spae H(V ) exists whose elements are funtions of z in the disk andwhih ontains the funtion [1� V (z)V (w)�℄=(1� w�z)



8 LOUIS DE BRANGESof z as reproduing kernel funtion for funtion values at w when w is in the disk. Sinethe identity [1� U(z)U(�)�℄[1� V (z)V (w)�℄[1� U(�)U(w)�℄= [1� U(�)U(�)�℄[1� U(z)U(w)�℄is satis�ed, multipliation by[1� U(�)U(�)�℄� 12 [1� U(z)U(�)�℄is an isometri transformation of the spae H(V ) onto the spae H(U).If a ontinuous funtion U(z) of z in the disk is bounded by one and di�erentiable atall but a �nite number of points in the disk and ifU(�) = 0at a point � of di�erentiability, then the identityU(z) = V (z)(�� z)=(1� ��z)holds for a ontinuous funtion V (z) of z in the disk whih is bounded by one and whihis di�erentiable at all but a �nite number of points in the disk. Multipliation by U(z) isa ontrative transformation of C(z) into itself if, and only if, multipliation by V (z) is aontrative transformation of C(z) into itself. A spae H(U), whose elements are funtionsof z in the unit disk and whih ontains the funtion[1� U(z)U(w)�℄=(1� w�z)of z as reproduing kernel funtion for funtion values at w when w is in the disk, existsif, and only if, a Hilbert spae H(V ) exists whose elements are funtions of z in the diskand whih ontains the funtion[1� V (z)V (w)�℄=(1� w�z)of z as reproduing kernel funtion for funtion values at w when w is in the disk. Thespae H(V ) is ontained isometrially in the spae H(U) and ontains the elements of thespae H(U) whih vanish at �.If a ontinuous funtion W (z) of z in the unit disk is bounded by one in the disk and isdi�erentiable at all but a �nite number of points in the disk and if �1; : : : ; �r are distintpoints of di�erentiability in the disk, then ontinuous funtions Wn(z) of z in the disk,whih are bounded by one in the disk and whih are di�erentiable at all but a �nite numberof points in the disk, are de�ned indutively byW0(z) = W (z)and Wn(z)(�n � z)=(1� ��n z) = [Wn�1(�n)�Wn�1(z)℄=[1�Wn�1(z)Wn�1(�n)�℄



COMPLEX ANALYSIS 9when n is positive and Wn�1(z) is not a onstant of absolute value one. A parametrizationresults of the ontinuous funtions of z in the unit disk, whih are bounded by one in thedisk and whih are di�erentiable at all but a �nite number of points in the disk, having thesame values as W (z) at the points �1; : : : ; �r. Suh funtions are obtained on replaingWr(z) by an arbitrary ontinuous funtion of z whih is bounded by one in the unit diskand whih is di�erentiable at all but a �nite number of points in the disk. A Hilbert spaeH(W ), whose elements are funtions of z in the disk and whih ontains the funtion[1�W (z)W (w)�℄=(1� w�z)of z as reproduing kernel funtion for funtion values at w when w is in the disk, existsif, and only if, a Hilbert spae H(Wr) exists whose elements are funtions of z in the diskand whih ontains the funtion[1�Wr(z)Wr(w)�℄=(1� w�z)of z as reproduing kernel funtion for funtion values at w when w is in the disk. If Wr(z)is a onstant of absolute value one, the spae H(Wr) ontains no nonzero element and thespae H(W ) has dimension r. The ondition that the spae H(W ) has dimension at leastr is neessary and suÆient for the onstrution of the funtion Wr(z).A theorem of Cauhy states that a ontinuous funtion of z in the unit disk is representedby a power series if it is di�erentiable at all but a �nite number of points in the disk. Ifa ontinuous funtion W (z) of z is bounded by one in the disk and is di�erentiable at allbut a �nite number of points in the disk, then multipliation by W (z) is a ontrativetransformation of C(z) into itself. A proof is given by showing that for every �nite setof distint points �1; : : : ; �r in the disk the matrix whose entry in the i{th row and j{tholumn is [1�W (�i)W (�j)�℄=(1� ��j �i)is nonnegative. The onlusion is immediate when �1; : : : ; �r are points of di�erentiabilitysine multipliation by V (z) is a ontrative transformation of C(z) into itself for a powerseries V (z) representing a funtion whih agrees with W (z) at the given points. The sameonlusion holds by ontinuity when the points are not points of di�erentiability.A funtion f(z) of z is said to be analyti in the unit disk if it is represented by a powerseries. The Cauhy theorem states that a funtion f(z) of z is analyti in the unit disk ifit is ontinuous in the disk and is di�erentiable at all but a �nite number of points in thedisk.A funtion �(z) of z, whih is analyti and has nonnegative real part in the unit disk,admits a Poisson representation. When the funtion is ontinuous in the losed disk, theintegral representation2� �(z) + �(w)�1� w�z = Z 2�0 �(ei�) + '(ei�)�(1� e�i�z)(1� w�ei�) d�



10 LOUIS DE BRANGESholds when z and w are in the unit disk. The Poisson representation is an appliation ofthe Cauhy integrals 2��(z) = Z 2�0 �(ei�)d�1� e�i�zand 0 = Z 2�0 �(ei�)ei�d�1� w�ei� :When the funtion �(z) of z is not ontinuous in the losed disk, a nonnegative measure� on the Baire subsets of the real line is onstruted whose value�(E) = limZE 12 ['(eix�y) + '(eix�y)�℄dxis a limit as y dereases to zero of integrals of the real part of'(eix�y):The Poisson representation reads� '(z) + '(w)�1� w�z = Z 2�0 d�(ei�)(1� e�i�z)(1� w�ei�)when z and w are in the unit disk.A Hilbert spae is onstruted whose elements are equivalene lasses of Baire measur-able funtions f(ei�) of ei� on the unit irle for whih the integral2�kfk2 = Z 2�0 jf(ei�)j2d�(ei�)is �nite. A partially isometri transformation of the spae onto the Herglotz spae L(�) isde�ned by taking a funtion f(ei�) of ei� on the unit irle into the funtion12� Z 2�0 f(ei�)d�(ei�)1� e�i�zof z in the unit disk. Multipliation by e�i� in the Hilbert spae of funtions on theboundary orresponds to the di�erene{quotient transformation in the Herglotz spae. Arelated isometri transformation exists of the Hilbert spae of funtions on the unit irleonto the extension spae of the Herglotz spae. Multipliation by ei� in the Hilbert spaeof funtions on the unit irle orresponds to multipliation by z in the extension spaeE(�) to the Herglotz spae L(�).A Riemann mapping funtion is a power seriesf(z) = �1z + �2z2 + �3z3 + : : :



COMPLEX ANALYSIS 11with vanishing onstant oeÆient whih represents an injetive mapping of the unit diskinto the omplex plane.The area theorem is the soure of estimates of oeÆients of Riemann mapping funtions.Analytiity and injetivity imply a ontrative property of omposition in a Hilbert spaewhose elements are funtions analyti in the unit disk.An isomorphi Hilbert spae G is the set of equivalene lasses of power seriesh(z) = 0 + 1z + 2z2 + : : :suh that the sum kh(z)k2G = j1j2 + 2j2j2 + 3j3j2 + : : :onverges. Power series are de�ned a equivalent if they have equal oeÆients of zn forevery positive integer n. Representatives are hosen in equivalene lasses with vanish-ing onstant oeÆient for the de�nition of analyti funtions. An element of the spaerepresents an analyti funtion h(z) of z in the unit disk suh that the integral�kh(z)k2G = ZZ jh0(z)j2dxdywith respet to area measure in the unit disk omputes the salar self{produt.Contrative omposition is obtained for a Riemann mapping funtion f(z) whih mapsthe unit disk onto a region whih is ontained in the unit disk. Ifh(z) = 0 + 1z + 2z2 + : : :is an element of the spae G,g(z) = 0 + 1f(z) + 2f(z)2 + : : :is an element of the spae whose salar self{produt is omputed by the integral�kg(z)k2G = ZZ jg0(z)j2dxdywith respet to area measure for the unit disk. Sine the hain ruleg0(z) = h0(f(z))f 0(z)applies to omplex di�erentiation and sine the mapping de�ned by f(z) is injetive, thehange of variable theorem produes the integral�kg(z)k2G = ZZ jh0(z)j2dxdy



12 LOUIS DE BRANGESwith respet to area measure over the region onto whih f(z) maps the unit disk. Sinethe region is ontained in the unit disk, the integral�kh(z)k2G � kg(z)k2G = ZZ jh0(z)j2dxdywith respet to area measure over the omplement of the region in the unit disk veri�esthe ontrative property of omposition.The Hilbert spae G is ontained isometrially in a Krein spae ext G whose elementsare equivalene lasses of Laurent series. Laurent series are de�ned as equivalent if theoeÆients of zn are equal for every nonzero integer n. The orthogonal omplement of theHilbert spae G in the Krein spae ext G is the anti{spae of a Hilbert spae whih is theanti{isometri image of G under the transformation whih takes f(z) into f(z�1).If h(z) is an element of ext G whose oeÆient of zn vanishes for all but a �nite numberof negative integers n, then h(z) represents a funtion whih is analyti in the regionobtained from the unit disk on deleting the origin. The ompositiong(z) = h(f(z))is an element of ext G whose oeÆient of zn vanishes for all but a �nite number of negativeintegers n. The integral�hh(z); h(z)iext G � �hg(z); g(z)iext G = ZZ jg0(z)j2dxdywith respet to area over the omplement in the unit disk of the region onto whih f(z)maps the unit disk veri�es the ontrative property of omposition on a dense set ofelements of ext G. The ontrative property follows by ontinuity for all elements of ext G.A proof of the ontrative property of omposition in the Krein spae is not essentialat the outset sine this property is taken as a hypothesis.The Grunsky transformation is de�ned under hypotheses of ontrativity. If W (z) is apower series with vanishing onstant oeÆient suh that a ontrative transformation ofthe spae G into itself is de�ned by taking f(z) into f(W (z)), then the omposition atsa a partially isometri transformation of the Hilbert spae G onto a Hilbert spae whihis ontained ontratively in G. The Grunsky spae G(W ) is de�ned as the Hilbert spaewhih is the omplementary spae in G to the range of the transformation.Elements of G de�ne funtions analyti in the unit disk when representatives with vanish-ing onstant oeÆient are hosen in equivalene lasses. The reproduing kernel funtionfor funtion values at w is the funtionlog 11� zw� = (zw�)1 + (zw�)22 + (zw�)33 + : : :of z when w is in the unit disk. The reproduing kernel funtion for funtion values at win the range of the transformation is the funtionlog 11�W (z)W (w)� = [W (z)W (w)�℄1 + [W (z)W (w)�℄22 + [W (z)W (w)�℄33 + : : :



COMPLEX ANALYSIS 13of z when w is in the unit disk. The reproduing kernel funtion for funtion values at win the spae G(W ) is the funtionK(w; z) = log 1�W (z)W (w)�1� zw�of z when w is in the unit disk.Multipliation by W (z) is a ontrative transformation of C(z) into itself sine W (z)represents a funtion whih is analyti in the unit disk and whih is bounded by one by thepositivity properties of reproduing kernel funtions. A relationship between the Grunskyspae G(W ) and the spae H(W ) of the invariant subspae onstrution is implied by theresemblane between reproduing kernel funtions.For every positive integer r a Hilbert spae is onstruted whose elements are funtionsof the omplex variables z1; : : : ; zr in the unit disk for eah variable. The reproduingkernel funtion at w1; : : : ; wr is the funtionK(w1; z1) : : :K(wr; zr)of z1; : : : ; zr for w1; : : : ; wr in the unit disk. A partially isometri transformation of theprodut spae onto a Hilbert spae Gr(W ) whose elements are funtions analyti in theunit disk is de�ned by taking a funtion f(z1; : : : ; zr) of z1; : : : ; zr into the funtionf(z; : : : ; z)of z. The reproduing kernel funtion for funtion values at w in the spae Gr(W ) is thefuntion K(w; z)rof z when w is in the unit disk.The omplex numbers are a Hilbert spae G0(W ) of funtions analyti in the unit diskwhose reproduing kernel funtion for funtion values at w is the funtion1 = K(w; z)0of z in the unit disk when the salar produt is determined by the hoie of absolute valueas norm.If an element fr(z) of the spae Gr(W ) is hosen for every nonnegative integer r, thesum f(z) = f0(z) + 11! f1(z) + 12! f2(z) + : : :is an element of the spae H(W ) whih satis�es the inequalitykf(z)k2H(W ) � kf0(z)k2G0(W ) + 11! kf1(z)k2G0(W ) + 12!kf2(z)k2G2(W ) + : : :



14 LOUIS DE BRANGESwhenever the sum onverges. Every element f(z) of the spae H(W ) admits a representa-tion for whih equality holds. If f(z) is an element of the spae G(W ), thenexp f(z)is an element of the spae H(W ) whih satis�es the inequalityk exp f(z)k2H(W ) � exp kf(z)k2G(W ):If W (z) is a power series with vanishing onstant oeÆient suh that a ontrativetransformation of the spae G into itself is de�ned by taking f(z) into f(W (z)), thenW �(z) = W (z�)�is a power series with vanishing onstant oeÆient suh that a ontrative transforma-tion of the spae G into itself is de�ned by taking f(z) into f(W �(z)). If a ontrativetransformation of the spae ext G into itself is de�ned by taking f(z) into f(W (z)), thena ontrative transformation of the spae ext G into itself is de�ned by taking f(z) intof(W �(z)).The Grunsky transformation of the spae G(W ) into the spae G(W �) is de�ned whenthe omposition f(z) into f(W (z)) is ontrative in ext G.Theorem 18. If for a power series W (z) with vanishing onstant oeÆient a ontrativetransformation of ext G into itself is de�ned by taking f(z) into f(W (z)), then the funtionlog 1�W (w�)=W (z)1� w�=zof z is represented by an element of the spae G(W ) and the funtionlog 1�W �(z)=W (w)�1� z=w�of z is represented by an element of the spae G(W �) when w is in the unit disk. TheGrunsky transformation is a ontrative transformation of the spae G(W ) into the spaeG(W �) whih takes f(z) into g(z) when the identityg(w) = hf(z); log 1�W (w�)=W (z)1� w�=z iG(W )holds for w in the unit disk and whose adjoint is a ontrative transformation of the spaeG(W �) into the spae G(W ) whih takes f(z) into g(z) when the identityg(w) = hf(z); log 1�W �(z)=W (w)�1� z=w� iG(W�)



COMPLEX ANALYSIS 15holds for w in the unit disk.Proof of Theorem 18. Sine a ontrative transformation of ext G into itself is de�ned bytaking f(z) into f(W (z)), the transformation ats as a partially isometri transformationof ext G onto a Krein spae whih is ontained ontratively in ext G. Sine the transfor-mation takes G ontratively into itself, it ats as a partially isometri transformation ofG onto a Hilbert spae whih is ontained ontratively in G and whose omplementaryspae in ext G is the orthogonal sum of G(W ) and the orthogonal omplement of G inext G. The transformation ats as a partially isometri transformation of the orthogonalomplement of G in ext G onto a Krein spae M whih is ontained ontratively in theorthogonal sum of the spae G(W ) and the orthogonal omplement of G in ext G.An element f(z) + g(z)ofM is the sum of an element f(z) of the spae G(W ) and an element g(z) of the orthogonalomplement of G in ext G whih satis�es the inequalitykf(z)k2G(W ) + hg(z); g(z)iext G � hf(z) + g(z); f(z) + g(z)iM:An anti{isometri transformation of G onto the orthogonal omplement of G in ext G isde�ned by taking f(z) into f(z�1). The transformation takeslog(1� zw�)�1into log(1� w�=z)�1when w is in the unit disk. Sine the identityf(w) = hf(z); log(1� zw�)�1iGholds for every element f(z) of G, the identityf(1=w) = hf(z); log(1� w�=z)iext Gholds for every element f(z) of the orthogonal omplement of G in ext G. Sine the funtionrepresented by W (z) maps the unit disk into itself,log(1�W (w�)=z)is an element of the orthogonal omplement of G in ext G whih satis�es the identityf(1=W �(w)) = hf(z); log(1�W (w�)=z)iext Gfor every element f(z) of the orthogonal omplement of G in ext G.



16 LOUIS DE BRANGESSine a partially isometri transformation of the orthogonal omplement of G in ext Gonto M is de�ned by taking f(z) intog(z) = f(W (z));the element log(1�W (w�)=W (z))of M satis�es the identityf(1=W �(w)) = hg(z); log(1�W (w�)=W (z))iMfor every element g(z) ofM. The element f(z) of the orthogonal omplement of G in ext Gis uniquely determined by its image g(z) in M.Sine the elementlog(1�W (w�)=W (z)) = log 1�W (w�)=W (z)1� w�=z + log (1� w�=z)of M is the sum of an element of G and an element of the orthogonal omplement of G inext G and sine the identitieshlog(1� w�=z); log(1� w�=z)iext G = log(1� ww�)and hlog(1�W (w�)=W (z)); log(1�W (w�)=W (z))iM = log(1�W (w�)W �(w))are satis�ed, the element log 1�W (w�)=W (z)1� w�=zof G is an element of the spae G(W ) whih satis�es the inequalityk log 1�W (w�)=W (z)1� w�=z k2G(W ) � log 1�W (w�)W �(w)1� ww�A ontrative transformation of the spae G�(W ) into the spae G(W ) exists whih takesa �nite linear ombination X k log 1�W �(z)W (w�k )1� zw�kof reproduing kernel funtions for the spae G(W �) into the �nite linear ombinationX k log 1�W (w�k )=W (z)1� w�k =z



COMPLEX ANALYSIS 17of elements of the spae G(W ) sine the identitykX k log 1�W �(z)W (w�k )1� zw�k k2G(W�) =X k�i log 1�W �(wi)W (w�k )1� wiw�kand the inequalitykX k log 1�W (w�k )=W (z)1� w�k =z k2G(W ) �X k�i log 1�W �(wi)W (w�k )1� wiw�kare satis�ed.The adjoint transformation of the spae G(W ) into the spae G(W �) takes f(z) intog(z) when the identity g(w) = hf(z); log 1�W (w�)=W (z)1� w�=z iG(W )holds for w in the unit disk. This ompletes the onstrution of the Grunsky transformationof the spae G(W ) into the spae G(W �).Sine the transformation takes log 1�W (z)W (w)�1� zw�into log 1�W �(z)=W (w)�1� z=w�when w is in the unit disk, the adjoint transformation of the spae G(W �) into the spaeG(W ) takes f(z) into g(z) when the identityg(w) = hf(z); log 1�W �(z)=W (w)�1� z=w� iG(W�)holds for w in the unit disk.The Grunsky transformation originates as a haraterization of power series W (z) withvanishing onstant oeÆient whih represent injetive mappings of the unit disk. Sinethe funtion 1�W (w�)=W (z)1� w�=zof z admits an analyti logarithm in the unit disk when w is in the unit disk, the numeratoris nonzero whenever the denominator is nonzero. In the present formulation the ontrativeproperty of the omposition f(z) into f(w(z)) in ext G implies that the funtion representedbyW (z) is not only injetive but bounded by one in the unit disk. The onverse impliation



18 LOUIS DE BRANGEShas not yet been veri�ed. The original Grunsky transformation is a limiting ase of thepresent transformation whih gives a weaker onlusion under a weaker hypothesis.The Koebe funtion as a power seriesf(z) = z + 2z2 + 3z3 + : : :represents a funtion f(z) = z=(1� z)2whih maps the unit disk injetively onto a region obtained from the omplex plane ondeleting the real numbers not greater than minus one{quarter. The analyti funtionzf 0(z)=f(z) = (1 + z)=(1� z)of z in the unit disk has positive real part and has value one at the origin.A related power series f(z) = a1z + a2z2 + a3z3 + : : :with vanishing onstant oeÆient is de�ned byzf 0(z)=f(z) = 1=�(z)for every analyti funtion of z in the unit disk whih has positive real part and whih hasvalue one at the origin. The series represents an injetive mapping of the unit disk ontoa region whih ontains the origin and whih ontains every onvex ombination of one ofits elements with the origin. When t is positive and not greater than one, the funtiontf(z)of z maps the unit disk injetively onto a region whih is ontained in the given region.A power series W (t; z) with vanishing onstant oeÆient whih represents an injetivemapping of the unit disk into itself is de�ned by the ompositiontf(z) = f(W (t; z)):The omposing funtions form a semi{group under omposition: The identityW (ab; z) = W (a;W (b; z))holds when a and b are positive and not greater than one. The evolution equationt ��t W (t; z) = �(z) z ��z W (t; z)generates the funtions belonging to the semi{group. The funtion W (t; z) has derivativeat the origin equal to t.



COMPLEX ANALYSIS 19The Grunsky spaes of analyti funtions are Hilbert spaes of analyti funtions derivedfrom the spaes applied in the onstrution of invariant subspaes on a hypothesis ofinjetivity for the transfer funtion. Exponentiation is ontrative from the initial Grunskyspae G into the initial spae C(z) of the invariant subspae onstrution. Iff(z) = a1z + a2z2 + a3z3 + : : :is an element of G, then exp f(z) = b0 + b1z + b2z2 + : : :is an element of C(z) whih satis�es the inequalityX jbnj2 � exp(Xn(anj2):A generalization is due to Lebedev and Milin.Theorem 19. Assume that a noninreasing sequene of nonnegative numbers �n has aonvergent positive sum, that �r = 1Xn=r �n= 1Xn=0 �nis de�ned for every positive integer r, and that the sumX�n=nover the positive integers n onverges. Iff(z) = a1z + a2z2 + a3z3 + : : :and exp f(z) = b0 + b1z + b2z2 + : : : ;then the inequality(X �njbnj2) exp(X�n=n) � (X �n) exp(Xn�njanj2)is satis�ed.Proof of Theorem 19. The inequality is veri�ed by maximizingexp(�Xn�njanj2)X �njbnj2under the onstraint of onvergent sums. If a di�erentiable funtion �n(t) of positive t isgiven for every positive integer n, a di�erentiable funtion �n(t) of positive t is de�ned forevery nonnegative integer n by the equationX�n(t)zn = exp(X�n(t)zn):



20 LOUIS DE BRANGESThe di�erential equation �0n(t) =X�n�k(t)�0k(t)is satis�ed for every nonnegative integer n with summation over the positive integers kwhih are not greater than n.The derivative with respet to t of the sumlog(X �n�n(t)��n(t))�Xn�n�n(t)��n(t)is the sum X[sk(t)� k�k�k(t)℄��0k(t) +X[sk(t)� k�k�k(t)℄�0k(t)�over the positive integers k withsk(t) = P �n+k�n+k(t)�n(t)�P �n�n(t)�n(t)�de�ned by sums over the nonnegative integers n.The derivative is nonnegative when �k(t) is de�ned as the solution of the di�erentialequation �0k(t) = sk(t)� k�k�k(t)with initial ondition �k(0) = akfor every positive integer k. The inequalityj�k(t)� ak exp(�k�kt)j � 1� exp(�k�kt)k�kapplies when t is positive sine jsk(t)j � 1:Sine the inequalityexp(�Xn�njanj2)X �njbnj2 � exp(�Xn�nj�n(t)j2)X�nj�n(t)j2is satis�ed, it is suÆient to obtain an estimate ofexp(�Xn�njanj2)X �njbnj2when the inequality k�kjakj � 1is satis�ed. A maximum of the ontinuous funtion is obtained by ompatness. Themaximum is attained on the set of oeÆients de�ned by the equationsk�kak = P �n+kbn+kb�nP �nb�n bn :



COMPLEX ANALYSIS 21The set of nonritial points is mapped ontinuously into the set of ritial points bythe solutions of the di�erential equations. Sine the set of nonritial points is onneted,the set of nonritial points is mapped onto a ompat onneted set of ritial points.The funtion exp(�X k�kjakj2)X �njbnj2of oeÆients is a onstant on the set of ritial points. This omputes the maximum valuesine an element of the set of ritial points is de�ned bykak = !kfor every positive integer k with bn = !nfor every nonnegative integer n.This ompletes the proof of the theorem.Lebedev and Milin state the inequality only when the oeÆients �n are a sequeneof zeros and ones. The inequality is the motivation for ontrative properties of ompo-sition whih are found in the Koebe funtion and related mappings de�ning ompositionsemigroups.If a power series f(z) has vanishing onstant oeÆient, the power seriesf(tz=(1 + z)2) =X�n(t)znhas vanishing onstant oeÆient for every positive number t. Sine the di�erential equa-tion t ��t f(tz=(1 + z)2) = 1 + z1� z z ��z f(tz=(1 + z)2)is satis�ed, the oeÆients �n(t) satisfy the di�erential equationst�0n(t) = sn(t) + sn�1(t)in terms of the oeÆients sn(t) of the power series(1 + z)z ��z f(tz=(1 + z)2) =X sn(t)znwhih satisfy the equations n �n(t) = sn(t)� sn�1(t):Nonnegative di�erentiable funtions �n(t) of t � 1, de�ned for positive integers n, aresaid to be admissible as a family if the di�erential equations�n(t) + t�0n(t)n = �n+1(t)� t�0n+1(t)n+ 1



22 LOUIS DE BRANGESare satis�ed and if the solutions are noninreasing funtions of t. These onditions implythat the sum X �n(t) [sn(t)� sn�1(t)℄�[sn(t)� sn�1(t)℄nis a nondereasing funtion of t sine the inequality[sn(t)� sn�1(t)℄�[sn(t)� sn�1(t)℄ � 2sn(t)�sn(t) + 2sn�1(t)�sn�1(t)is satis�ed. The sum Xn�n(t)�n(t)��n(t)is a nondereasing funtion of t.The formal sum X �n(t)n (zn + z�n)over the positive integers n satis�es the di�erential equationt ��t X �n(t)n (zn + z�n) = 1� z1 + z z ��zX �n(t)n (zn + z�n)= 1� z1 + z X �n(t)(zn � z�n):The equation admits a unique solution de�ning an admissible family for initial onditions�n(1) an arbitrary noninreasing sequene of nonnegative numbers suh that the inre-ments �n(1)� �n+1(1)are noninreasing and have �nite sum. It is suÆient to make the veri�ation when apositive integer r exists suh that �n(1) = r + 1� nwhen n is not greater than r and suh that �n(1) vanishes otherwise.Sine the identityX(r + 1� n)zn =X zn+1 � zz � 1 = zr+2 � z2(z � 1)2 � rzz � 1holds with summation over the positive integers n whih are not greater than r1 the identityX (r + 1� n)(zn � z�n) = zr+1 � z�r�1 � (r + 1)(z � z�1)(z 12 � z� 12 )2holds with summation over the positive integers n whih are not greater than r.



COMPLEX ANALYSIS 23Sine the identity(2r + 2)X (2r + 1� k)!k!(2r + 1� 2k)! (z 12 � z� 12 )2r+2�2k = zr+1 + z�r�1holds with summation over the nonnegative integers k whih are not greater than r + 1,the identity�1� z1 + z (zr+1 � z�r�1) =X (2r + 1� k)!k!(2r + 1� 2k)! (z 12 � z� 12 )2r+2�2kholds with summation over the nonnegative integers k whih are not greater than r.The solution of the di�erential equation is�t ��tX �n(t)n (zn + z�n) =X (2r + 1� k)!k!(2r + 1� 2k)! tk�r(z 12 � z� 12 )2r�2kwith summation over the nonnegative integers k whih are not greater than r. Sine thebinomial expansion(z 12 � z� 12 )2r�2k =X (�1)m (2r � 2k)!m!(2r � 2k �m)! zr�k�mapplies with summation of the integers m suh thatk � r � m � r � k;the identity �t ��t �n(t)n =X (�1)k (r + n+ 1 + k)!k!(r � n� k)!(2n+ k)! t�n�k2n+ 1 + 2kholds for every positive integer n whih is not greater than r with summation over thenonnegative integers k whih are not greater than r � n. The equation reads�t ��t �n(t)n = (r + n+ 1)! t�n(r � n)!(2n+ 1)! F (n� r; n+ 2 + r; n+ 12 ;n+ 32 ; 2n+ 1; t�1)in the hypergeometri notationF (a; b; ; d; e; z) = 1 + ab1!de z + a(a+ 1)b(b+ 1)(+ 1)2!d(d+ 1)e(e+ 1) z2 + : : : :Another derivation of the equation appears in A proof of the Bieberbah onjeture, AtaMathematia 154 (1985), 137{152.



24 LOUIS DE BRANGESSine (r + n+ 1 + k)!(r � n� k)! � (r + n+ k)!(r � 1� n� k)! = (2n+ 1 + 2k) (r + n+ k)!(r � n� k)!when n+ k is less than r, the identity reads�(2n)! tn+1 ��t �n(t)n =X (m+ n)!(m� n)! F (n�m;n+ 1 +m; 2n+ 1; t�1)with summation over the positive integers m whih are not greater than r.The hypergeometri seriesF (a; b; ; z) = 1 + ab1! z + a(a+ 1)b(b+ 1)2!(+ 1) z2 + : : :satis�es the di�erential equationsF 0(a; b; ; z) = a[F (a+ 1; b; ; z)� F (a; b; ; z)℄=zand F 0(a; b; ; z) = b[F (a; b+ 1; ; z)� F (a; b; ; z)℄=zand F 0(a; b; ; z) = (� 1)[F (a; b; � 1; z)� F (a; b; ; z)℄=zas well as the di�erential equations(1� z)F 0(a; b; ; z)� bF (a; b; ; z) = (a� )[F (a; b; ; z)� F (a� 1; b; ; z)℄=zand (1� z)F 0(a; b; ; z)� aF (a; b; ; z) = (b� )[F (a; b; ; z)� F (a; b� 1; )z)℄=zand (1� z)F 0(a; b; ; z)� (a+ b� )F (a; b; ; z) = (� a)(� b) F (a; b; + 1; z)whih imply the di�erential equationz(1� z)F 00(a; b; ; z) + [� (a+ b+ 1)z℄F 0(a; b; ; z)� abF (a; b; ; z) = 0and the reurrene relationF (a; b; ; z) = ba� b� 1 a� a� b [F (a� 1; b+ 1; ; z)� F (a; b; ; z)℄=z+ ab� a� 1 b� b� a [F (a+ 1; b� 1; ; z)� F (a; b; ; z)℄=z:



COMPLEX ANALYSIS 25Another onsequene is the identityF (a; b; ; 1) = �()�(� a� b)�(� a)�(� b)when � a� b has positive real part.For every integer r whih is not less than a given positive integer n the polynomialF (n� r; n+ 1 + r; 2n+ 1; z)of degree r � n is an eigenfuntion of the di�erential operator taking F (z) intoz(1� z)F 00(z) + [2n+ 1� (2n+ 2)z℄F 0(z)for the eigenvalue (n� r)(n+ 1 + r):The operator on polynomials admits a unique self{adjoint extension in the Hilbert spaeof funtions de�ned in the interval (0; 1) whih are square integrable with respet to themeasure whose value on a Baire subset of the interval is the integral2n+ 1(2n)!(2n)! Z t2ndttaken over the set. An orthonormal basis for the Hilbert spae is the set of polynomials(r + n)!(r � n)! F (n� r; n+ 1 + r; 2n+ 1; z)for integers r whih are not less than n. A omputation of salar produts is made fromthe identity� (n+ r + 1)2(2r + 1)(2r + 2) + (r � n)2(2r)(2r + 1) � z� F (n� r; n+ 1 + r; 2n+ 1; z)= (n+ r + 1)2(2r + 1)(2r + 2) F (n� r � 1; n+ 2 + r; 2n+ 1; z)+ (r � n)2(2r)(2r+ 1) F (n� r + 1; n+ r; 2n+ 1; z)from whih the reurrene relation(n+ r + 1)2 Z 10 t2njF (n� r � 1; n+ 2 + r; 2n+ 1; t)j2dt= (r + 1� n)2 Z 10 t2njF (n� r; n+ 1 + r; 2n+ 1; t)j2dtfollows.A theorem of Rihard Askey and George Gasper, Positive Jaobi sums II, AmerianJournal of Mathematis 98 (1976), 709{737, states that, for every positive integer n andevery integer r whih is not less than n, the sumX (m+ n)!(m� n)! F (n�m;n+ 1 +m; 2n+ 1; z)over the integers m suh that n � m � r is a polynomial whose values in the interval (0; 1)are positive.



26 LOUIS DE BRANGESChapter 3. Conformal MappingThe Lagrange skew{plane is a generalization of the Gauss plane. A Lagrange number� = d+ ia+ jb+ khas rational numbers a; b; , and d as oordinates. The addition and multipliation ofLagrange numbers are de�ned from the addition and multipliation of rational numbersby the multipliation tableij = k; jk = i; ki = j;ji = �k; kj = �i; ik = �j;ii = �1; jj = �1; kk = �1:The properties of the Lagrange skew{plane resemble those of the Gauss plane exept forthe nonommutativity of multipliation.The assoiative law (�+ �) +  = �+ (� + )holds for all Lagrange numbers �; �, and . The ommutative law�+ � = � + �holds for all Lagrange numbers � and �. The origin 0 of the Lagrange skew{plane, whihhas vanishing oordinates, satis�es the identity0 +  =  =  + 0for every element  of the Lagrange skew{plane. For every element � of the Lagrangeskew{plane a unique element � = ��of the Lagrange skew{plane exists suh that�+ � = 0 = � + �:The identity (�+ �)� = �� + ��holds for all Lagrange numbers � and �.Multipliation by a Lagrange number  is a homomorphism of additive struture. Theidentity (�+ �) = �+ �holds for all Lagrange numbers � and �. The parametrization of homomorphisms is on-sistent with additive struture: The identity(�+ �) = � + �



COMPLEX ANALYSIS 27holds for all Lagrange numbers �; �, and . Multipliation by  is the homomorphismwhih annihilates every element of the Lagrange skew{plane when  is the origin. Multi-pliation by  is the identity homomorphism when  is the unit.The omposition of homomorphisms is onsistent with multipliative struture: Theassoiative law (��) = �(�)holds for all Lagrange numbers �; �, and . Conjugation is an anti{homomorphism ofmultipliative struture: The identity(��)� = ����holds for all Lagrange numbers � and �.A rational number is a Lagrange number = �whih is self{onjugate. If  = d+ ia+ jb+ kis a nonzero Lagrange number, then� = a2 + b2 + 2 + d2is a positive rational number. A nonzero Lagrange number � has an inverse� = ��=(���)suh that �� = 1 = ��:A Lagrange number is said to be integral if its oordinates are either all integers or allhalves of odd integers. Sums and produts of integral Lagrange numbers are integral. Theonjugate of an integral Lagrange number is integral. If � is a nonzero integral Lagrangenumber, ��� is a positive integer. The Eulidean algorithm is adapted to the searh forintegral Lagrange numbers � whih represent a given positive integerr = ���:If � is an integral Lagrange number and if � is a nonzero integral Lagrange number,then an integral Lagrange number  exists whih satis�es the inequality(�� �)�(�� �) < ���:The hoie of the oordinates of  is made so that the oordinates of���� ��� = d+ ia+ jb+ k



28 LOUIS DE BRANGESsatisfy the inequalities ���� � 2a � ���;and ���� � 2b � ���;and ���� � 2 � ���;and ���� � 2d � ���and so that a strit inequality(���� ���)(���� ���) < (���)2is obtained.A nonempty set of integral Lagrange numbers is said to be a left ideal if it ontains thesum �+ �of any elements � and � and if it ontains the produt��of any element � with an integral Lagrange number �.A nonempty set of integral Lagrange numbers is said to be a right ideal if it ontainsthe sum �+ �of any elements � and � and if it ontains the produt��of any element � with an integral Lagrange number �.Conjugation transforms a left ideal into a right ideal and a right ideal into a left ideal.A determination of struture is made for right ideals.A nonzero integral Lagrange number � belongs to a right ideal whose elements are theproduts � with integral Lagrange numbers . A right ideal whih ontains a nonzeroelement ontains a nonzero element � whih minimizes the positive integer ���. If � is anelement of the ideal, an integral Lagrange number  exists whih satis�es the inequality(�� �)�(�� �) < ���:The identity � = �



COMPLEX ANALYSIS 29follows sine �� � is an element of the ideal whih is not nonzero.The Eulidean algorithm solves the equationr = ���for an integral Lagrange number � when r is a given positive integer. The solution isobtained from an approximate solution in a quotient ring of the ring of integral Lagrangenumbers.A ring of Lagrange numbers is a nonempty set of Lagrange numbers whih ontains thedi�erene �� �and the produt ��of any elements � and � of the set. The set of integral Lagrange numbers is a onjugatedring: The ring ontains �� whenever it ontains �.A quotient ring of the ring of integral Lagrange numbers is de�ned for every positiveinteger r. Integral Lagrange numbers � and � are said to be ongruent modulo r if� � � = ris divisible by r: The equation admits an integral Lagrange number  as solution. Con-gruene modulo r is an equivalene relation on integral Lagrange numbers. The ring is aunion of disjoint equivalene lasses.Equivalene lasses inherit addition and multipliation sine �1 + �1 and �2 + �2 areongruent modulo r and sine �1�1 and �2�2 are ongruent modulo r whenever �1 and �2are ongruent modulo r and �1 and �2 are ongruent modulo r. Equivalene lasses inheritonjugation sine �1 and �2 are ongruent modulo r whenever 1 and 2 are ongruentmodulo r. Addition and multipliation of equivalene lasses have the properties requiredof a ring:The assoiative law (�+ �) +  = �+ (� + )holds for all integral Lagrange numbers �; �, and  modulo r. The ommutative law�+ � = � + �holds for all integral Lagrange numbers � and � modulo r. The image of the origin of theLagrange numbers is an origin 0 for the Lagrange numbers modulo r: The identity0 +  =  =  + 0holds for every integral Lagrange number  modulo r. For every integral Lagrange number� modulo r an integral Lagrange number� = ��



30 LOUIS DE BRANGESmodulo r exists suh that �+ � = 0 = � + �:Multipliation by an integral Lagrange number  modulo r is a homomorphism ofadditive struture: The identity (�+ �) = �+ �holds for all integral Lagrange numbers � and � modulo r. The parametrization of homo-morphisms is onsistent with additive struture: The identity(�+ �) = � + �holds for all integral Lagrange numbers �; �, and  modulo r. Multipliation by  is thehomomorphism whih annihilates every integral Lagrange number modulo r when  is theorigin. Multipliation by  is the identity homomorphism when  is the image 1 of theunit of the Lagrange numbers.The omposition of homomorphisms is onsistent with multipliative struture: Theassoiative law (��) = �(�)holds for all integral Lagrange numbers �; �, and  modulo r.The ring of integral Lagrange numbers modulo r is onjugated: The identity(��)� = ����holds for all integral Lagrange numbers � and � modulo r.There are twenty{four integral Lagrange numbers � whih represent1 = ���:These Lagrange units form a group under multipliation. The eight elements of the groupwhih are fourth roots of unity form a normal subgroup whose quotient is a yli groupof three elements.If r is an odd positive integer, every integral Lagrange number is ongruent modulo rto a unique Lagrange number whose oordinates are nonnegative integers less than r. Thenumber of integral Lagrange numbers modulo r is equal to r4.If r and s are relatively prime positive integers, the equation1 = ra+ sbadmits a solution in integers a and b. A anonial homomorphism of the ring of integralLagrange numbers modulo rs onto the ring of integral Lagrange numbers modulo r existswhose kernel is the onjugated ideal of elements divisible by s. A anonial homomorphism



COMPLEX ANALYSIS 31of the ring of integral Lagrange numbers modulo rs onto the ring of integral Lagrangenumbers modulo s exists whose kernel is the onjugated ideal of elements divisible by r.The onjugated ring of integral Lagrange numbers modulo rs is anonially isomorphi tothe Cartesian produt of the onjugated ring of integral Lagrange numbers modulo r andthe onjugated ring of integral Lagrange numbers modulo s.The ring of integral Lagrange numbers modulo two ontains sixteen elements. The in-vertible elements of the ring are represented by Lagrange units. There are twelve integralLagrange numbers modulo two sine a Lagrange unit ! and its negative �! are ongruentmodulo two. A anonial homomorphism exists of the ring of integral Lagrange numbersmodulo 2r onto the ring of integral Lagrange numbers modulo r whose kernel is the on-jugated ideal of elements divisible by r. Sine the ideal ontains sixteen elements, everyintegral Lagrange number modulo r is represented by sixteen integral Lagrange numbersmodulo 2r. The number of integral Lagrange numbers modulo r is equal to r4 for everypositive integer r.The multipliative group of nonzero integers modulo p is yli for every odd primep. The number of nonzero integers modulo p whih are square of integers modulo p is12 (p� 1) as is the number of integers modulo p whih are nonsquares. The produt of twosquares and the produt of two nonsquares are squares. The produt of a square and anonsquare is a nonsquare. Sine a nonsquare exists, some sum of two squares exists whihis a nonsquare.A skew{onjugate integral Lagrange number� = ia+ jbmodulo p is de�ned by the hoie of integers a and b modulo p suh that the equationa2 + b2 = 2admits no solution  in the integers modulo p. If u and v are integers modulo p suh that(u+ iv)�(u+ iv) = u2 � �2v2vanishes, then u and v both vanish. A onjugated �eld of p2 elements is obtained whoseelements are integral Lagrange numbers u+ �vmodulo p with integers u and v modulo p as oordinates.An integer a modulo p exists suh that�1� a2is a square sine 12(p+1) integers modulo p are represented whereas there are only 12 (p�1)nonsquares. A skew{onjugate integral Lagrange number� = ia+ jb+ k



32 LOUIS DE BRANGESmodulo p exists for some integer b modulo p suh that��� = 0:Every integral Lagrange number is represented as�+ ��for unique elements � and � of the �eld. The identity(�+ ��)�(�+ ��) = ���is satis�ed.If p is a prime, a anonial homomorphism of the ring of integral Lagrange numbersmodulo rp onto the ring of integral Lagrange numbers modulo r exists whose kernel is theonjugated ideal of elements divisible by r.If I is a right ideal of the ring of integral Lagrange numbers modulo r, then the setof integral Lagrange numbers whih represent elements of the ideal is a right ideal whihontains r. An integral Lagrange number � exists suh that the elements of the ideal arethe produts �� with � an integral Lagrange number. The representationr = ���holds if I ontains no nonzero element whih is self{onjugate.The number of right ideals of the ring of integral Lagrange numbers modulo r whihontain no nonzero self{onjugate element is equal to the sum of the odd divisors of r.The number of integral Lagrange numbers � whih representr = ���is equal to twenty{four times the sum of the odd divisors of r.The Lagrange skew{plane admits topologies whih are ompatible with addition andmultipliation. The Dedekind topology is derived from onvex struture.A onvex ombination (1� t)� + t�of elements � and � of the Lagrange skew{plane is an element of the Lagrange skew{planewhen t is a rational number in the interval [0; 1℄. A subset of the Lagrange skew{planeis said to be preonvex if it ontains all elements of the Lagrange skew{plane whih areonvex ombinations of elements of the set. The preonvex span of a subset of the Lagrangeskew{plane is de�ned as the smallest preonvex subset of the Lagrange skew{plane whihontains the given set.The losure in the Lagrange skew{plane of a preonvex subset B is the set B� ofelements � of the Lagrange skew{plane suh that the set whose elements are � and the



COMPLEX ANALYSIS 33elements of B is preonvex. The losure of a preonvex set is a preonvex set whih is itsown losure.A nonempty preonvex set is de�ned as open if it is disjoint from the losure of everydisjoint nonempty preonvex set. The intersetion of two nonempty open preonvex setsis an open preonvex set if it is nonempty.A subset of the Lagrange skew{plane is said to be open if it is a union of nonemptyopen preonvex sets. The empty set is open sine it is an empty union of suh sets. Unionsof open subsets are open. Finite intersetions of open sets are open.An example of an open set is the omplement in the Lagrange skew{plane of the losureof a nonempty preonvex set. A subset of the Lagrange skew{plane is said to be losed if itis the omplement in the Lagrange skew{plane of an open set. Intersetions of losed setsare losed. Finite unions of losed sets are losed. The Lagrange skew{plane is a Hausdor�spae in the topology whose open and losed sets are de�ned by onvexity. These openand losed sets de�ne the Dedekind topology of the Lagrange skew{plane.If a nonempty open preonvex set A is disjoint from a nonempty preonvex set B, thena maximal preonvex set exists whih ontains B and is disjoint from A. The maximalpreonvex set is losed and has preonvex omplement. The existene of the maximalpreonvex set is an appliation of the Kuratowski{Zorn lemma.Addition and multipliation are ontinuous as transformations of the Cartesian prod-ut of the Lagrange skew{plane with itself into the Lagrange skew{plane. Conjugation isontinuous as a transformation of the Lagrange skew{plane into the Lagrange skew{plane.The Dedekind skew{plane is the ompletion of the Lagrange skew{plane in the uniformDedekind topology. Neighborhoods of a Lagrange number are determined by neighbor-hoods of the origin. If an open set A ontains the origin and if � is a Lagrange number,then the set of sums of � and elements of A is an open set whih ontains �. Every openset whih ontains � is obtained from an open set whih ontains the origin.A Cauhy lass of losed subsets of the Lagrange skew{plane is a nonempty lass oflosed subsets suh that the intersetion of the members of any �nite sublass is nonemptyand suh that for every open set A ontaining the origin some member B of the lass existssuh that all di�erenes of elements of B belong to A.A Cauhy lass of losed subsets is ontained in a maximal Cauhy lass of losed subsets.A Cauhy sequene is a sequene of elements �1; �2; �3; : : : of the Lagrange skew{plane suhthat a Cauhy lass of losed subsets is de�ned whose members are the losed preonvexspans of �r; �r+1; �r+2; : : : for every positive integer r. A Cauhy sequene determines amaximal Cauhy lass. Every maximal Cauhy lass is determined by a Cauhy sequene.An element of the Dedekind skew{plane is de�ned by a maximal Cauhy lass of elementsof the Lagrange skew{plane. An element of the Lagrange skew{plane determines themaximal Cauhy lass of losed sets whih ontain the element. The Lagrange skew{planeis ontained in the Dedekind skew{plane.If B is a losed subset of the Lagrange skew{plane, the losure B� of B in the Dedekind



34 LOUIS DE BRANGESskew{plane is de�ned as the set of elements of the Dedekind skew{plane whose maximalCauhy lass has B as a member. A subset of the Dedekind skew{plane is de�ned as openif it is disjoint from the losure in the Dedekind skew{plane of every disjoint losed subsetof the Lagrange skew{plane. Unions of open subsets of the Dedekind skew{plane are open.Finite intersetions of open subsets of the Dedekind skew{plane are open. A subset ofthe Lagrange skew{plane is open if, and only if, it is the intersetion with the Lagrangeskew{plane of an open subset of the Dedekind skew{plane.A subset of the Dedekind skew{plane is de�ned as losed if its omplement in theDedekind skew{plane is open. Intersetions of losed subsets of the Dedekind skew{planeare losed. Finite unions of losed subset of the Dedekind skew{plane are losed. Thelosure of a subset of the Dedekind skew{plane is de�ned as the smallest losed set on-taining the given set. The losure in the Lagrange skew{plane of a subset of the Lagrangeskew{plane is the intersetion with the Lagrange skew{plane of the losure of the set inthe Dedekind skew{plane.The Dedekind skew{plane is a Hausdor� spae in the topology whose open sets andlosed sets are determined by onvexity. These open sets and losed sets de�ne theDedekind topology of the Dedekind skew{plane.The Lagrange skew{plane is dense in the Dedekind skew{plane. Addition and multipli-ation admit unique ontinuous extensions as transformations of the Cartesian produt ofthe Dedekind skew{plane with itself into the Dedekind skew{plane. Conjugation admits aunique ontinuous extension as a transformation of the Dedekind skew{plant into itself.Properties of addition in the Lagrange skew{plane are preserved in the Dedekind skew{plane. The assoiative law (�+ �) +  = �+ (� + )holds for all elements �; �, and  of the Dedekind skew{plane. The ommutative law�+ � = � + �holds for all elements � and � of the Dedekind skew{plane. The origin 0 of the Lagrangeskew{plane satis�es the identities 0 +  =  =  + 0for every element  of the Dedekind skew{plane. For every element � of the Dedekindskew{plane a unique element � = ��of the Dedekind skew{plane exists suh that�+ � = 0 = � + �:Conjugation is a homomorphism of additive struture: The identity(�+ �)� = �� + ��



COMPLEX ANALYSIS 35holds for all elements � and � of the Dedekind skew{plane.Multipliation by an element  of the Dedekind skew{plane is a homomorphism ofadditive struture: The identity (�+ �) = �+ �holds for all elements � and � of the Dedekind skew{plane. The parametrization of homo-morphisms is onsistent with additive struture: The identity(�+ �) = � + �holds for all elements �; �, and  of the Dedekind skew{plane. Multipliation by  is thehomomorphism whih annihilates every element of the Dedekind skew{plane when  isthe origin. Multipliation by  is the identity homomorphism when  is the unit 1 of theLagrange skew{plane.The omposition of homomorphisms is onsistent with multipliative struture: Theassoiative law (��) = �(�)holds for all elements �; �, and  of the Dedekind skew{plane. Conjugation is an anti{homomorphism of multipliative struture: The identity(��)� = ����holds for all elements � and � of the Dedekind skew{plane.The inlusion of the omplex plane in the Dedekind skew{plane is a homomorphismof additive and multipliative struture whih ommutes with onjugation. The om-plex plane is a losed subset of the Dedekind skew{plane. The Dedekind topology ofthe Dedekind plane is the subspae topology of the Dedekind topology of the Dedekindskew{plane.If  is a nonzero element of the Dedekind skew{plane, the real number�is positive. If � is a nonzero element of the Dedekind skew{plane, the nonzero element� = ��=(���)satis�es the identities �� = 1 = ��:The Dedekind skew{plane is omplete in the uniform Dedekind topology: Every Cauhylass of losed subsets of the Dedekind skew{plane has a nonempty intersetion. Closed



36 LOUIS DE BRANGESand bounded subsets of the Dedekind skew{plane ompat: A subset of the Dedekindskew{plane is said to be bounded if a positive number  exists suh that the inequality� � holds for every element  of the set. A nonempty lass of losed subsets has a nonemptyintersetion if every �nite sublass has a nonempty intersetion and if some member of thelass is bounded.The axiomatization of topology has onsequenes whih are unfamiliar to those whoseexperiene is limited to Dedekind topologies. A topology is de�ned for a set by a lass ofsubsets whih are said to be open or equivalently by a lass of subsets whih are said to belosed. The two formulations of topology are equivalent sine a set is assumed to be openif, and only if, its omplement is losed. The union of every lass of open sets is assumed tobe open. Equivalently the intersetion of every lass of losed sets is assumed to be losed.The intersetion of every �nite lass of open sets is assumed to be open. Equivalently theunion of every �nite lass of losed sets is assumed to be losed. This de�nition of topologyis supplemented by a ondition whih de�nes a Hausdor� spae: Distint elements a and bof the spae are ontained in disjoint open sets A and B, a ontained in A and b ontainedin B.A trivial example of suh a topology is de�ned for a �nite set. A �nite set is a Hausdor�spae in a unique topology: All subsets are both open and losed. This disrete topologyof a �nite set is applied in the onstrution of nontrivial topologies.If a nonempty lass C of nonempty sets is given, the Cartesian produt of the sets isde�ned as the set of all funtions de�ned on the members of the lass suh that the valueof the funtion on a member set is always an element of the set. The usual funtionnotation is however replaed by the notation applied to sequenes: if N is a member of thelass, the value of the funtion at N is written CN . When the members of the lass areparametrized by positive integers, the notation Cn means CN with n the positive integerwhih parametrizes the member set N . The onept of a Cartesian produt is appliedto lasses C whih are unlimited in ardinality. The lass C need not be �nite. If it isin�nite, it need not be ountable. The onept of a Cartesian produt an be applied moregenerally when the lass C is empty or when some member of the lass is empty. TheCartesian produt is then de�ned to be empty. (The graph of the funtion ontains noelement.)When the member sets are Hausdor� spaes, the Cartesian produt is a Hausdor� spaein the Cartesian produt topology. The produt topology is de�ned by two onditions:The projetion of the produt onto eah fator spae is ontinuous. A transformation of atopologial spae into the produt spae is ontinuous whenever every omposition with aprojetion into a fator spae is ontinuous.When the fator spaes are ompat Hausdor� spaes, the Cartesian produt is a om-pat Hausdor� spae. The proof of ompatness is an appliation of the axiom of hoie.The axiom of hoie is equivalent to the assertion that a Cartesian produt of nonemptysets is nonempty. The Kuratowski{Zorn lemma is a onsequene of the axiom of hoie: A



COMPLEX ANALYSIS 37partially ordered set ontains a maximal element if every well{ordered subset admits anupper bound in the set.Compatness of a Hausdor� spae is formulated as the assertion that a nonempty lass oflosed subsets has a nonempty intersetion whenever every �nite sublass has the property.Every suh lass is ontained in a maximal suh lass by the Kuratowski{Zorn lemma.When the lass is maximal, the intersetion of the members of the lass ontains a uniqueelement.If C is a maximal suh lass of losed subsets of the Cartesian produt, then a maximalsuh lass is seen in every fator spae. Seen in a fator spae are those losed sets whoseinverse image in the Cartesian produt are members of the lass C. The element determinedin every fator spae de�nes the desired element of the Cartesian produt.The adi topology of the Lagrange skew{plane resembles the Dedekind topology in itsgood relationship to addition and multipliation. The open sets are de�ned as unions ofsets whih are both open and losed. The losed sets are de�ned as intersetions of setswhih are both open and losed. A basi example of a set whih is both open and losedand whih ontains a given Lagrange number � is de�ned by a positive rational number �and onsists of the Lagrange numbers � suh that�(� � �)�(� � �)is integral. Every open set is a union of �nite intersetions of basi open and losed sets.Every losed set is an intersetion of basi open and losed sets.The Lagrange skew{plane is a Hausdor� spae in the adi topology. Addition andmultipliation are ontinuous as transformations of the Cartesian produt of the Lagrangeskew{plane with itself into the Lagrange skew{plane. Conjugation is ontinuous as atransformation of the Lagrange skew{plane into itself.The adi skew{plane is de�ned as the Cauhy ompletion of the Lagrange skew{planein the uniform adi topology. Addition and multipliation admit unique ontinuous exten-sions as transformations of the Cartesian produt of the adi skew{plane with itself intothe adi skew{plane. Conjugation admits a unique ontinuous extension as a transforma-tion of the adi skew{plane into itself. An element of the adi skew{plane is said to beintegral if it belongs to the losure of the integral elements of the Lagrange skew{plane.The adi skew{plane is a onjugated ring whih ontains the set of integral elements as aonjugated subring. Compatness of the subring is proved by a onstrution as a losedsubset of a Cartesian produt of ompat Hausdor� spaes.The Cartesian produt of the onjugated ring of integral Lagrange numbers modulo ris taken over the positive integers r. The Cartesian produt is a onjugated ring whoseaddition, multipliation, and onjugation are de�ned by addition, multipliation, and on-jugation of projetions in fator rings. Sine the fator rings are ompat Hausdor� spaesin the disrete topology, the Cartesian produt is a ompat Hausdor� spae in the Carte-sian produt topology. When r1 is a divisor of r2, a anonial homomorphism exists of thefator ring modulo r2 onto the fator ring modulo r1 whose kernel is the onjugated idealof elements divisible by r1.



38 LOUIS DE BRANGESA losed subring of the Cartesian produt is de�ned as the set of elements of the Carte-sian produt suh that the projetion of the fator ring modulo r2 is mapped into theprojetion in the fator ring modulo r1 whenever r1 is a divisor of r2. The subring isonjugated and is a ompat Hausdor� spae in the subspae topology. A ontinuousonjugated homomorphism of the subring onto the ring of integral elements of the adiskew{plane is de�ned by taking an element of the subring into the limit of a Cauhy se-quene whose r{term is an integral element of the Lagrange skew{plane whih representsthe projetion in the fator ring modulo r.The adi skew{plane is a ring of quotients of the subring of its integral elements. Aonjugated isomorphism of additive struture of the adi skew{plane onto itself is de�nedon multipliation by r for every positive integer r. The transformation is ontinuous andhas a ontinuous inverse. Every element of the adi skew{plane is mapped into an integralelement on multipliation by some positive integer.An integral element of the adi skew{plane is said to be p{adi for some prime p if itsquotient by r is integral for every positive integer r whih is not divisible by p. The setof p{adi elements of the ring of integral elements of the adi skew{plane is a onjugatedideal whih is losed in the adi topology. The onjugated ring of integral elements of theadi skew{plane is isomorphi to the Cartesian produt of its p{adi ideals taken over allprimes p. The topology of the ring of integral elements is the Cartesian produt topologyof its p{adi ideals.A deomposition of the adi skew{plane results from the deomposition of its ring ofintegral elements. An element of the adi skew{plane is said to be p{adi if for some primep its produt with a positive integer is a p{adi integral element of the adi skew{plane.The set of p{adi elements of the adi skew{plane is a onjugated ideal of the adi skew{plane whih is losed in the adi topology. The p{adi omponent of an element of theadi skew{plane is integral for all but a �nite number of primes p. If a p{adi element ofthe adi skew{plane is hosen for every prime p and if all but a �nite number of elementsare integral, an element of the adi skew{plane exists whose p{adi omponent is the givenp{adi element for every prime p.The p{adi skew{plane is de�ned for a prime p as the onjugated ring of p{adi elementsof the adi skew{plane. The p{adi topology of the ring is de�ned as the subspae topologyof the adi topology of the adi skew{plane. The set of self{onjugate elements of the ringis the �eld of p{adi numbers. An element� = d+ ia+ jb+ kof the p{adi skew{plane has oordinates a; b; , and d in the p{adi �eld whih do not allvanish when � does not vanish. The produt��� = a2 + b2 + 2 + d2is a p{adi number whih does not vanish when the oordinates of � do not all vanish. Aninverse ��1 = ��=(���)



COMPLEX ANALYSIS 39exists in the p{adi skew{plane whih satis�es the identities��1� = 1 = ���1with 1 the unit of the p{adi �eld and also of the p{adi skew{plane.The value of the adi skew{plane lies in its relationship to the Dedekind skew{planewhih is found in their Cartesian produt. The produt skew{plane is the set of pairs� = (�+; ��) of elements �+ of the Dedekind skew{plane and elements �� of the adiskew{plane. The sum  = �+ �of elements � and � is de�ned by + = �+ + �+and � = �� + ��:The produt  = ��of elements � and � is de�ned by + = �+�+and � = ����:The onjugate � = ��of an element � is de�ned by �+ = ��+and �� = ���:The produt skew{plane is a Hausdor� spae in the Cartesian produt topology of theDedekind skew{plane and the adi skew{plane.The Dedekind skew{plane and the adi skew{plane are splied by the onstrution of aquotient spae. A losed subset of the produt skew{plane onsists of the elements whoseomponents in the Dedekind skew{plane and the adi skew{plane are elements of theLagrange skew{plane with vanishing sum. If � and � are elements of the subset, then so is�+ �. If � is an element of the subset and if � is an element of the Lagrange skew{plane,then an element � = ��of the subset is de�ned by �+ = ��+



40 LOUIS DE BRANGESand �� = ���:If � is an element of the subset, then an element� = ��of the subset is de�ned by �+ = ��+and �� = ���:An equivalene relation is de�ned of the produt skew{plane by de�ning elements �and � to be equivalent when � � � belongs to the subset. A fundamental domain forthe equivalene relation is the set of elements � of the produt skew{plane whose adiomponent is integral and whose Dedekind omponent satis�es the inequality��+�+ < (�+ � !)�(�+ � !)for every integral element ! of the Lagrange skew{plane with integral inverse. Everyelement of the produt skew{plane is equivalent to an element of the losure of the funda-mental domain. Equivalent elements of the fundamental domain are equal.



COMPLEX ANALYSIS 41Appendix. CardinalityThe ardinality of set A is said to be less than or equal to the ardinality of set B if aninjetive transformation of set A into set B exists. If the ardinality of set A is less thanor equal to the ardinality of set B and if the ardinality of set B is less than or equalto the ardinality of set A, then an injetive transformation exists of set A onto set B.Sets A and B are said to have the same ardinality. The ardinality of set A is said to beless than the ardinality of set B if A and B are sets of unequal ardinality suh that theardinality of set A is less than or equal to the ardinality of set B.Experiene with �nite sets reates the expetation that any two sets are omparable inardinality. If A and B are sets of unequal ardinality, then either the ardinality of set Ais less than the ardinality of set B or the ardinality of set B is less than the ardinalityof set A. The desired onlusion, or its equivalent, is aepted as a hypothesis in theaxiomati de�nition of sets.The axiom of hoie is the most plausible of the hypotheses whih are equivalent to thedesired omparability of ardinalities of sets. If a transformation T takes set A onto set B,then a transformation S of set B into set A exists suh that the omposed transformationTS is the inlusion transformation of set B in itself.The axiom of hoie displaes the previous hypothesis whih is equivalent to the ompa-rability of ardinalities of sets. A partial ordering of a set S is determined by distinguishedpairs (a; b) of elements a and b of S. The inequality a � b is written when (a; b) is adistinguished pair. It is assumed that the inequality a �  holds whenever a and  areelements of the set for whih the inequalities a � b and b �  hold for some element b ofthe set. The inequality  �  is assumed for every element  of the set. Elements a and bof the set are assumed to be equal if the inequalities a � b and b � a are satis�ed. A set issaid to be well{ordered if every nonempty subset ontains a least element. An equivalentof the axiom of hoie is the hypothesis that every set admits a well{ordering.The Kuratowski{Zorn lemma is a exible formulation of the priniple of indution im-pliit in well{ordering. A partially ordered set admits a maximal element if every well{ordered subset has an upper bound in the set.The proof of the Kuratowski{Zorn lemma from the axiom of hoie is an appliationof indution. Assume that S is a partially ordered set in whih every well{ordered subsethas an upper bound. An augmentation of a well{ordered subset A is a well{ordered subsetB whose elements are the elements of A and some upper bound of A whih does notbelong to A. The axiom of hoie is applied to a set whose elements are the pairs (A;B)onsisting of an augmentable well{ordered subset A and an augmentation B of A. The setis mapped onto the set of augmentable well{ordered subsets by taking (A;B) into A. Theaxiom of hoie asserts the existene of a transformation whih takes every augmentablewell{ordered subset A into an augmentation (A;A0) of A.The proof of the Kuratowski{Zorn lemma is failitated by the introdution of notation.A ladder is well{ordered subset A whih is onstruted by the hosen augmentation pro-edure. For every element b of A the augmentation of the set of elements of A whih are



42 LOUIS DE BRANGESless than b is the set of elements of A whih are less than or equal to b. The intersetionof ladders A and B is a ladder whih is either equal to A or equal to B. If A and B areladders, then either A is ontained in B or B is ontained in A. The union of all laddersis a ladder whih ontains every ladder. Sine the greatest ladder is assumed to have anupper bound, it has a greatest element. The greatest element of the greatest ladder is amaximal element of the given partially ordered set S.Cardinal numbers are onstruted by a theorem of Cantor whih states that no trans-formation maps a set onto the lass of all its subsets. If a transformation T maps a set Sinto the subsets of S, then a subset S1 of S is onstruted whih does not belong to therange of T . The set S1 is the set of elements s of S for whih no elements sn of S an behosen for every nonnegative integer n so that s0 is equal to s and so that sn belongs toTsn�1 when n is positive. An element s of S belongs to S1 if, and only if, Ts is ontainedin S1. This property implies that S1 is not equal to Ts for an element s of S.If  is a ardinal number, a ontinuum of order  is de�ned as a set of least ardinalitywhih has the same ardinality as the lass of its subsets whih are ontinua of order lessthan . The empty set is a ontinuum of order equal to its ardinality. A set with oneelement is a ontinuum of order equal to its ardinality. No other �nite set is a ontinuumof order  for a ardinal number . A ountably in�nite set is a ontinuum of order equalto its ardinality.A parametrization of a ontinuum S of order  is an injetive transformation J of Sonto the lass of its subsets whih are ontinua of order less than  suh that no elementssn of S an be hosen for every nonnegative integer n so that sn belongs to Jsn�1 when nis positive. A ontinuum of order  admits a parametrization sine an injetive transfor-mation T exists of S onto the lass of its subsets whih are ontinua of order less than .Sine S1 is then a ontinuum of order , it has the same ardinality as S. The restritionof T to S1 is a parametrization of S1. If W is an injetive transformation of S onto S1,then a parametrization J of S is de�ned so that Ja is the set of elements b of S suh thatWb belongs to TWa.A parametrization J of a ontinuum S of order  is essentially unique. If an injetivetransformation T maps S onto the lass of its subsets whih are ontinua of order less than, then an injetive transformation W of S onto S1 exists suh that Ja is always the setof elements b suh that Wb belongs to TWa. The onstrution of T is an appliation ofthe Kuratowski{Zorn lemma. Consider the lass C of injetive transformations W withdomain ontained in S and with range ontained in S1 suh that every element of Jabelongs to the domain of W whenever a belongs to the domain of W and suh that Ja isalways the set of elements b of S suh that Wb belongs to JWa. The lass C is partiallyordered by the inlusion ordering of the graph. A well{ordered sublass of C has an upperbound in C whose graph is a union of graphs. A maximal member of the lass C has S asits domain.A nonempty set of ardinal numbers ontains a least element sine a ladder of well{ordered sets an be onstruted with these ardinalities.A ontinuum of order  exists when  is the ardinality of an unountable set. It



COMPLEX ANALYSIS 43is suÆient to onstrut a set whih has the same ardinality as the lass of its subsetswhih are ontinua of ardinality less than . If a ardinal number � is greater than theardinality of every ontinuum of order less than , it is suÆient to onstrut a set whihhas the same ardinality as the lass of its subsets of ardinality less than �. Suh a setis onstruted when � is the least ardinality greater than the ardinality of an in�niteset S. The lass C of all subsets of S is a set whih has the same ardinality as the lassof its subsets of ardinality less than �. The ardinality of the lass of all subsets of C ofardinality less than � is less than or equal to the ardinality of all transformations of Sinto the set of funtions de�ned on S with values zero or one. The ardinality of the lassof all subsets of C with values zero or one is less than or equal to the ardinality of the setof all funtions de�ned on the Cartesian produt S �S with values zero or one. Sine S isan in�nite set, the ardinality of S � S is equal to the ardinality of S. The ardinality ofthe lass of all subsets of C of ardinality less than � is less than or equal to the ardinalityof C.A hypothesis is required for the determination of ardinalities of ontinua. The hoieof hypothesis depends on the desired appliations. When the largest logial struture iswanted in whih the aepted methods of analysis apply, then the ardinalities of ontinuaare dependent on hypotheses whose onsisteny is neessarily untested (as are the aeptedhypotheses of analysis). When the smallest logial struture is wanted in whih the a-epted methods of analysis apply (whih is the onventional view in mathematis), thenthe ardinalities of ontinua are determined. This is the best hoie for a student sineit establishes a logial struture with minimal hypotheses whih an serve as a guide togeneralizations should he want this diretion of researh. A minimal struture is thereforehosen here.When a minimal struture is hosen, there are essentially only two ways in whih a newardinality an be onstruted from given ardinalities. The ardinality of the lass of allsubsets of a set is greater than the ardinality of the set. A set of ardinality  an beobtained as a union of a lass of ardinality less than  of sets whose ardinalities are lessthan . Both onstrutions produe ontinua from ontinua. It follows that every in�niteset is a ontinuum whose order is equal to its ardinality. An unountable ontinuum iseither the lass of all subsets of an in�nite set in ardinality or it is a union of a lass ofsmaller ardinality of sets of smaller ardinality.



44 LOUIS DE BRANGESReferenes1. A. Beurling, On two problems onerning linear transformations in Hilbert spae, Ata Mathematia81 (1949), 239{255.2. L. de Branges, Fatorization and invariant subspaes, Journal of Mathematial Analysis and Appli-ations 29 (1970), 163{200.3. , The invariant subspae problem, Integral Equations and Operator Theory 6 (1983), 488{505.4. , A proof of the Bieberbah onjeture, Ata Mathematia 154:1-2 (1985), 137{152.5. , Complementation in Krein spaes, Transations of the Amerian Mathematial Soiety 305(1988), 277{291.6. , Krein spaes of analyti funtions, Journal of Funtional Analysis 81 (1988), 219{259.7. L. de Branges and J. Rovnyak, The existene of invariant subspaes, Bulletin of the Amerian Math-ematial Soiety 70 (1964), 718{721; 71 (1965), 396.8. , Square Summable Power Series, Holt, Rinehart, and Winston, New York, 1966.9. G. Herglotz, �Uber Potenzreihen mit positivem Realteil im Einheitskreis, Verhandlungen der S�ahsishenAkademie der Wissensha�en zu Leipzig, vol. 65, Mathematish{Physishe Klasse, 1911, pp. 501{511.


