
Chapter 2. The Proof of the Bieberba
h Conje
tureA 
omplex valued fun
tion f(z) of z = x + iy in a region of the 
omplex plane is saidto be di�erentiable at an element w of the region if the fun
tion[f(z)� f(w)℄=(z � w)is 
ontinuous at w when suitably de�ned at w. The value at w is taken as the de�nitionof the derivative f 0(w) at w. A fun
tion is 
ontinuous at w if it is di�erentiable at w.A square summable power series f(z) with 
omplex 
oeÆ
ients 
onverges in the unitdisk and de�nes a fun
tion in the unit disk. The valuef(w) = hf(z); (1� w�z)�1iat w of the fun
tion represented by a square summable power series f(z) is a s
alar produ
tin the spa
e of square summable power series with the square summable power series(1� w�z)�1 = 1 + (w�)z + (w�)2z2 + : : :The fun
tion represented by a square summable power series is 
ontinuous sin
e the identityf(�)� f(�) = hf(z); (1� ��z)�1 � (1� ��z)�1iholds when � and � are in the unit disk and sin
e the square summable power series(1� ��z)�1 � (1� ��z)�1 = (� � �)�z + (�2 � �2)�z2 + : : :satis�es the inequalityk(1� ��z)�1 � (1� ��z)�1k2 � j� � �j2(1 + j�+ �j2 + j�2 + �� + �2j2 + : : : )If f(z) is a square summable power series, a sequen
e of square summable power seriesfn(z) is de�ned indu
tively by f0(z) = f(z)and fn+1(z) = [fn(z)� fn(0)℄=zfor every nonnegative integer n. Sin
e the inequalitykfn(z)k � kf(z)kholds for every nonnegative integer n, the square summable power series[f(z)� f(�)℄=(z � �) = f1(z) + �f2(z) + �2f3(z) + : : :1



2 LOUIS DE BRANGESis a sum in the metri
 topology of the spa
e of square summable power series when � isin the unit disk. Sin
e the power series represents a 
ontinuous fun
tion in the disk, thepower series f(z) represents a di�erentiable fun
tion in the disk. The fun
tion[f(w)� f(�)℄=(w � �)of w in the disk is 
ontinuous at � when given a de�nition f 0(�) at �.Square summable power series whi
h represent the same fun
tion are identi
al sin
ethe 
oeÆ
ients of a square summable power series are all zero if the fun
tion representedvanishes identi
ally. A square summable power series is identi�ed with the fun
tion itrepresents. The reprodu
ing kernel fun
tion(1� w�z)�1for fun
tion values at w in the spa
e of square summable power series is the element ofthe spa
e whi
h in a s
alar produ
t determines the value of the represented fun
tion at wwhen w is in the unit disk.If W (z) is a nontrivial power series su
h that multipli
ation by W (z) is a 
ontra
tivetransformation of the spa
e of square summable power series into itself, thenW (z)W (w)�=(1� w�z)is the reprodu
ing kernel fun
tion for fun
tion values at w in the range spa
e M(W ) whenw is in the unit disk. For if g(z) = W (z)f(z)is an element of the spa
e M(W ), the identityg(w) = hg(z);W (z)W (w)�=(1� w�z)iM(W )is a 
onsequen
e of the identityf(w) = hf(z); (1� w�z)�1isin
e multipli
ation by W (z) is an isometri
 transformation of the spa
e C(z) onto thespa
e M(W ) and sin
e the identityg(w) = W (w)f(w)is satis�ed. The reprodu
ing kernel fun
tionW (z)W (w)�=(1� w�z)for fun
tion values at w in the spa
e M(W ) is obtained from the reprodu
ing kernelfun
tion (1� w�z)�1



COMPLEX ANALYSIS 3for fun
tion values at w in the spa
e of square summable power series under the adjoint ofthe in
lusion of M(W ) in C(z).The reprodu
ing kernel fun
tion[1�W (z)W (w)�℄=(1� w�z)for fun
tion values at w in the spa
eH(W ) is obtained from the reprodu
ing kernel fun
tion(1� w�z)�1for fun
tion values at w in the spa
e of square summable power series under the adjoint ofthe in
lusion of the spa
e H(W ) in C(z). The identityf(w) = hf(z); [1�W (z)W (w)�℄=(1� w�z)iH(W )holds for every element f(z) of the spa
e H(W ). Sin
e the identity applies whenf(z) = [1�W (z)W (w)�℄=(1� w�z);the fun
tion represented by the power series W (z) is bounded by one in the unit disk.Reprodu
ing kernel fun
tions are applied to determine the stru
ture of a Hilbert spa
eH whose elements are fun
tions in the unit disk. A 
ontinuous linear fun
tional on thespa
e is assumed to be de�ned for every element w of the unit disk by taking fun
tionvalues at w. The reprodu
ing kernel fun
tion for fun
tion values at w is th unique elementK(w; z) of the spa
e whi
h represents the valuef(w) = hf(z); K(w; z)iHfor every element f(z) of the spa
e. The indeterminate z is treated as a dummy variablein the notation for a fun
tion. The fun
tionK(�; �) = hK(�; z); K(�; z)iHof � and � in the unit disk is treated as an in�nite matrix. The symmetry of a s
alarprodu
t implies the Hermitian symmetryK(�; �) = K(�; �)�of the matrix. The in�nite matrix is nonnegative in a sense whi
h is determined by its�nite square submatri
es. If 
1; : : : ; 
r are in the unit disk, then the r � r matrix withentry K(
i; 
j)in the i{th row and j{th 
olumn is nonnegative. A nonnegative number results when thematrix is multiplied on the right by a 
olumn ve
tor with r entries and on the left by the
onjugate transpose row ve
tor. The nonnegative number is a sum of produ
ts
�i K(
i; 
j)
j



4 LOUIS DE BRANGEStaken over i and j equal to 1; : : : ; r for 
omplex numbers 
1; : : : ; 
r.Reprodu
ing kernel fun
tions are applied in interpolation. If 
1; : : : ; 
r are distin
telements of disk, the set of elements of the Hilbert spa
e whi
h vanish at these elementsis a 
losed ve
tor subspa
e whose orthogonal 
omplement 
onsists of fun
tions whi
h aredetermined by their values at these elements. A fun
tion on the �nite set is extended tothe unit disk so as to be orthogonal to fun
tions whi
h vanish on the �nite set. The spa
eof fun
tions on the �nite set is a Hilbert spa
e in the s
alar produ
t inherited from thefull spa
e. Every fun
tion on the �nite set is a linear 
ombination of reprodu
ing kernelfun
tions whi
h represent values taken on the set. A reprodu
ing kernel fun
tion for valueson a set is its own extrapolation to the full spa
e. The nonnegativity of a reprodu
ingkernel fun
tion is the 
ondition for the existen
e of a s
alar produ
t for the fun
tions onthe �nite set whi
h 
reates a Hilbert spa
e 
ompatible with the reprodu
ing property. The�nite linear 
ombinations of reprodu
ing kernel fun
tions form a dense ve
tor subspa
e ofthe Hilbert spa
e of fun
tions de�ned on the unit disk. The Hilbert spa
e is the metri

ompletion of the dense subspa
e. The reprodu
ing property permits the elements of the
ompletion to be realized as fun
tions de�ned on the unit disk.The Jordan 
urve theorem states that the 
omplex 
omplement of a simple 
losed 
urvein the 
omplex plane is the union of a bounded region and an unbounded region. TheCau
hy formula states that the Stieltjes integralZ f(z)dz = 0of a 
ontinuous fun
tion over the 
losed 
urve is equal to zero if the 
urve has �nite length,if the fun
tion has a 
ontinuous extension to the 
losure of the bounded region, and ifthe fun
tion is di�erentiable at all but a �nite number of elements of the bounded region.An example of a simple 
losed 
urve is the unit 
ir
le, whi
h bounds the unit disk. TheCau
hy formula for the unit 
ir
le is proved by de
omposing the unit disk into regionswhi
h are bounded by 
ir
les 
entered at the origin and straight lines through the origin.Points of nondi�erentiability are 
onstru
ted for a fun
tion f(z) of z in the unit disk,whi
h has a 
ontinuous extension to the 
losed disk, when the Cau
hy integralS(1) = Z 2�0 f(ei�)iei�d�for the unit 
ir
le is nonzero. A point of nondi�erentiability is 
onstru
ted in the annulusa < jzj < bwhen the inequality(b� a)jS(1)j � j Z 2�0 f(bei�)ibei�d� � Z 2�0 f(aei�)iaei�d�jis satis�ed. If the length of an interval (�; �) is less than 2�, a simple 
losed 
urve is
onstru
ted from aei� to bei� along a radial line away from the origin, from bei� to bei�
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ounter
lo
kwise along a 
ir
le of radius b 
entered at the origin, from bei� to aei� alonga radial line towards the origin, and from aei� to aei� 
lo
kwise along a 
ir
le of radius aabout the origin. The Cau
hy integral for the 
urve isS(a; b;�; �)= Z ba f(rei�)ei�dr � Z ba f(rei�)ei�dr + Z �� f(bei�)ibei�d� � Z �� f(aei�)iaei�d�:The Cau
hy integral is zero for a linear fun
tion sin
e it is zero for a 
onstant and forz. The nonzero nature of the integral measures the diÆ
ulty in approximating the givenfun
tion by a linear fun
tion.A point of nondi�erentiability is found in the region bounded by the 
urve when theinequality (� � �)(b� a)jS(1)j � 2�jS(a; b;�; �)jis satis�ed. A point w of nondi�erentiability is obtained when the regions 
ontaining wand satisfying the inequality form a basis for the neighborhoods of w. If the inequalityjf(z)� g(z)j � �jz � wjholds in the region for some linear fun
tion g(z) for a positive number �, thenjS(1)j � �sin
e the inequality 2�jS(a; b;�; �)j � (� � �)(b� a)�is satis�ed.The maximum prin
iple states that the real part of a fun
tion f(z) of z in the unitdisk, whi
h is di�erentiable at all but a �nite number of points in the disk and whi
h hasa 
ontinuous extension to the 
losed disk, vanishes in the unit disk if it is nonpositive onthe unit 
ir
le and nonnegative at the origin. The fun
tion f(z)=z is di�erentiable at allbut a �nite number of points in the annulusa < jzj < 1when a is in the interval (0; 1). Sin
e the identityZ 2�0 f(aei�)d� = Z 2�0 f(ei�)d�holds by the proof of the Cau
hy formula, the value of the fun
tion at the origin is anaverage 2�f(0) = Z 2�0 f(ei�)d�



6 LOUIS DE BRANGESof values on the boundary. If the real part of the integrand is nonpositive and real partof the integral is nonnegative, then the real part of the integral and the real part of theintegrand are zero. The fun
tion is a 
onstant sin
e its real part vanishes in the unit disk.An example of a fun
tion whi
h is di�erentiable and bounded by one in the unit disk isW (z) = (�� z)=(1� ��z)when � is in the unit disk. A Hilbert spa
e H of fun
tions in the unit disk exists whosereprodu
ing kernel fun
tion for fun
tion values at w is[1�W (z)W (w)�℄=(1� w�z) = (1� ���)(1� ��z)�1(1� �w�)�1when w is in the unit disk. The spa
e is 
ontained isometri
ally in the spa
e of squaresummable power series sin
e (1� ��z)�1is the reprodu
ing kernel fun
tion for fun
tion values at � in C(z). The orthogonal 
om-plement of H in C(z) is a Hilbert spa
e M whi
h is 
ontained isometri
ally in C(z) andwhi
h 
ontains the fun
tions whi
h vanish at �. Sin
e the reprodu
ing kernel fun
tion forfun
tion values at w in M is W (z)W (w)�=(1� w�z);multipli
ation by W (z) is an isometri
 transformation of C(z) onto M. Sin
e M is 
on-tained isometri
ally in C(z), multipli
ation by W (z) is an isometri
 transformation of C(z)into itself.Appli
ations of the maximum prin
iple are made when a 
ontinuous fun
tion W (z) ofz in the unit disk is bounded by one and di�erentiable at all but a �nite number of pointsin the disk. If the inequality jW (�)j < 1holds for some � in the disk, then it holds for all � in the disk. If the inequality holdsfor a point � of di�erentiability, then a 
ontinuous fun
tion W 0(z) of z in the unit disk,whi
h is bounded by one and di�erentiable at all but a �nite number of points in the disk,is de�ned by the identityW 0(z)(�� z)=(1� ��z) = [W (�)�W (z)℄=[1�W (�)�W (z)℄:The identity is applied as a parametrization of the 
ontinuous fun
tions V (z), whi
h arebounded by one in the unit disk and di�erentiable at all but a �nite number of points inthe disk, su
h that V (�) = W (�):Su
h a fun
tion is obtained on repla
ing W (z) by V (z) in the identity and repla
ing W 0(z)by a 
ontinuous fun
tion V 0(z) whi
h is bounded by one in the unit disk and di�erentiableat all but a �nite number of points in the disk.
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ontinuous fun
tion W (z) of z in the unit disk is bounded by one in the disk andis di�erentiable at all but a �nite number of points in the disk and if a Hilbert spa
e Hexists whose elements are fun
tions of z in the disk and whi
h has the fun
tion[1�W (z)W (w)�℄=(1� w�z)of z as reprodu
ing kernel fun
tion for fun
tion values at w when w is in the unit disk,then multipli
ation by W (z) is an isometri
 transformation of C(z) onto a Hilbert spa
eM whose elements are fun
tions of z in the unit disk and whi
h has the fun
tionW (z)W (w)�=(1� w�z)of z as reprodu
ing kernel fun
tion for fun
tion values at w when w is in the unit disk. AHilbert spa
e H _M exists in whi
h the spa
es H and M are 
ontained 
ontra
tively as
omplementary spa
es. The elements of the spa
e H_M are fun
tions de�ned in the unitdisk. Sin
e the reprodu
ing kernel fun
tion for fun
tion values at w in the spa
e H_M isthe sum of the reprodu
ing kernel fun
tions for fun
tion values at w in the spa
es H andM, the fun
tion (1� w�z)�1of z is the reprodu
ing kernel fun
tion for fun
tion values at w in the spa
e H_M when wis in the unit disk. The spa
e H_M is isometri
ally equal to C(z) sin
e the spa
e of squaresummable power series has the same reprodu
ing kernel fun
tions. Sin
e the spa
e M is
ontained 
ontra
tively in C(z), multipli
ation by W (z) is a 
ontra
tive transformation ofC(z) into itself. The fun
tion W (z) is represented by a square summable power series. Thespa
e H is isometri
ally equal to the spa
e H(W ). The spa
e H(W ) is interpreted as C(z)when W (z) is identi
ally zero.If a 
ontinuous fun
tion U(z) of z in the unit disk is bounded by one and is di�erentiableat all but a �nite number of points in the disk and if the inequalityjU(�)j < 1holds at a point � of the disk, then the 
ontinuous fun
tionV (z) = [U(�)� U(z)℄=[1� U(z)U(�)�℄of z is bounded by one in the disk and is di�erentiable at all but a �nite number of pointsin the disk. Multipli
ation by U(z) is a 
ontra
tive transformation of C(z) into itself if,and only if, multipli
ation by V (z) is a 
ontra
tive transformation of C(z) into itself. For aHilbert spa
e H(U) exists whose elements are fun
tions of z in the disk and whi
h 
ontainsthe fun
tion [1� U(z)U(w)�℄=(1� w�z)of z as reprodu
ing kernel fun
tion for fun
tion values at w when w is in the disk if, andonly if, a Hilbert spa
e H(V ) exists whose elements are fun
tions of z in the disk andwhi
h 
ontains the fun
tion [1� V (z)V (w)�℄=(1� w�z)



8 LOUIS DE BRANGESof z as reprodu
ing kernel fun
tion for fun
tion values at w when w is in the disk. Sin
ethe identity [1� U(z)U(�)�℄[1� V (z)V (w)�℄[1� U(�)U(w)�℄= [1� U(�)U(�)�℄[1� U(z)U(w)�℄is satis�ed, multipli
ation by[1� U(�)U(�)�℄� 12 [1� U(z)U(�)�℄is an isometri
 transformation of the spa
e H(V ) onto the spa
e H(U).If a 
ontinuous fun
tion U(z) of z in the disk is bounded by one and di�erentiable atall but a �nite number of points in the disk and ifU(�) = 0at a point � of di�erentiability, then the identityU(z) = V (z)(�� z)=(1� ��z)holds for a 
ontinuous fun
tion V (z) of z in the disk whi
h is bounded by one and whi
his di�erentiable at all but a �nite number of points in the disk. Multipli
ation by U(z) isa 
ontra
tive transformation of C(z) into itself if, and only if, multipli
ation by V (z) is a
ontra
tive transformation of C(z) into itself. A spa
e H(U), whose elements are fun
tionsof z in the unit disk and whi
h 
ontains the fun
tion[1� U(z)U(w)�℄=(1� w�z)of z as reprodu
ing kernel fun
tion for fun
tion values at w when w is in the disk, existsif, and only if, a Hilbert spa
e H(V ) exists whose elements are fun
tions of z in the diskand whi
h 
ontains the fun
tion[1� V (z)V (w)�℄=(1� w�z)of z as reprodu
ing kernel fun
tion for fun
tion values at w when w is in the disk. Thespa
e H(V ) is 
ontained isometri
ally in the spa
e H(U) and 
ontains the elements of thespa
e H(U) whi
h vanish at �.If a 
ontinuous fun
tion W (z) of z in the unit disk is bounded by one in the disk and isdi�erentiable at all but a �nite number of points in the disk and if �1; : : : ; �r are distin
tpoints of di�erentiability in the disk, then 
ontinuous fun
tions Wn(z) of z in the disk,whi
h are bounded by one in the disk and whi
h are di�erentiable at all but a �nite numberof points in the disk, are de�ned indu
tively byW0(z) = W (z)and Wn(z)(�n � z)=(1� ��n z) = [Wn�1(�n)�Wn�1(z)℄=[1�Wn�1(z)Wn�1(�n)�℄



COMPLEX ANALYSIS 9when n is positive and Wn�1(z) is not a 
onstant of absolute value one. A parametrizationresults of the 
ontinuous fun
tions of z in the unit disk, whi
h are bounded by one in thedisk and whi
h are di�erentiable at all but a �nite number of points in the disk, having thesame values as W (z) at the points �1; : : : ; �r. Su
h fun
tions are obtained on repla
ingWr(z) by an arbitrary 
ontinuous fun
tion of z whi
h is bounded by one in the unit diskand whi
h is di�erentiable at all but a �nite number of points in the disk. A Hilbert spa
eH(W ), whose elements are fun
tions of z in the disk and whi
h 
ontains the fun
tion[1�W (z)W (w)�℄=(1� w�z)of z as reprodu
ing kernel fun
tion for fun
tion values at w when w is in the disk, existsif, and only if, a Hilbert spa
e H(Wr) exists whose elements are fun
tions of z in the diskand whi
h 
ontains the fun
tion[1�Wr(z)Wr(w)�℄=(1� w�z)of z as reprodu
ing kernel fun
tion for fun
tion values at w when w is in the disk. If Wr(z)is a 
onstant of absolute value one, the spa
e H(Wr) 
ontains no nonzero element and thespa
e H(W ) has dimension r. The 
ondition that the spa
e H(W ) has dimension at leastr is ne
essary and suÆ
ient for the 
onstru
tion of the fun
tion Wr(z).A theorem of Cau
hy states that a 
ontinuous fun
tion of z in the unit disk is representedby a power series if it is di�erentiable at all but a �nite number of points in the disk. Ifa 
ontinuous fun
tion W (z) of z is bounded by one in the disk and is di�erentiable at allbut a �nite number of points in the disk, then multipli
ation by W (z) is a 
ontra
tivetransformation of C(z) into itself. A proof is given by showing that for every �nite setof distin
t points �1; : : : ; �r in the disk the matrix whose entry in the i{th row and j{th
olumn is [1�W (�i)W (�j)�℄=(1� ��j �i)is nonnegative. The 
on
lusion is immediate when �1; : : : ; �r are points of di�erentiabilitysin
e multipli
ation by V (z) is a 
ontra
tive transformation of C(z) into itself for a powerseries V (z) representing a fun
tion whi
h agrees with W (z) at the given points. The same
on
lusion holds by 
ontinuity when the points are not points of di�erentiability.A fun
tion f(z) of z is said to be analyti
 in the unit disk if it is represented by a powerseries. The Cau
hy theorem states that a fun
tion f(z) of z is analyti
 in the unit disk ifit is 
ontinuous in the disk and is di�erentiable at all but a �nite number of points in thedisk.A fun
tion �(z) of z, whi
h is analyti
 and has nonnegative real part in the unit disk,admits a Poisson representation. When the fun
tion is 
ontinuous in the 
losed disk, theintegral representation2� �(z) + �(w)�1� w�z = Z 2�0 �(ei�) + '(ei�)�(1� e�i�z)(1� w�ei�) d�



10 LOUIS DE BRANGESholds when z and w are in the unit disk. The Poisson representation is an appli
ation ofthe Cau
hy integrals 2��(z) = Z 2�0 �(ei�)d�1� e�i�zand 0 = Z 2�0 �(ei�)ei�d�1� w�ei� :When the fun
tion �(z) of z is not 
ontinuous in the 
losed disk, a nonnegative measure� on the Baire subsets of the real line is 
onstru
ted whose value�(E) = limZE 12 ['(eix�y) + '(eix�y)�℄dxis a limit as y de
reases to zero of integrals of the real part of'(eix�y):The Poisson representation reads� '(z) + '(w)�1� w�z = Z 2�0 d�(ei�)(1� e�i�z)(1� w�ei�)when z and w are in the unit disk.A Hilbert spa
e is 
onstru
ted whose elements are equivalen
e 
lasses of Baire measur-able fun
tions f(ei�) of ei� on the unit 
ir
le for whi
h the integral2�kfk2 = Z 2�0 jf(ei�)j2d�(ei�)is �nite. A partially isometri
 transformation of the spa
e onto the Herglotz spa
e L(�) isde�ned by taking a fun
tion f(ei�) of ei� on the unit 
ir
le into the fun
tion12� Z 2�0 f(ei�)d�(ei�)1� e�i�zof z in the unit disk. Multipli
ation by e�i� in the Hilbert spa
e of fun
tions on theboundary 
orresponds to the di�eren
e{quotient transformation in the Herglotz spa
e. Arelated isometri
 transformation exists of the Hilbert spa
e of fun
tions on the unit 
ir
leonto the extension spa
e of the Herglotz spa
e. Multipli
ation by ei� in the Hilbert spa
eof fun
tions on the unit 
ir
le 
orresponds to multipli
ation by z in the extension spa
eE(�) to the Herglotz spa
e L(�).A Riemann mapping fun
tion is a power seriesf(z) = �1z + �2z2 + �3z3 + : : :
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onstant 
oeÆ
ient whi
h represents an inje
tive mapping of the unit diskinto the 
omplex plane.The area theorem is the sour
e of estimates of 
oeÆ
ients of Riemann mapping fun
tions.Analyti
ity and inje
tivity imply a 
ontra
tive property of 
omposition in a Hilbert spa
ewhose elements are fun
tions analyti
 in the unit disk.An isomorphi
 Hilbert spa
e G is the set of equivalen
e 
lasses of power seriesh(z) = 
0 + 
1z + 
2z2 + : : :su
h that the sum kh(z)k2G = j
1j2 + 2j
2j2 + 3j
3j2 + : : :
onverges. Power series are de�ned a equivalent if they have equal 
oeÆ
ients of zn forevery positive integer n. Representatives are 
hosen in equivalen
e 
lasses with vanish-ing 
onstant 
oeÆ
ient for the de�nition of analyti
 fun
tions. An element of the spa
erepresents an analyti
 fun
tion h(z) of z in the unit disk su
h that the integral�kh(z)k2G = ZZ jh0(z)j2dxdywith respe
t to area measure in the unit disk 
omputes the s
alar self{produ
t.Contra
tive 
omposition is obtained for a Riemann mapping fun
tion f(z) whi
h mapsthe unit disk onto a region whi
h is 
ontained in the unit disk. Ifh(z) = 
0 + 
1z + 
2z2 + : : :is an element of the spa
e G,g(z) = 
0 + 
1f(z) + 
2f(z)2 + : : :is an element of the spa
e whose s
alar self{produ
t is 
omputed by the integral�kg(z)k2G = ZZ jg0(z)j2dxdywith respe
t to area measure for the unit disk. Sin
e the 
hain ruleg0(z) = h0(f(z))f 0(z)applies to 
omplex di�erentiation and sin
e the mapping de�ned by f(z) is inje
tive, the
hange of variable theorem produ
es the integral�kg(z)k2G = ZZ jh0(z)j2dxdy



12 LOUIS DE BRANGESwith respe
t to area measure over the region onto whi
h f(z) maps the unit disk. Sin
ethe region is 
ontained in the unit disk, the integral�kh(z)k2G � kg(z)k2G = ZZ jh0(z)j2dxdywith respe
t to area measure over the 
omplement of the region in the unit disk veri�esthe 
ontra
tive property of 
omposition.The Hilbert spa
e G is 
ontained isometri
ally in a Krein spa
e ext G whose elementsare equivalen
e 
lasses of Laurent series. Laurent series are de�ned as equivalent if the
oeÆ
ients of zn are equal for every nonzero integer n. The orthogonal 
omplement of theHilbert spa
e G in the Krein spa
e ext G is the anti{spa
e of a Hilbert spa
e whi
h is theanti{isometri
 image of G under the transformation whi
h takes f(z) into f(z�1).If h(z) is an element of ext G whose 
oeÆ
ient of zn vanishes for all but a �nite numberof negative integers n, then h(z) represents a fun
tion whi
h is analyti
 in the regionobtained from the unit disk on deleting the origin. The 
ompositiong(z) = h(f(z))is an element of ext G whose 
oeÆ
ient of zn vanishes for all but a �nite number of negativeintegers n. The integral�hh(z); h(z)iext G � �hg(z); g(z)iext G = ZZ jg0(z)j2dxdywith respe
t to area over the 
omplement in the unit disk of the region onto whi
h f(z)maps the unit disk veri�es the 
ontra
tive property of 
omposition on a dense set ofelements of ext G. The 
ontra
tive property follows by 
ontinuity for all elements of ext G.A proof of the 
ontra
tive property of 
omposition in the Krein spa
e is not essentialat the outset sin
e this property is taken as a hypothesis.The Grunsky transformation is de�ned under hypotheses of 
ontra
tivity. If W (z) is apower series with vanishing 
onstant 
oeÆ
ient su
h that a 
ontra
tive transformation ofthe spa
e G into itself is de�ned by taking f(z) into f(W (z)), then the 
omposition a
tsa a partially isometri
 transformation of the Hilbert spa
e G onto a Hilbert spa
e whi
his 
ontained 
ontra
tively in G. The Grunsky spa
e G(W ) is de�ned as the Hilbert spa
ewhi
h is the 
omplementary spa
e in G to the range of the transformation.Elements of G de�ne fun
tions analyti
 in the unit disk when representatives with vanish-ing 
onstant 
oeÆ
ient are 
hosen in equivalen
e 
lasses. The reprodu
ing kernel fun
tionfor fun
tion values at w is the fun
tionlog 11� zw� = (zw�)1 + (zw�)22 + (zw�)33 + : : :of z when w is in the unit disk. The reprodu
ing kernel fun
tion for fun
tion values at win the range of the transformation is the fun
tionlog 11�W (z)W (w)� = [W (z)W (w)�℄1 + [W (z)W (w)�℄22 + [W (z)W (w)�℄33 + : : :



COMPLEX ANALYSIS 13of z when w is in the unit disk. The reprodu
ing kernel fun
tion for fun
tion values at win the spa
e G(W ) is the fun
tionK(w; z) = log 1�W (z)W (w)�1� zw�of z when w is in the unit disk.Multipli
ation by W (z) is a 
ontra
tive transformation of C(z) into itself sin
e W (z)represents a fun
tion whi
h is analyti
 in the unit disk and whi
h is bounded by one by thepositivity properties of reprodu
ing kernel fun
tions. A relationship between the Grunskyspa
e G(W ) and the spa
e H(W ) of the invariant subspa
e 
onstru
tion is implied by theresemblan
e between reprodu
ing kernel fun
tions.For every positive integer r a Hilbert spa
e is 
onstru
ted whose elements are fun
tionsof the 
omplex variables z1; : : : ; zr in the unit disk for ea
h variable. The reprodu
ingkernel fun
tion at w1; : : : ; wr is the fun
tionK(w1; z1) : : :K(wr; zr)of z1; : : : ; zr for w1; : : : ; wr in the unit disk. A partially isometri
 transformation of theprodu
t spa
e onto a Hilbert spa
e Gr(W ) whose elements are fun
tions analyti
 in theunit disk is de�ned by taking a fun
tion f(z1; : : : ; zr) of z1; : : : ; zr into the fun
tionf(z; : : : ; z)of z. The reprodu
ing kernel fun
tion for fun
tion values at w in the spa
e Gr(W ) is thefun
tion K(w; z)rof z when w is in the unit disk.The 
omplex numbers are a Hilbert spa
e G0(W ) of fun
tions analyti
 in the unit diskwhose reprodu
ing kernel fun
tion for fun
tion values at w is the fun
tion1 = K(w; z)0of z in the unit disk when the s
alar produ
t is determined by the 
hoi
e of absolute valueas norm.If an element fr(z) of the spa
e Gr(W ) is 
hosen for every nonnegative integer r, thesum f(z) = f0(z) + 11! f1(z) + 12! f2(z) + : : :is an element of the spa
e H(W ) whi
h satis�es the inequalitykf(z)k2H(W ) � kf0(z)k2G0(W ) + 11! kf1(z)k2G0(W ) + 12!kf2(z)k2G2(W ) + : : :



14 LOUIS DE BRANGESwhenever the sum 
onverges. Every element f(z) of the spa
e H(W ) admits a representa-tion for whi
h equality holds. If f(z) is an element of the spa
e G(W ), thenexp f(z)is an element of the spa
e H(W ) whi
h satis�es the inequalityk exp f(z)k2H(W ) � exp kf(z)k2G(W ):If W (z) is a power series with vanishing 
onstant 
oeÆ
ient su
h that a 
ontra
tivetransformation of the spa
e G into itself is de�ned by taking f(z) into f(W (z)), thenW �(z) = W (z�)�is a power series with vanishing 
onstant 
oeÆ
ient su
h that a 
ontra
tive transforma-tion of the spa
e G into itself is de�ned by taking f(z) into f(W �(z)). If a 
ontra
tivetransformation of the spa
e ext G into itself is de�ned by taking f(z) into f(W (z)), thena 
ontra
tive transformation of the spa
e ext G into itself is de�ned by taking f(z) intof(W �(z)).The Grunsky transformation of the spa
e G(W ) into the spa
e G(W �) is de�ned whenthe 
omposition f(z) into f(W (z)) is 
ontra
tive in ext G.Theorem 18. If for a power series W (z) with vanishing 
onstant 
oeÆ
ient a 
ontra
tivetransformation of ext G into itself is de�ned by taking f(z) into f(W (z)), then the fun
tionlog 1�W (w�)=W (z)1� w�=zof z is represented by an element of the spa
e G(W ) and the fun
tionlog 1�W �(z)=W (w)�1� z=w�of z is represented by an element of the spa
e G(W �) when w is in the unit disk. TheGrunsky transformation is a 
ontra
tive transformation of the spa
e G(W ) into the spa
eG(W �) whi
h takes f(z) into g(z) when the identityg(w) = hf(z); log 1�W (w�)=W (z)1� w�=z iG(W )holds for w in the unit disk and whose adjoint is a 
ontra
tive transformation of the spa
eG(W �) into the spa
e G(W ) whi
h takes f(z) into g(z) when the identityg(w) = hf(z); log 1�W �(z)=W (w)�1� z=w� iG(W�)



COMPLEX ANALYSIS 15holds for w in the unit disk.Proof of Theorem 18. Sin
e a 
ontra
tive transformation of ext G into itself is de�ned bytaking f(z) into f(W (z)), the transformation a
ts as a partially isometri
 transformationof ext G onto a Krein spa
e whi
h is 
ontained 
ontra
tively in ext G. Sin
e the transfor-mation takes G 
ontra
tively into itself, it a
ts as a partially isometri
 transformation ofG onto a Hilbert spa
e whi
h is 
ontained 
ontra
tively in G and whose 
omplementaryspa
e in ext G is the orthogonal sum of G(W ) and the orthogonal 
omplement of G inext G. The transformation a
ts as a partially isometri
 transformation of the orthogonal
omplement of G in ext G onto a Krein spa
e M whi
h is 
ontained 
ontra
tively in theorthogonal sum of the spa
e G(W ) and the orthogonal 
omplement of G in ext G.An element f(z) + g(z)ofM is the sum of an element f(z) of the spa
e G(W ) and an element g(z) of the orthogonal
omplement of G in ext G whi
h satis�es the inequalitykf(z)k2G(W ) + hg(z); g(z)iext G � hf(z) + g(z); f(z) + g(z)iM:An anti{isometri
 transformation of G onto the orthogonal 
omplement of G in ext G isde�ned by taking f(z) into f(z�1). The transformation takeslog(1� zw�)�1into log(1� w�=z)�1when w is in the unit disk. Sin
e the identityf(w) = hf(z); log(1� zw�)�1iGholds for every element f(z) of G, the identityf(1=w) = hf(z); log(1� w�=z)iext Gholds for every element f(z) of the orthogonal 
omplement of G in ext G. Sin
e the fun
tionrepresented by W (z) maps the unit disk into itself,log(1�W (w�)=z)is an element of the orthogonal 
omplement of G in ext G whi
h satis�es the identityf(1=W �(w)) = hf(z); log(1�W (w�)=z)iext Gfor every element f(z) of the orthogonal 
omplement of G in ext G.



16 LOUIS DE BRANGESSin
e a partially isometri
 transformation of the orthogonal 
omplement of G in ext Gonto M is de�ned by taking f(z) intog(z) = f(W (z));the element log(1�W (w�)=W (z))of M satis�es the identityf(1=W �(w)) = hg(z); log(1�W (w�)=W (z))iMfor every element g(z) ofM. The element f(z) of the orthogonal 
omplement of G in ext Gis uniquely determined by its image g(z) in M.Sin
e the elementlog(1�W (w�)=W (z)) = log 1�W (w�)=W (z)1� w�=z + log (1� w�=z)of M is the sum of an element of G and an element of the orthogonal 
omplement of G inext G and sin
e the identitieshlog(1� w�=z); log(1� w�=z)iext G = log(1� ww�)and hlog(1�W (w�)=W (z)); log(1�W (w�)=W (z))iM = log(1�W (w�)W �(w))are satis�ed, the element log 1�W (w�)=W (z)1� w�=zof G is an element of the spa
e G(W ) whi
h satis�es the inequalityk log 1�W (w�)=W (z)1� w�=z k2G(W ) � log 1�W (w�)W �(w)1� ww�A 
ontra
tive transformation of the spa
e G�(W ) into the spa
e G(W ) exists whi
h takesa �nite linear 
ombination X 
k log 1�W �(z)W (w�k )1� zw�kof reprodu
ing kernel fun
tions for the spa
e G(W �) into the �nite linear 
ombinationX 
k log 1�W (w�k )=W (z)1� w�k =z



COMPLEX ANALYSIS 17of elements of the spa
e G(W ) sin
e the identitykX 
k log 1�W �(z)W (w�k )1� zw�k k2G(W�) =X 
k
�i log 1�W �(wi)W (w�k )1� wiw�kand the inequalitykX 
k log 1�W (w�k )=W (z)1� w�k =z k2G(W ) �X 
k
�i log 1�W �(wi)W (w�k )1� wiw�kare satis�ed.The adjoint transformation of the spa
e G(W ) into the spa
e G(W �) takes f(z) intog(z) when the identity g(w) = hf(z); log 1�W (w�)=W (z)1� w�=z iG(W )holds for w in the unit disk. This 
ompletes the 
onstru
tion of the Grunsky transformationof the spa
e G(W ) into the spa
e G(W �).Sin
e the transformation takes log 1�W (z)W (w)�1� zw�into log 1�W �(z)=W (w)�1� z=w�when w is in the unit disk, the adjoint transformation of the spa
e G(W �) into the spa
eG(W ) takes f(z) into g(z) when the identityg(w) = hf(z); log 1�W �(z)=W (w)�1� z=w� iG(W�)holds for w in the unit disk.The Grunsky transformation originates as a 
hara
terization of power series W (z) withvanishing 
onstant 
oeÆ
ient whi
h represent inje
tive mappings of the unit disk. Sin
ethe fun
tion 1�W (w�)=W (z)1� w�=zof z admits an analyti
 logarithm in the unit disk when w is in the unit disk, the numeratoris nonzero whenever the denominator is nonzero. In the present formulation the 
ontra
tiveproperty of the 
omposition f(z) into f(w(z)) in ext G implies that the fun
tion representedbyW (z) is not only inje
tive but bounded by one in the unit disk. The 
onverse impli
ation



18 LOUIS DE BRANGEShas not yet been veri�ed. The original Grunsky transformation is a limiting 
ase of thepresent transformation whi
h gives a weaker 
on
lusion under a weaker hypothesis.The Koebe fun
tion as a power seriesf(z) = z + 2z2 + 3z3 + : : :represents a fun
tion f(z) = z=(1� z)2whi
h maps the unit disk inje
tively onto a region obtained from the 
omplex plane ondeleting the real numbers not greater than minus one{quarter. The analyti
 fun
tionzf 0(z)=f(z) = (1 + z)=(1� z)of z in the unit disk has positive real part and has value one at the origin.A related power series f(z) = a1z + a2z2 + a3z3 + : : :with vanishing 
onstant 
oeÆ
ient is de�ned byzf 0(z)=f(z) = 1=�(z)for every analyti
 fun
tion of z in the unit disk whi
h has positive real part and whi
h hasvalue one at the origin. The series represents an inje
tive mapping of the unit disk ontoa region whi
h 
ontains the origin and whi
h 
ontains every 
onvex 
ombination of one ofits elements with the origin. When t is positive and not greater than one, the fun
tiontf(z)of z maps the unit disk inje
tively onto a region whi
h is 
ontained in the given region.A power series W (t; z) with vanishing 
onstant 
oeÆ
ient whi
h represents an inje
tivemapping of the unit disk into itself is de�ned by the 
ompositiontf(z) = f(W (t; z)):The 
omposing fun
tions form a semi{group under 
omposition: The identityW (ab; z) = W (a;W (b; z))holds when a and b are positive and not greater than one. The evolution equationt ��t W (t; z) = �(z) z ��z W (t; z)generates the fun
tions belonging to the semi{group. The fun
tion W (t; z) has derivativeat the origin equal to t.



COMPLEX ANALYSIS 19The Grunsky spa
es of analyti
 fun
tions are Hilbert spa
es of analyti
 fun
tions derivedfrom the spa
es applied in the 
onstru
tion of invariant subspa
es on a hypothesis ofinje
tivity for the transfer fun
tion. Exponentiation is 
ontra
tive from the initial Grunskyspa
e G into the initial spa
e C(z) of the invariant subspa
e 
onstru
tion. Iff(z) = a1z + a2z2 + a3z3 + : : :is an element of G, then exp f(z) = b0 + b1z + b2z2 + : : :is an element of C(z) whi
h satis�es the inequalityX jbnj2 � exp(Xn(anj2):A generalization is due to Lebedev and Milin.Theorem 19. Assume that a nonin
reasing sequen
e of nonnegative numbers �n has a
onvergent positive sum, that �r = 1Xn=r �n= 1Xn=0 �nis de�ned for every positive integer r, and that the sumX�n=nover the positive integers n 
onverges. Iff(z) = a1z + a2z2 + a3z3 + : : :and exp f(z) = b0 + b1z + b2z2 + : : : ;then the inequality(X �njbnj2) exp(X�n=n) � (X �n) exp(Xn�njanj2)is satis�ed.Proof of Theorem 19. The inequality is veri�ed by maximizingexp(�Xn�njanj2)X �njbnj2under the 
onstraint of 
onvergent sums. If a di�erentiable fun
tion �n(t) of positive t isgiven for every positive integer n, a di�erentiable fun
tion �n(t) of positive t is de�ned forevery nonnegative integer n by the equationX�n(t)zn = exp(X�n(t)zn):



20 LOUIS DE BRANGESThe di�erential equation �0n(t) =X�n�k(t)�0k(t)is satis�ed for every nonnegative integer n with summation over the positive integers kwhi
h are not greater than n.The derivative with respe
t to t of the sumlog(X �n�n(t)��n(t))�Xn�n�n(t)��n(t)is the sum X[sk(t)� k�k�k(t)℄��0k(t) +X[sk(t)� k�k�k(t)℄�0k(t)�over the positive integers k withsk(t) = P �n+k�n+k(t)�n(t)�P �n�n(t)�n(t)�de�ned by sums over the nonnegative integers n.The derivative is nonnegative when �k(t) is de�ned as the solution of the di�erentialequation �0k(t) = sk(t)� k�k�k(t)with initial 
ondition �k(0) = akfor every positive integer k. The inequalityj�k(t)� ak exp(�k�kt)j � 1� exp(�k�kt)k�kapplies when t is positive sin
e jsk(t)j � 1:Sin
e the inequalityexp(�Xn�njanj2)X �njbnj2 � exp(�Xn�nj�n(t)j2)X�nj�n(t)j2is satis�ed, it is suÆ
ient to obtain an estimate ofexp(�Xn�njanj2)X �njbnj2when the inequality k�kjakj � 1is satis�ed. A maximum of the 
ontinuous fun
tion is obtained by 
ompa
tness. Themaximum is attained on the set of 
oeÆ
ients de�ned by the equationsk�kak = P �n+kbn+kb�nP �nb�n bn :



COMPLEX ANALYSIS 21The set of non
riti
al points is mapped 
ontinuously into the set of 
riti
al points bythe solutions of the di�erential equations. Sin
e the set of non
riti
al points is 
onne
ted,the set of non
riti
al points is mapped onto a 
ompa
t 
onne
ted set of 
riti
al points.The fun
tion exp(�X k�kjakj2)X �njbnj2of 
oeÆ
ients is a 
onstant on the set of 
riti
al points. This 
omputes the maximum valuesin
e an element of the set of 
riti
al points is de�ned bykak = !kfor every positive integer k with bn = !nfor every nonnegative integer n.This 
ompletes the proof of the theorem.Lebedev and Milin state the inequality only when the 
oeÆ
ients �n are a sequen
eof zeros and ones. The inequality is the motivation for 
ontra
tive properties of 
ompo-sition whi
h are found in the Koebe fun
tion and related mappings de�ning 
ompositionsemigroups.If a power series f(z) has vanishing 
onstant 
oeÆ
ient, the power seriesf(tz=(1 + z)2) =X�n(t)znhas vanishing 
onstant 
oeÆ
ient for every positive number t. Sin
e the di�erential equa-tion t ��t f(tz=(1 + z)2) = 1 + z1� z z ��z f(tz=(1 + z)2)is satis�ed, the 
oeÆ
ients �n(t) satisfy the di�erential equationst�0n(t) = sn(t) + sn�1(t)in terms of the 
oeÆ
ients sn(t) of the power series(1 + z)z ��z f(tz=(1 + z)2) =X sn(t)znwhi
h satisfy the equations n �n(t) = sn(t)� sn�1(t):Nonnegative di�erentiable fun
tions �n(t) of t � 1, de�ned for positive integers n, aresaid to be admissible as a family if the di�erential equations�n(t) + t�0n(t)n = �n+1(t)� t�0n+1(t)n+ 1



22 LOUIS DE BRANGESare satis�ed and if the solutions are nonin
reasing fun
tions of t. These 
onditions implythat the sum X �n(t) [sn(t)� sn�1(t)℄�[sn(t)� sn�1(t)℄nis a nonde
reasing fun
tion of t sin
e the inequality[sn(t)� sn�1(t)℄�[sn(t)� sn�1(t)℄ � 2sn(t)�sn(t) + 2sn�1(t)�sn�1(t)is satis�ed. The sum Xn�n(t)�n(t)��n(t)is a nonde
reasing fun
tion of t.The formal sum X �n(t)n (zn + z�n)over the positive integers n satis�es the di�erential equationt ��t X �n(t)n (zn + z�n) = 1� z1 + z z ��zX �n(t)n (zn + z�n)= 1� z1 + z X �n(t)(zn � z�n):The equation admits a unique solution de�ning an admissible family for initial 
onditions�n(1) an arbitrary nonin
reasing sequen
e of nonnegative numbers su
h that the in
re-ments �n(1)� �n+1(1)are nonin
reasing and have �nite sum. It is suÆ
ient to make the veri�
ation when apositive integer r exists su
h that �n(1) = r + 1� nwhen n is not greater than r and su
h that �n(1) vanishes otherwise.Sin
e the identityX(r + 1� n)zn =X zn+1 � zz � 1 = zr+2 � z2(z � 1)2 � rzz � 1holds with summation over the positive integers n whi
h are not greater than r1 the identityX (r + 1� n)(zn � z�n) = zr+1 � z�r�1 � (r + 1)(z � z�1)(z 12 � z� 12 )2holds with summation over the positive integers n whi
h are not greater than r.



COMPLEX ANALYSIS 23Sin
e the identity(2r + 2)X (2r + 1� k)!k!(2r + 1� 2k)! (z 12 � z� 12 )2r+2�2k = zr+1 + z�r�1holds with summation over the nonnegative integers k whi
h are not greater than r + 1,the identity�1� z1 + z (zr+1 � z�r�1) =X (2r + 1� k)!k!(2r + 1� 2k)! (z 12 � z� 12 )2r+2�2kholds with summation over the nonnegative integers k whi
h are not greater than r.The solution of the di�erential equation is�t ��tX �n(t)n (zn + z�n) =X (2r + 1� k)!k!(2r + 1� 2k)! tk�r(z 12 � z� 12 )2r�2kwith summation over the nonnegative integers k whi
h are not greater than r. Sin
e thebinomial expansion(z 12 � z� 12 )2r�2k =X (�1)m (2r � 2k)!m!(2r � 2k �m)! zr�k�mapplies with summation of the integers m su
h thatk � r � m � r � k;the identity �t ��t �n(t)n =X (�1)k (r + n+ 1 + k)!k!(r � n� k)!(2n+ k)! t�n�k2n+ 1 + 2kholds for every positive integer n whi
h is not greater than r with summation over thenonnegative integers k whi
h are not greater than r � n. The equation reads�t ��t �n(t)n = (r + n+ 1)! t�n(r � n)!(2n+ 1)! F (n� r; n+ 2 + r; n+ 12 ;n+ 32 ; 2n+ 1; t�1)in the hypergeometri
 notationF (a; b; 
; d; e; z) = 1 + ab
1!de z + a(a+ 1)b(b+ 1)
(
+ 1)2!d(d+ 1)e(e+ 1) z2 + : : : :Another derivation of the equation appears in A proof of the Bieberba
h 
onje
ture, A
taMathemati
a 154 (1985), 137{152.



24 LOUIS DE BRANGESSin
e (r + n+ 1 + k)!(r � n� k)! � (r + n+ k)!(r � 1� n� k)! = (2n+ 1 + 2k) (r + n+ k)!(r � n� k)!when n+ k is less than r, the identity reads�(2n)! tn+1 ��t �n(t)n =X (m+ n)!(m� n)! F (n�m;n+ 1 +m; 2n+ 1; t�1)with summation over the positive integers m whi
h are not greater than r.The hypergeometri
 seriesF (a; b; 
; z) = 1 + ab1!
 z + a(a+ 1)b(b+ 1)2!
(
+ 1) z2 + : : :satis�es the di�erential equationsF 0(a; b; 
; z) = a[F (a+ 1; b; 
; z)� F (a; b; 
; z)℄=zand F 0(a; b; 
; z) = b[F (a; b+ 1; 
; z)� F (a; b; 
; z)℄=zand F 0(a; b; 
; z) = (
� 1)[F (a; b; 
� 1; z)� F (a; b; 
; z)℄=zas well as the di�erential equations(1� z)F 0(a; b; 
; z)� bF (a; b; 
; z) = (a� 
)[F (a; b; 
; z)� F (a� 1; b; 
; z)℄=zand (1� z)F 0(a; b; 
; z)� aF (a; b; 
; z) = (b� 
)[F (a; b; 
; z)� F (a; b� 1; 
)z)℄=zand (1� z)F 0(a; b; 
; z)� (a+ b� 
)F (a; b; 
; z) = (
� a)(
� b)
 F (a; b; 
+ 1; z)whi
h imply the di�erential equationz(1� z)F 00(a; b; 
; z) + [
� (a+ b+ 1)z℄F 0(a; b; 
; z)� abF (a; b; 
; z) = 0and the re
urren
e relationF (a; b; 
; z) = ba� b� 1 a� 
a� b [F (a� 1; b+ 1; 
; z)� F (a; b; 
; z)℄=z+ ab� a� 1 b� 
b� a [F (a+ 1; b� 1; 
; z)� F (a; b; 
; z)℄=z:



COMPLEX ANALYSIS 25Another 
onsequen
e is the identityF (a; b; 
; 1) = �(
)�(
� a� b)�(
� a)�(
� b)when 
� a� b has positive real part.For every integer r whi
h is not less than a given positive integer n the polynomialF (n� r; n+ 1 + r; 2n+ 1; z)of degree r � n is an eigenfun
tion of the di�erential operator taking F (z) intoz(1� z)F 00(z) + [2n+ 1� (2n+ 2)z℄F 0(z)for the eigenvalue (n� r)(n+ 1 + r):The operator on polynomials admits a unique self{adjoint extension in the Hilbert spa
eof fun
tions de�ned in the interval (0; 1) whi
h are square integrable with respe
t to themeasure whose value on a Baire subset of the interval is the integral2n+ 1(2n)!(2n)! Z t2ndttaken over the set. An orthonormal basis for the Hilbert spa
e is the set of polynomials(r + n)!(r � n)! F (n� r; n+ 1 + r; 2n+ 1; z)for integers r whi
h are not less than n. A 
omputation of s
alar produ
ts is made fromthe identity� (n+ r + 1)2(2r + 1)(2r + 2) + (r � n)2(2r)(2r + 1) � z� F (n� r; n+ 1 + r; 2n+ 1; z)= (n+ r + 1)2(2r + 1)(2r + 2) F (n� r � 1; n+ 2 + r; 2n+ 1; z)+ (r � n)2(2r)(2r+ 1) F (n� r + 1; n+ r; 2n+ 1; z)from whi
h the re
urren
e relation(n+ r + 1)2 Z 10 t2njF (n� r � 1; n+ 2 + r; 2n+ 1; t)j2dt= (r + 1� n)2 Z 10 t2njF (n� r; n+ 1 + r; 2n+ 1; t)j2dtfollows.A theorem of Ri
hard Askey and George Gasper, Positive Ja
obi sums II, Ameri
anJournal of Mathemati
s 98 (1976), 709{737, states that, for every positive integer n andevery integer r whi
h is not less than n, the sumX (m+ n)!(m� n)! F (n�m;n+ 1 +m; 2n+ 1; z)over the integers m su
h that n � m � r is a polynomial whose values in the interval (0; 1)are positive.



26 LOUIS DE BRANGESChapter 3. Conformal MappingThe Lagrange skew{plane is a generalization of the Gauss plane. A Lagrange number� = d+ ia+ jb+ k
has rational numbers a; b; 
, and d as 
oordinates. The addition and multipli
ation ofLagrange numbers are de�ned from the addition and multipli
ation of rational numbersby the multipli
ation tableij = k; jk = i; ki = j;ji = �k; kj = �i; ik = �j;ii = �1; jj = �1; kk = �1:The properties of the Lagrange skew{plane resemble those of the Gauss plane ex
ept forthe non
ommutativity of multipli
ation.The asso
iative law (�+ �) + 
 = �+ (� + 
)holds for all Lagrange numbers �; �, and 
. The 
ommutative law�+ � = � + �holds for all Lagrange numbers � and �. The origin 0 of the Lagrange skew{plane, whi
hhas vanishing 
oordinates, satis�es the identity0 + 
 = 
 = 
 + 0for every element 
 of the Lagrange skew{plane. For every element � of the Lagrangeskew{plane a unique element � = ��of the Lagrange skew{plane exists su
h that�+ � = 0 = � + �:The identity (�+ �)� = �� + ��holds for all Lagrange numbers � and �.Multipli
ation by a Lagrange number 
 is a homomorphism of additive stru
ture. Theidentity 
(�+ �) = 
�+ 
�holds for all Lagrange numbers � and �. The parametrization of homomorphisms is 
on-sistent with additive stru
ture: The identity(�+ �)
 = �
 + �




COMPLEX ANALYSIS 27holds for all Lagrange numbers �; �, and 
. Multipli
ation by 
 is the homomorphismwhi
h annihilates every element of the Lagrange skew{plane when 
 is the origin. Multi-pli
ation by 
 is the identity homomorphism when 
 is the unit.The 
omposition of homomorphisms is 
onsistent with multipli
ative stru
ture: Theasso
iative law (��)
 = �(�
)holds for all Lagrange numbers �; �, and 
. Conjugation is an anti{homomorphism ofmultipli
ative stru
ture: The identity(��)� = ����holds for all Lagrange numbers � and �.A rational number is a Lagrange number
 = 
�whi
h is self{
onjugate. If 
 = d+ ia+ jb+ k
is a nonzero Lagrange number, then
�
 = a2 + b2 + 
2 + d2is a positive rational number. A nonzero Lagrange number � has an inverse� = ��=(���)su
h that �� = 1 = ��:A Lagrange number is said to be integral if its 
oordinates are either all integers or allhalves of odd integers. Sums and produ
ts of integral Lagrange numbers are integral. The
onjugate of an integral Lagrange number is integral. If � is a nonzero integral Lagrangenumber, ��� is a positive integer. The Eu
lidean algorithm is adapted to the sear
h forintegral Lagrange numbers � whi
h represent a given positive integerr = ���:If � is an integral Lagrange number and if � is a nonzero integral Lagrange number,then an integral Lagrange number 
 exists whi
h satis�es the inequality(�� �
)�(�� �
) < ���:The 
hoi
e of the 
oordinates of 
 is made so that the 
oordinates of���� ���
 = d+ ia+ jb+ k




28 LOUIS DE BRANGESsatisfy the inequalities ���� � 2a � ���;and ���� � 2b � ���;and ���� � 2
 � ���;and ���� � 2d � ���and so that a stri
t inequality(���� ���
)(���� ���
) < (���)2is obtained.A nonempty set of integral Lagrange numbers is said to be a left ideal if it 
ontains thesum �+ �of any elements � and � and if it 
ontains the produ
t��of any element � with an integral Lagrange number �.A nonempty set of integral Lagrange numbers is said to be a right ideal if it 
ontainsthe sum �+ �of any elements � and � and if it 
ontains the produ
t��of any element � with an integral Lagrange number �.Conjugation transforms a left ideal into a right ideal and a right ideal into a left ideal.A determination of stru
ture is made for right ideals.A nonzero integral Lagrange number � belongs to a right ideal whose elements are theprodu
ts �
 with integral Lagrange numbers 
. A right ideal whi
h 
ontains a nonzeroelement 
ontains a nonzero element � whi
h minimizes the positive integer ���. If � is anelement of the ideal, an integral Lagrange number 
 exists whi
h satis�es the inequality(�� �
)�(�� �
) < ���:The identity � = �
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e �� �
 is an element of the ideal whi
h is not nonzero.The Eu
lidean algorithm solves the equationr = ���for an integral Lagrange number � when r is a given positive integer. The solution isobtained from an approximate solution in a quotient ring of the ring of integral Lagrangenumbers.A ring of Lagrange numbers is a nonempty set of Lagrange numbers whi
h 
ontains thedi�eren
e �� �and the produ
t ��of any elements � and � of the set. The set of integral Lagrange numbers is a 
onjugatedring: The ring 
ontains �� whenever it 
ontains �.A quotient ring of the ring of integral Lagrange numbers is de�ned for every positiveinteger r. Integral Lagrange numbers � and � are said to be 
ongruent modulo r if� � � = r
is divisible by r: The equation admits an integral Lagrange number 
 as solution. Con-gruen
e modulo r is an equivalen
e relation on integral Lagrange numbers. The ring is aunion of disjoint equivalen
e 
lasses.Equivalen
e 
lasses inherit addition and multipli
ation sin
e �1 + �1 and �2 + �2 are
ongruent modulo r and sin
e �1�1 and �2�2 are 
ongruent modulo r whenever �1 and �2are 
ongruent modulo r and �1 and �2 are 
ongruent modulo r. Equivalen
e 
lasses inherit
onjugation sin
e 
�1 and 
�2 are 
ongruent modulo r whenever 
1 and 
2 are 
ongruentmodulo r. Addition and multipli
ation of equivalen
e 
lasses have the properties requiredof a ring:The asso
iative law (�+ �) + 
 = �+ (� + 
)holds for all integral Lagrange numbers �; �, and 
 modulo r. The 
ommutative law�+ � = � + �holds for all integral Lagrange numbers � and � modulo r. The image of the origin of theLagrange numbers is an origin 0 for the Lagrange numbers modulo r: The identity0 + 
 = 
 = 
 + 0holds for every integral Lagrange number 
 modulo r. For every integral Lagrange number� modulo r an integral Lagrange number� = ��



30 LOUIS DE BRANGESmodulo r exists su
h that �+ � = 0 = � + �:Multipli
ation by an integral Lagrange number 
 modulo r is a homomorphism ofadditive stru
ture: The identity 
(�+ �) = 
�+ 
�holds for all integral Lagrange numbers � and � modulo r. The parametrization of homo-morphisms is 
onsistent with additive stru
ture: The identity(�+ �)
 = �
 + �
holds for all integral Lagrange numbers �; �, and 
 modulo r. Multipli
ation by 
 is thehomomorphism whi
h annihilates every integral Lagrange number modulo r when 
 is theorigin. Multipli
ation by 
 is the identity homomorphism when 
 is the image 1 of theunit of the Lagrange numbers.The 
omposition of homomorphisms is 
onsistent with multipli
ative stru
ture: Theasso
iative law (��)
 = �(�
)holds for all integral Lagrange numbers �; �, and 
 modulo r.The ring of integral Lagrange numbers modulo r is 
onjugated: The identity(��)� = ����holds for all integral Lagrange numbers � and � modulo r.There are twenty{four integral Lagrange numbers � whi
h represent1 = ���:These Lagrange units form a group under multipli
ation. The eight elements of the groupwhi
h are fourth roots of unity form a normal subgroup whose quotient is a 
y
li
 groupof three elements.If r is an odd positive integer, every integral Lagrange number is 
ongruent modulo rto a unique Lagrange number whose 
oordinates are nonnegative integers less than r. Thenumber of integral Lagrange numbers modulo r is equal to r4.If r and s are relatively prime positive integers, the equation1 = ra+ sbadmits a solution in integers a and b. A 
anoni
al homomorphism of the ring of integralLagrange numbers modulo rs onto the ring of integral Lagrange numbers modulo r existswhose kernel is the 
onjugated ideal of elements divisible by s. A 
anoni
al homomorphism



COMPLEX ANALYSIS 31of the ring of integral Lagrange numbers modulo rs onto the ring of integral Lagrangenumbers modulo s exists whose kernel is the 
onjugated ideal of elements divisible by r.The 
onjugated ring of integral Lagrange numbers modulo rs is 
anoni
ally isomorphi
 tothe Cartesian produ
t of the 
onjugated ring of integral Lagrange numbers modulo r andthe 
onjugated ring of integral Lagrange numbers modulo s.The ring of integral Lagrange numbers modulo two 
ontains sixteen elements. The in-vertible elements of the ring are represented by Lagrange units. There are twelve integralLagrange numbers modulo two sin
e a Lagrange unit ! and its negative �! are 
ongruentmodulo two. A 
anoni
al homomorphism exists of the ring of integral Lagrange numbersmodulo 2r onto the ring of integral Lagrange numbers modulo r whose kernel is the 
on-jugated ideal of elements divisible by r. Sin
e the ideal 
ontains sixteen elements, everyintegral Lagrange number modulo r is represented by sixteen integral Lagrange numbersmodulo 2r. The number of integral Lagrange numbers modulo r is equal to r4 for everypositive integer r.The multipli
ative group of nonzero integers modulo p is 
y
li
 for every odd primep. The number of nonzero integers modulo p whi
h are square of integers modulo p is12 (p� 1) as is the number of integers modulo p whi
h are nonsquares. The produ
t of twosquares and the produ
t of two nonsquares are squares. The produ
t of a square and anonsquare is a nonsquare. Sin
e a nonsquare exists, some sum of two squares exists whi
his a nonsquare.A skew{
onjugate integral Lagrange number� = ia+ jbmodulo p is de�ned by the 
hoi
e of integers a and b modulo p su
h that the equationa2 + b2 = 
2admits no solution 
 in the integers modulo p. If u and v are integers modulo p su
h that(u+ iv)�(u+ iv) = u2 � �2v2vanishes, then u and v both vanish. A 
onjugated �eld of p2 elements is obtained whoseelements are integral Lagrange numbers u+ �vmodulo p with integers u and v modulo p as 
oordinates.An integer a modulo p exists su
h that�1� a2is a square sin
e 12(p+1) integers modulo p are represented whereas there are only 12 (p�1)nonsquares. A skew{
onjugate integral Lagrange number� = ia+ jb+ k



32 LOUIS DE BRANGESmodulo p exists for some integer b modulo p su
h that��� = 0:Every integral Lagrange number is represented as�+ ��for unique elements � and � of the �eld. The identity(�+ ��)�(�+ ��) = ���is satis�ed.If p is a prime, a 
anoni
al homomorphism of the ring of integral Lagrange numbersmodulo rp onto the ring of integral Lagrange numbers modulo r exists whose kernel is the
onjugated ideal of elements divisible by r.If I is a right ideal of the ring of integral Lagrange numbers modulo r, then the setof integral Lagrange numbers whi
h represent elements of the ideal is a right ideal whi
h
ontains r. An integral Lagrange number � exists su
h that the elements of the ideal arethe produ
ts �� with � an integral Lagrange number. The representationr = ���holds if I 
ontains no nonzero element whi
h is self{
onjugate.The number of right ideals of the ring of integral Lagrange numbers modulo r whi
h
ontain no nonzero self{
onjugate element is equal to the sum of the odd divisors of r.The number of integral Lagrange numbers � whi
h representr = ���is equal to twenty{four times the sum of the odd divisors of r.The Lagrange skew{plane admits topologies whi
h are 
ompatible with addition andmultipli
ation. The Dedekind topology is derived from 
onvex stru
ture.A 
onvex 
ombination (1� t)� + t�of elements � and � of the Lagrange skew{plane is an element of the Lagrange skew{planewhen t is a rational number in the interval [0; 1℄. A subset of the Lagrange skew{planeis said to be pre
onvex if it 
ontains all elements of the Lagrange skew{plane whi
h are
onvex 
ombinations of elements of the set. The pre
onvex span of a subset of the Lagrangeskew{plane is de�ned as the smallest pre
onvex subset of the Lagrange skew{plane whi
h
ontains the given set.The 
losure in the Lagrange skew{plane of a pre
onvex subset B is the set B� ofelements � of the Lagrange skew{plane su
h that the set whose elements are � and the
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onvex. The 
losure of a pre
onvex set is a pre
onvex set whi
h is itsown 
losure.A nonempty pre
onvex set is de�ned as open if it is disjoint from the 
losure of everydisjoint nonempty pre
onvex set. The interse
tion of two nonempty open pre
onvex setsis an open pre
onvex set if it is nonempty.A subset of the Lagrange skew{plane is said to be open if it is a union of nonemptyopen pre
onvex sets. The empty set is open sin
e it is an empty union of su
h sets. Unionsof open subsets are open. Finite interse
tions of open sets are open.An example of an open set is the 
omplement in the Lagrange skew{plane of the 
losureof a nonempty pre
onvex set. A subset of the Lagrange skew{plane is said to be 
losed if itis the 
omplement in the Lagrange skew{plane of an open set. Interse
tions of 
losed setsare 
losed. Finite unions of 
losed sets are 
losed. The Lagrange skew{plane is a Hausdor�spa
e in the topology whose open and 
losed sets are de�ned by 
onvexity. These openand 
losed sets de�ne the Dedekind topology of the Lagrange skew{plane.If a nonempty open pre
onvex set A is disjoint from a nonempty pre
onvex set B, thena maximal pre
onvex set exists whi
h 
ontains B and is disjoint from A. The maximalpre
onvex set is 
losed and has pre
onvex 
omplement. The existen
e of the maximalpre
onvex set is an appli
ation of the Kuratowski{Zorn lemma.Addition and multipli
ation are 
ontinuous as transformations of the Cartesian prod-u
t of the Lagrange skew{plane with itself into the Lagrange skew{plane. Conjugation is
ontinuous as a transformation of the Lagrange skew{plane into the Lagrange skew{plane.The Dedekind skew{plane is the 
ompletion of the Lagrange skew{plane in the uniformDedekind topology. Neighborhoods of a Lagrange number are determined by neighbor-hoods of the origin. If an open set A 
ontains the origin and if � is a Lagrange number,then the set of sums of � and elements of A is an open set whi
h 
ontains �. Every openset whi
h 
ontains � is obtained from an open set whi
h 
ontains the origin.A Cau
hy 
lass of 
losed subsets of the Lagrange skew{plane is a nonempty 
lass of
losed subsets su
h that the interse
tion of the members of any �nite sub
lass is nonemptyand su
h that for every open set A 
ontaining the origin some member B of the 
lass existssu
h that all di�eren
es of elements of B belong to A.A Cau
hy 
lass of 
losed subsets is 
ontained in a maximal Cau
hy 
lass of 
losed subsets.A Cau
hy sequen
e is a sequen
e of elements �1; �2; �3; : : : of the Lagrange skew{plane su
hthat a Cau
hy 
lass of 
losed subsets is de�ned whose members are the 
losed pre
onvexspans of �r; �r+1; �r+2; : : : for every positive integer r. A Cau
hy sequen
e determines amaximal Cau
hy 
lass. Every maximal Cau
hy 
lass is determined by a Cau
hy sequen
e.An element of the Dedekind skew{plane is de�ned by a maximal Cau
hy 
lass of elementsof the Lagrange skew{plane. An element of the Lagrange skew{plane determines themaximal Cau
hy 
lass of 
losed sets whi
h 
ontain the element. The Lagrange skew{planeis 
ontained in the Dedekind skew{plane.If B is a 
losed subset of the Lagrange skew{plane, the 
losure B� of B in the Dedekind



34 LOUIS DE BRANGESskew{plane is de�ned as the set of elements of the Dedekind skew{plane whose maximalCau
hy 
lass has B as a member. A subset of the Dedekind skew{plane is de�ned as openif it is disjoint from the 
losure in the Dedekind skew{plane of every disjoint 
losed subsetof the Lagrange skew{plane. Unions of open subsets of the Dedekind skew{plane are open.Finite interse
tions of open subsets of the Dedekind skew{plane are open. A subset ofthe Lagrange skew{plane is open if, and only if, it is the interse
tion with the Lagrangeskew{plane of an open subset of the Dedekind skew{plane.A subset of the Dedekind skew{plane is de�ned as 
losed if its 
omplement in theDedekind skew{plane is open. Interse
tions of 
losed subsets of the Dedekind skew{planeare 
losed. Finite unions of 
losed subset of the Dedekind skew{plane are 
losed. The
losure of a subset of the Dedekind skew{plane is de�ned as the smallest 
losed set 
on-taining the given set. The 
losure in the Lagrange skew{plane of a subset of the Lagrangeskew{plane is the interse
tion with the Lagrange skew{plane of the 
losure of the set inthe Dedekind skew{plane.The Dedekind skew{plane is a Hausdor� spa
e in the topology whose open sets and
losed sets are determined by 
onvexity. These open sets and 
losed sets de�ne theDedekind topology of the Dedekind skew{plane.The Lagrange skew{plane is dense in the Dedekind skew{plane. Addition and multipli-
ation admit unique 
ontinuous extensions as transformations of the Cartesian produ
t ofthe Dedekind skew{plane with itself into the Dedekind skew{plane. Conjugation admits aunique 
ontinuous extension as a transformation of the Dedekind skew{plant into itself.Properties of addition in the Lagrange skew{plane are preserved in the Dedekind skew{plane. The asso
iative law (�+ �) + 
 = �+ (� + 
)holds for all elements �; �, and 
 of the Dedekind skew{plane. The 
ommutative law�+ � = � + �holds for all elements � and � of the Dedekind skew{plane. The origin 0 of the Lagrangeskew{plane satis�es the identities 0 + 
 = 
 = 
 + 0for every element 
 of the Dedekind skew{plane. For every element � of the Dedekindskew{plane a unique element � = ��of the Dedekind skew{plane exists su
h that�+ � = 0 = � + �:Conjugation is a homomorphism of additive stru
ture: The identity(�+ �)� = �� + ��



COMPLEX ANALYSIS 35holds for all elements � and � of the Dedekind skew{plane.Multipli
ation by an element 
 of the Dedekind skew{plane is a homomorphism ofadditive stru
ture: The identity 
(�+ �) = 
�+ 
�holds for all elements � and � of the Dedekind skew{plane. The parametrization of homo-morphisms is 
onsistent with additive stru
ture: The identity(�+ �)
 = �
 + �
holds for all elements �; �, and 
 of the Dedekind skew{plane. Multipli
ation by 
 is thehomomorphism whi
h annihilates every element of the Dedekind skew{plane when 
 isthe origin. Multipli
ation by 
 is the identity homomorphism when 
 is the unit 1 of theLagrange skew{plane.The 
omposition of homomorphisms is 
onsistent with multipli
ative stru
ture: Theasso
iative law (��)
 = �(�
)holds for all elements �; �, and 
 of the Dedekind skew{plane. Conjugation is an anti{homomorphism of multipli
ative stru
ture: The identity(��)� = ����holds for all elements � and � of the Dedekind skew{plane.The in
lusion of the 
omplex plane in the Dedekind skew{plane is a homomorphismof additive and multipli
ative stru
ture whi
h 
ommutes with 
onjugation. The 
om-plex plane is a 
losed subset of the Dedekind skew{plane. The Dedekind topology ofthe Dedekind plane is the subspa
e topology of the Dedekind topology of the Dedekindskew{plane.If 
 is a nonzero element of the Dedekind skew{plane, the real number
�
is positive. If � is a nonzero element of the Dedekind skew{plane, the nonzero element� = ��=(���)satis�es the identities �� = 1 = ��:The Dedekind skew{plane is 
omplete in the uniform Dedekind topology: Every Cau
hy
lass of 
losed subsets of the Dedekind skew{plane has a nonempty interse
tion. Closed



36 LOUIS DE BRANGESand bounded subsets of the Dedekind skew{plane 
ompa
t: A subset of the Dedekindskew{plane is said to be bounded if a positive number 
 exists su
h that the inequality
�
 � 
holds for every element 
 of the set. A nonempty 
lass of 
losed subsets has a nonemptyinterse
tion if every �nite sub
lass has a nonempty interse
tion and if some member of the
lass is bounded.The axiomatization of topology has 
onsequen
es whi
h are unfamiliar to those whoseexperien
e is limited to Dedekind topologies. A topology is de�ned for a set by a 
lass ofsubsets whi
h are said to be open or equivalently by a 
lass of subsets whi
h are said to be
losed. The two formulations of topology are equivalent sin
e a set is assumed to be openif, and only if, its 
omplement is 
losed. The union of every 
lass of open sets is assumed tobe open. Equivalently the interse
tion of every 
lass of 
losed sets is assumed to be 
losed.The interse
tion of every �nite 
lass of open sets is assumed to be open. Equivalently theunion of every �nite 
lass of 
losed sets is assumed to be 
losed. This de�nition of topologyis supplemented by a 
ondition whi
h de�nes a Hausdor� spa
e: Distin
t elements a and bof the spa
e are 
ontained in disjoint open sets A and B, a 
ontained in A and b 
ontainedin B.A trivial example of su
h a topology is de�ned for a �nite set. A �nite set is a Hausdor�spa
e in a unique topology: All subsets are both open and 
losed. This dis
rete topologyof a �nite set is applied in the 
onstru
tion of nontrivial topologies.If a nonempty 
lass C of nonempty sets is given, the Cartesian produ
t of the sets isde�ned as the set of all fun
tions de�ned on the members of the 
lass su
h that the valueof the fun
tion on a member set is always an element of the set. The usual fun
tionnotation is however repla
ed by the notation applied to sequen
es: if N is a member of the
lass, the value of the fun
tion at N is written CN . When the members of the 
lass areparametrized by positive integers, the notation Cn means CN with n the positive integerwhi
h parametrizes the member set N . The 
on
ept of a Cartesian produ
t is appliedto 
lasses C whi
h are unlimited in 
ardinality. The 
lass C need not be �nite. If it isin�nite, it need not be 
ountable. The 
on
ept of a Cartesian produ
t 
an be applied moregenerally when the 
lass C is empty or when some member of the 
lass is empty. TheCartesian produ
t is then de�ned to be empty. (The graph of the fun
tion 
ontains noelement.)When the member sets are Hausdor� spa
es, the Cartesian produ
t is a Hausdor� spa
ein the Cartesian produ
t topology. The produ
t topology is de�ned by two 
onditions:The proje
tion of the produ
t onto ea
h fa
tor spa
e is 
ontinuous. A transformation of atopologi
al spa
e into the produ
t spa
e is 
ontinuous whenever every 
omposition with aproje
tion into a fa
tor spa
e is 
ontinuous.When the fa
tor spa
es are 
ompa
t Hausdor� spa
es, the Cartesian produ
t is a 
om-pa
t Hausdor� spa
e. The proof of 
ompa
tness is an appli
ation of the axiom of 
hoi
e.The axiom of 
hoi
e is equivalent to the assertion that a Cartesian produ
t of nonemptysets is nonempty. The Kuratowski{Zorn lemma is a 
onsequen
e of the axiom of 
hoi
e: A
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ontains a maximal element if every well{ordered subset admits anupper bound in the set.Compa
tness of a Hausdor� spa
e is formulated as the assertion that a nonempty 
lass of
losed subsets has a nonempty interse
tion whenever every �nite sub
lass has the property.Every su
h 
lass is 
ontained in a maximal su
h 
lass by the Kuratowski{Zorn lemma.When the 
lass is maximal, the interse
tion of the members of the 
lass 
ontains a uniqueelement.If C is a maximal su
h 
lass of 
losed subsets of the Cartesian produ
t, then a maximalsu
h 
lass is seen in every fa
tor spa
e. Seen in a fa
tor spa
e are those 
losed sets whoseinverse image in the Cartesian produ
t are members of the 
lass C. The element determinedin every fa
tor spa
e de�nes the desired element of the Cartesian produ
t.The adi
 topology of the Lagrange skew{plane resembles the Dedekind topology in itsgood relationship to addition and multipli
ation. The open sets are de�ned as unions ofsets whi
h are both open and 
losed. The 
losed sets are de�ned as interse
tions of setswhi
h are both open and 
losed. A basi
 example of a set whi
h is both open and 
losedand whi
h 
ontains a given Lagrange number � is de�ned by a positive rational number �and 
onsists of the Lagrange numbers � su
h that�(� � �)�(� � �)is integral. Every open set is a union of �nite interse
tions of basi
 open and 
losed sets.Every 
losed set is an interse
tion of basi
 open and 
losed sets.The Lagrange skew{plane is a Hausdor� spa
e in the adi
 topology. Addition andmultipli
ation are 
ontinuous as transformations of the Cartesian produ
t of the Lagrangeskew{plane with itself into the Lagrange skew{plane. Conjugation is 
ontinuous as atransformation of the Lagrange skew{plane into itself.The adi
 skew{plane is de�ned as the Cau
hy 
ompletion of the Lagrange skew{planein the uniform adi
 topology. Addition and multipli
ation admit unique 
ontinuous exten-sions as transformations of the Cartesian produ
t of the adi
 skew{plane with itself intothe adi
 skew{plane. Conjugation admits a unique 
ontinuous extension as a transforma-tion of the adi
 skew{plane into itself. An element of the adi
 skew{plane is said to beintegral if it belongs to the 
losure of the integral elements of the Lagrange skew{plane.The adi
 skew{plane is a 
onjugated ring whi
h 
ontains the set of integral elements as a
onjugated subring. Compa
tness of the subring is proved by a 
onstru
tion as a 
losedsubset of a Cartesian produ
t of 
ompa
t Hausdor� spa
es.The Cartesian produ
t of the 
onjugated ring of integral Lagrange numbers modulo ris taken over the positive integers r. The Cartesian produ
t is a 
onjugated ring whoseaddition, multipli
ation, and 
onjugation are de�ned by addition, multipli
ation, and 
on-jugation of proje
tions in fa
tor rings. Sin
e the fa
tor rings are 
ompa
t Hausdor� spa
esin the dis
rete topology, the Cartesian produ
t is a 
ompa
t Hausdor� spa
e in the Carte-sian produ
t topology. When r1 is a divisor of r2, a 
anoni
al homomorphism exists of thefa
tor ring modulo r2 onto the fa
tor ring modulo r1 whose kernel is the 
onjugated idealof elements divisible by r1.
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losed subring of the Cartesian produ
t is de�ned as the set of elements of the Carte-sian produ
t su
h that the proje
tion of the fa
tor ring modulo r2 is mapped into theproje
tion in the fa
tor ring modulo r1 whenever r1 is a divisor of r2. The subring is
onjugated and is a 
ompa
t Hausdor� spa
e in the subspa
e topology. A 
ontinuous
onjugated homomorphism of the subring onto the ring of integral elements of the adi
skew{plane is de�ned by taking an element of the subring into the limit of a Cau
hy se-quen
e whose r{term is an integral element of the Lagrange skew{plane whi
h representsthe proje
tion in the fa
tor ring modulo r.The adi
 skew{plane is a ring of quotients of the subring of its integral elements. A
onjugated isomorphism of additive stru
ture of the adi
 skew{plane onto itself is de�nedon multipli
ation by r for every positive integer r. The transformation is 
ontinuous andhas a 
ontinuous inverse. Every element of the adi
 skew{plane is mapped into an integralelement on multipli
ation by some positive integer.An integral element of the adi
 skew{plane is said to be p{adi
 for some prime p if itsquotient by r is integral for every positive integer r whi
h is not divisible by p. The setof p{adi
 elements of the ring of integral elements of the adi
 skew{plane is a 
onjugatedideal whi
h is 
losed in the adi
 topology. The 
onjugated ring of integral elements of theadi
 skew{plane is isomorphi
 to the Cartesian produ
t of its p{adi
 ideals taken over allprimes p. The topology of the ring of integral elements is the Cartesian produ
t topologyof its p{adi
 ideals.A de
omposition of the adi
 skew{plane results from the de
omposition of its ring ofintegral elements. An element of the adi
 skew{plane is said to be p{adi
 if for some primep its produ
t with a positive integer is a p{adi
 integral element of the adi
 skew{plane.The set of p{adi
 elements of the adi
 skew{plane is a 
onjugated ideal of the adi
 skew{plane whi
h is 
losed in the adi
 topology. The p{adi
 
omponent of an element of theadi
 skew{plane is integral for all but a �nite number of primes p. If a p{adi
 element ofthe adi
 skew{plane is 
hosen for every prime p and if all but a �nite number of elementsare integral, an element of the adi
 skew{plane exists whose p{adi
 
omponent is the givenp{adi
 element for every prime p.The p{adi
 skew{plane is de�ned for a prime p as the 
onjugated ring of p{adi
 elementsof the adi
 skew{plane. The p{adi
 topology of the ring is de�ned as the subspa
e topologyof the adi
 topology of the adi
 skew{plane. The set of self{
onjugate elements of the ringis the �eld of p{adi
 numbers. An element� = d+ ia+ jb+ k
of the p{adi
 skew{plane has 
oordinates a; b; 
, and d in the p{adi
 �eld whi
h do not allvanish when � does not vanish. The produ
t��� = a2 + b2 + 
2 + d2is a p{adi
 number whi
h does not vanish when the 
oordinates of � do not all vanish. Aninverse ��1 = ��=(���)
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 skew{plane whi
h satis�es the identities��1� = 1 = ���1with 1 the unit of the p{adi
 �eld and also of the p{adi
 skew{plane.The value of the adi
 skew{plane lies in its relationship to the Dedekind skew{planewhi
h is found in their Cartesian produ
t. The produ
t skew{plane is the set of pairs� = (�+; ��) of elements �+ of the Dedekind skew{plane and elements �� of the adi
skew{plane. The sum 
 = �+ �of elements � and � is de�ned by 
+ = �+ + �+and 
� = �� + ��:The produ
t 
 = ��of elements � and � is de�ned by 
+ = �+�+and 
� = ����:The 
onjugate � = ��of an element � is de�ned by �+ = ��+and �� = ���:The produ
t skew{plane is a Hausdor� spa
e in the Cartesian produ
t topology of theDedekind skew{plane and the adi
 skew{plane.The Dedekind skew{plane and the adi
 skew{plane are spli
ed by the 
onstru
tion of aquotient spa
e. A 
losed subset of the produ
t skew{plane 
onsists of the elements whose
omponents in the Dedekind skew{plane and the adi
 skew{plane are elements of theLagrange skew{plane with vanishing sum. If � and � are elements of the subset, then so is�+ �. If � is an element of the subset and if � is an element of the Lagrange skew{plane,then an element � = ��of the subset is de�ned by �+ = ��+



40 LOUIS DE BRANGESand �� = ���:If � is an element of the subset, then an element� = ��of the subset is de�ned by �+ = ��+and �� = ���:An equivalen
e relation is de�ned of the produ
t skew{plane by de�ning elements �and � to be equivalent when � � � belongs to the subset. A fundamental domain forthe equivalen
e relation is the set of elements � of the produ
t skew{plane whose adi

omponent is integral and whose Dedekind 
omponent satis�es the inequality��+�+ < (�+ � !)�(�+ � !)for every integral element ! of the Lagrange skew{plane with integral inverse. Everyelement of the produ
t skew{plane is equivalent to an element of the 
losure of the funda-mental domain. Equivalent elements of the fundamental domain are equal.
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ardinality of set A is said to be less than or equal to the 
ardinality of set B if aninje
tive transformation of set A into set B exists. If the 
ardinality of set A is less thanor equal to the 
ardinality of set B and if the 
ardinality of set B is less than or equalto the 
ardinality of set A, then an inje
tive transformation exists of set A onto set B.Sets A and B are said to have the same 
ardinality. The 
ardinality of set A is said to beless than the 
ardinality of set B if A and B are sets of unequal 
ardinality su
h that the
ardinality of set A is less than or equal to the 
ardinality of set B.Experien
e with �nite sets 
reates the expe
tation that any two sets are 
omparable in
ardinality. If A and B are sets of unequal 
ardinality, then either the 
ardinality of set Ais less than the 
ardinality of set B or the 
ardinality of set B is less than the 
ardinalityof set A. The desired 
on
lusion, or its equivalent, is a

epted as a hypothesis in theaxiomati
 de�nition of sets.The axiom of 
hoi
e is the most plausible of the hypotheses whi
h are equivalent to thedesired 
omparability of 
ardinalities of sets. If a transformation T takes set A onto set B,then a transformation S of set B into set A exists su
h that the 
omposed transformationTS is the in
lusion transformation of set B in itself.The axiom of 
hoi
e displa
es the previous hypothesis whi
h is equivalent to the 
ompa-rability of 
ardinalities of sets. A partial ordering of a set S is determined by distinguishedpairs (a; b) of elements a and b of S. The inequality a � b is written when (a; b) is adistinguished pair. It is assumed that the inequality a � 
 holds whenever a and 
 areelements of the set for whi
h the inequalities a � b and b � 
 hold for some element b ofthe set. The inequality 
 � 
 is assumed for every element 
 of the set. Elements a and bof the set are assumed to be equal if the inequalities a � b and b � a are satis�ed. A set issaid to be well{ordered if every nonempty subset 
ontains a least element. An equivalentof the axiom of 
hoi
e is the hypothesis that every set admits a well{ordering.The Kuratowski{Zorn lemma is a 
exible formulation of the prin
iple of indu
tion im-pli
it in well{ordering. A partially ordered set admits a maximal element if every well{ordered subset has an upper bound in the set.The proof of the Kuratowski{Zorn lemma from the axiom of 
hoi
e is an appli
ationof indu
tion. Assume that S is a partially ordered set in whi
h every well{ordered subsethas an upper bound. An augmentation of a well{ordered subset A is a well{ordered subsetB whose elements are the elements of A and some upper bound of A whi
h does notbelong to A. The axiom of 
hoi
e is applied to a set whose elements are the pairs (A;B)
onsisting of an augmentable well{ordered subset A and an augmentation B of A. The setis mapped onto the set of augmentable well{ordered subsets by taking (A;B) into A. Theaxiom of 
hoi
e asserts the existen
e of a transformation whi
h takes every augmentablewell{ordered subset A into an augmentation (A;A0) of A.The proof of the Kuratowski{Zorn lemma is fa
ilitated by the introdu
tion of notation.A ladder is well{ordered subset A whi
h is 
onstru
ted by the 
hosen augmentation pro-
edure. For every element b of A the augmentation of the set of elements of A whi
h are
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h are less than or equal to b. The interse
tionof ladders A and B is a ladder whi
h is either equal to A or equal to B. If A and B areladders, then either A is 
ontained in B or B is 
ontained in A. The union of all laddersis a ladder whi
h 
ontains every ladder. Sin
e the greatest ladder is assumed to have anupper bound, it has a greatest element. The greatest element of the greatest ladder is amaximal element of the given partially ordered set S.Cardinal numbers are 
onstru
ted by a theorem of Cantor whi
h states that no trans-formation maps a set onto the 
lass of all its subsets. If a transformation T maps a set Sinto the subsets of S, then a subset S1 of S is 
onstru
ted whi
h does not belong to therange of T . The set S1 is the set of elements s of S for whi
h no elements sn of S 
an be
hosen for every nonnegative integer n so that s0 is equal to s and so that sn belongs toTsn�1 when n is positive. An element s of S belongs to S1 if, and only if, Ts is 
ontainedin S1. This property implies that S1 is not equal to Ts for an element s of S.If 
 is a 
ardinal number, a 
ontinuum of order 
 is de�ned as a set of least 
ardinalitywhi
h has the same 
ardinality as the 
lass of its subsets whi
h are 
ontinua of order lessthan 
. The empty set is a 
ontinuum of order equal to its 
ardinality. A set with oneelement is a 
ontinuum of order equal to its 
ardinality. No other �nite set is a 
ontinuumof order 
 for a 
ardinal number 
. A 
ountably in�nite set is a 
ontinuum of order equalto its 
ardinality.A parametrization of a 
ontinuum S of order 
 is an inje
tive transformation J of Sonto the 
lass of its subsets whi
h are 
ontinua of order less than 
 su
h that no elementssn of S 
an be 
hosen for every nonnegative integer n so that sn belongs to Jsn�1 when nis positive. A 
ontinuum of order 
 admits a parametrization sin
e an inje
tive transfor-mation T exists of S onto the 
lass of its subsets whi
h are 
ontinua of order less than 
.Sin
e S1 is then a 
ontinuum of order 
, it has the same 
ardinality as S. The restri
tionof T to S1 is a parametrization of S1. If W is an inje
tive transformation of S onto S1,then a parametrization J of S is de�ned so that Ja is the set of elements b of S su
h thatWb belongs to TWa.A parametrization J of a 
ontinuum S of order 
 is essentially unique. If an inje
tivetransformation T maps S onto the 
lass of its subsets whi
h are 
ontinua of order less than
, then an inje
tive transformation W of S onto S1 exists su
h that Ja is always the setof elements b su
h that Wb belongs to TWa. The 
onstru
tion of T is an appli
ation ofthe Kuratowski{Zorn lemma. Consider the 
lass C of inje
tive transformations W withdomain 
ontained in S and with range 
ontained in S1 su
h that every element of Jabelongs to the domain of W whenever a belongs to the domain of W and su
h that Ja isalways the set of elements b of S su
h that Wb belongs to JWa. The 
lass C is partiallyordered by the in
lusion ordering of the graph. A well{ordered sub
lass of C has an upperbound in C whose graph is a union of graphs. A maximal member of the 
lass C has S asits domain.A nonempty set of 
ardinal numbers 
ontains a least element sin
e a ladder of well{ordered sets 
an be 
onstru
ted with these 
ardinalities.A 
ontinuum of order 
 exists when 
 is the 
ardinality of an un
ountable set. It
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ient to 
onstru
t a set whi
h has the same 
ardinality as the 
lass of its subsetswhi
h are 
ontinua of 
ardinality less than 
. If a 
ardinal number � is greater than the
ardinality of every 
ontinuum of order less than 
, it is suÆ
ient to 
onstru
t a set whi
hhas the same 
ardinality as the 
lass of its subsets of 
ardinality less than �. Su
h a setis 
onstru
ted when � is the least 
ardinality greater than the 
ardinality of an in�niteset S. The 
lass C of all subsets of S is a set whi
h has the same 
ardinality as the 
lassof its subsets of 
ardinality less than �. The 
ardinality of the 
lass of all subsets of C of
ardinality less than � is less than or equal to the 
ardinality of all transformations of Sinto the set of fun
tions de�ned on S with values zero or one. The 
ardinality of the 
lassof all subsets of C with values zero or one is less than or equal to the 
ardinality of the setof all fun
tions de�ned on the Cartesian produ
t S �S with values zero or one. Sin
e S isan in�nite set, the 
ardinality of S � S is equal to the 
ardinality of S. The 
ardinality ofthe 
lass of all subsets of C of 
ardinality less than � is less than or equal to the 
ardinalityof C.A hypothesis is required for the determination of 
ardinalities of 
ontinua. The 
hoi
eof hypothesis depends on the desired appli
ations. When the largest logi
al stru
ture iswanted in whi
h the a

epted methods of analysis apply, then the 
ardinalities of 
ontinuaare dependent on hypotheses whose 
onsisten
y is ne
essarily untested (as are the a

eptedhypotheses of analysis). When the smallest logi
al stru
ture is wanted in whi
h the a
-
epted methods of analysis apply (whi
h is the 
onventional view in mathemati
s), thenthe 
ardinalities of 
ontinua are determined. This is the best 
hoi
e for a student sin
eit establishes a logi
al stru
ture with minimal hypotheses whi
h 
an serve as a guide togeneralizations should he want this dire
tion of resear
h. A minimal stru
ture is therefore
hosen here.When a minimal stru
ture is 
hosen, there are essentially only two ways in whi
h a new
ardinality 
an be 
onstru
ted from given 
ardinalities. The 
ardinality of the 
lass of allsubsets of a set is greater than the 
ardinality of the set. A set of 
ardinality 
 
an beobtained as a union of a 
lass of 
ardinality less than 
 of sets whose 
ardinalities are lessthan 
. Both 
onstru
tions produ
e 
ontinua from 
ontinua. It follows that every in�niteset is a 
ontinuum whose order is equal to its 
ardinality. An un
ountable 
ontinuum iseither the 
lass of all subsets of an in�nite set in 
ardinality or it is a union of a 
lass ofsmaller 
ardinality of sets of smaller 
ardinality.
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