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Abstract. Although the Riemann hypothesis originates as a conjecture concerning the clas-
sical zeta function, the conjecture is applied more generally to zeta functions which resemble

the classical zeta function in Euler product and functional identity. An asymptotic estimate
of the number of primes with a given bound is the application originally intended for the Rie-

mann hypothesis. The Riemann hypothesis for other zeta functions is more distantly related

to properties of prime numbers. Other meanings of the Riemann hypothesis are discovered
in the context in which zeta functions arise. The zeta functions which most resemble the

classical zeta function arise in complex analysis. The present work is concerned with the

construction and properties of zeta functions which originate in hypercomplex analysis.

The merit of a large class of zeta functions lies in distracting attention from the prop-
erties of particular members of the class. Since the Riemann hypothesis applies to a large
class of zeta functions, the significance of the conjecture lies in general properties of the
spaces used to construct the functions. Of these spaces the simplest is the complex plane,
whose properties are axiomatized in the concept of a field. Since the real line is also a field,
it needs to be added that the complex plane admits an automorphism called conjugation.
The field of real numbers is recovered as the set of self–conjugate elements of the complex
plane. Since conjugated fields other than the complex plane exist, it appears at first sight
that the field properties do not penetrate to the essence of the complex plane. Experience
however shows that other fields are relevant to the complex plane for a description of its
symmetries. The complex plane is not understood apart from other fields.

The attraction of complex analysis is such that those who enter its domain are reluc-
tant to leave it. The reason for doing so is that Cartesian space is more fundamentally
important then the complex plane. But Cartesian space lacks the multiplicative structure
which accounts for the special properties of the complex plane. Multiplicative structure
is recovered by embedding Cartesian space in a skew–field. Hypercomplex analysis is the
resulting noncommutative generalization of complex analysis. The properties of field which
prepare the analysis of the complex plane have analogues in properties of skew–fields for
application to the hypercomplex plane.

The construction of a skew–field is made from the algebra of polynomials with rational
coefficients. The Euclidean algorithm determines the structure of ideals in the polynomial
algebra. The degree of a nonzero polynomial is the greatest nonnegative integer n such
that the coefficient of zn in the polynomial is nonzero. A product of nonzero polynomials
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is a nonzero polynomial whose degree is the sum of the degrees of the factors. If f(z) is
a polynomial and if g(z) is a nonzero polynomial, then a polynomial h(z) exists such that
the degree of the polynomial

f(z)− g(z)h(z)

is less than the degree of g(z) when it is nonzero. An ideal of the polynomial algebra which
contains a nonzero element contains a nonzero element g(z) of least degree. The elements
of the ideal are generated by g(z) as products g(z)h(z) for a polynomial h(z).

An algebraic plane is a quotient field of the polynomial algebra which is constructed
from an isomorphism of the polynomial algebra into itself. If the isomorphism takes the in-
determinate z into a polynomial z− in z, then it takes a polynomial f(z) into the composed
polynomial

f−(z) = f(z−).

An ideal of the polynomial algebra is generated by the polynomial

1− z−z = a0 + a1z + . . .+ arz
r.

If f(z) and g(z) are polynomials such that

g(z)− f(z−)

belongs to the ideal, then
f(z)− g(z−)

belongs to the ideal. The generating polynomial is assumed to have even degree and to
have integer coefficients satisfying the symmetry condition

ak = ar−k

for every k = 0, . . . , r. A linear functional on the polynomial algebra is defined as the
trace

spur′(f)

of the transformation induced by multiplication by f(z) on the quotient algebra. The trace

spur(f∗f)

is assumed to be nonnegative for every polynomial f(z) and to be zero only when f(z)
belongs to the ideal. The quotient algebra is said to be an algebraic plane if every nonzero
element has an inverse.

The conjugation of the algebraic plane is the automorphism c into c− induced by the
isomorphism f(z) into f−(z) of the polynomial algebra. The identity

a = b−

holds whenever
b = a−.
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The self–conjugate elements of the algebraic plane form a field. A self–conjugate element
of the field is said to be nonnegative if it is a sum of products c−c. A nonnegative element
is said to be positive if it is nonzero.

An algebraic skew–plane is constructed from an algebraic plane by adjourning an ele-
ment k which satisfies the identity

ck = kc−

for every element c of the algebraic plane. The elements of the algebraic skew–plane are
sums

a+ kb

with a and b in the algebraic plane. The product

(a+ kb)(c+ kd)

of elements a+ kb and c+ kd of the algebraic skew–plane is the element

(ac− b−d) + k(a−d+ bc)

of the algebraic skew–plane. The algebraic skew–plane is an associative algebra in which
every nonzero element is invertible. Conjugation for the algebraic skew–plane is the anti–
automorphism which takes a+ kb into

(a+ kb)− = a− − kb.

The identity
(a+ kb)−(a+ kb) = a−a+ b−b

holds for all elements a and b of the algebraic plane.

An example of an algebraic plane is the quotient field of the polynomial algebra modulo
the cyclotomic polynomial whose roots are the primitive r–th roots of unity for some
positive integer r greater than two. The conjugation of the algebraic plane agrees with
the inverse on a primitive r–th root of unity. The trace of a polynomial is the sum of the
values of the polynomial at the primitive r–th roots of unity. The trace of the polynomial
f−f is the sum ∑

|f(∞)|2

taken over the primitive r–th roots ω of unity. Every algebraic plane is so obtained.

A topology is defined on an algebraic skew–plane by its convex structure. A convex
combination

a(1− h) + bh

of elements a and b of the algebraic skew–plane is an element of the algebraic skew–plane
defined by a nonnegative rational number h such that 1 − h is nonnegative. A subset of
the algebraic skew–plane is said to be convex if it contains the convex combinations of any
two of its elements.
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The closure of a nonempty convex subset B of the algebraic skew–plane is the set B−

of elements c of the algebraic skew–plane such that for some element b of B the convex
combination

c(1− h) + bh

belongs to B for every positive rational number h such that 1 − h is nonnegative. The
empty set is a convex set whose closure is defined to be itself. The closure of a convex set
is a convex set whose closure is itself.

A nonempty convex subset of the algebraic skew–plane is said to be a disk if it is disjoint
from the closure of every disjoint convex set. If A is a disk, if a is an element of A, and if
b is an element of the algebraic skew–plane, then a positive rational number h exists such
that 1− h is nonnegative and such that

a(1− h) + bh

belongs to A. A nonempty convex subset A of the algebraic skew–plane is a disk if for every
element a of A and every element b of the algebraic skew–plane the convex combination

a(1− h) + bh

belongs to A for some positive rational number h such that 1− h is nonnegative.

If A is a disk and if B is a convex set, the intersection of A with the closure of B is
contained in the closure of the intersection of A with B. The intersection of two disks is
a disk if it is nonempty. The algebraic skew–plane is a Hausdorff space whose open set
are the unions of disks. A subset of algebraic skew–plane is said to be closed if it is the
complement of an open set. Intersections of closed sets are closed. A finite union of closed
sets is closed. A convex set is closed if, and only if, it is equal to its closure.

The topology of the algebraic skew–plane is clarified by constructions of convex sets. If
B is a nonempty convex set and if s is an element of the algebraic skew–plane, a convex
subset B(s) of the algebraic skew–plane is constructed whose closure contains s and the
elements of B. The set B(s) is defined as the set of convex combinations

s(1− h) + ch

of s with elements c of B for positive rational numbers h such that 1 − h is positive.
Convexity of B(s) is proved by showing that a convex combination

[s(1− p) + ap](1− h) + [s(1− q) + bq]h

of elements

s(1− p) + ap

and

s(1− q) + bq
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of B(s) is an element
s(1− k) + ck

of B(s). Since a and b are elements of the convex set B and since p and q are positive
rational numbers such that 1− p and 1− q are positive, an element c of B is obtained as
solution of the equation

c[p(1− h) + qh] = ap(1− h) + bqh.

The positive rational number
k = p(1− h) + qh

has the desired property that

1− k = (1− p)(1− h) + (1− q)h

is positive.

The Hahn–Banach theorem admits a formulation for the algebraic skew–plane. A diskA
which is disjoint from a nonempty convex set B is contained in a disk which is disjoint from
B and whose complement is convex. The proof is an application of the Kuratowski–Zorn
lemma.

A nonempty convex set B which is disjoint from a disk A is contained in a maximal
convex set which is disjoint from A. It is sufficient to consider the case in which B is a
maximal convex set which is disjoint from A. The closure of B is disjoint from A since A
is a disk. Since the closure of B is a convex set which contains B, it is equal to B. The
Hahn–Banach theorem is proved by showing that the complement of B is convex. The
convex set B(s) contains an element of A when s belongs to the complement of B.

If u and v are elements of the complement of B, then an element

u(1− p) + ap

of B(u) and an element
v(1− q) + bq

of B(v) belong to A. A convex combination of u and v is a solution s of the equation

s[(1− p)(1− h) + (1− q)h] = u(1− p)(1− h) + v(1− q)h

for a nonnegative rational number h such that 1− h is nonnegative. An element c of B is
obtained as a solution of the equation

c[p(1− h) + qh] = ap(1− h) + bqh.

The element
s[(1− p)(1− h) + (1− q)h] + c[p(1− h) + qh]
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of B(s) is a convex combination

[u(1− p) + ap](1− h) + [v(1− q) + bq]h

of elements of A. Since A is convex, s belongs to the complement of B.

A center of a convex set is an element c of the set such that 2c − a belongs to the set
whenever a belongs to the set. A convex set is said to be centered at c if c is a center of
the set. A construction of centered convex sets is made using the convexity identity

[a(1− h) + bh]−[a(1− h) + bh] + h(1− h)(b− a)−(b− a) = (1− h)a−a+ hb−b

which holds for all elements a and b of the algebraic skew–plane when h is a nonnegative
rational number such that 1 − h is nonnegative. An example of a disk which is centered
at an element c of the algebraic skew–plane is obtained for every positive rational number
ε as the set of elements a which satisfy the inequality

(a− c)−(a− c) < ε.

The Euclidean skew–plane associated with an algebraic skew–plane is a completion of
the algebraic skew–plane which is constructed from Cauchy classes of disks. A class of
disks is said to be Cauchy if the intersection of a finite number of members of the class
always contains a member of the class and if for every disk U centered at the origin a
member C of the class exists such that b− a belongs to U whenever a and b belong to C.
Cauchy classes are considered equivalent if they are subclasses of the same Cauchy class.
Every Cauchy class is contained in a maximal Cauchy class. The disk completion of an
algebraic skew–field is the set whose elements are the maximal Cauchy classes. A Cauchy
class is said to be convergent if the intersection of the members of the class is nonempty. A
convergent Cauchy class contains only one element of the algebraic skew–field. An element
of the algebraic skew–field determines an element of the disk completion consisting of the
class of all disks containing the element.

The conjugate of a Cauchy class α is a Cauchy class β whose members are constructed
from the members of α. If a disk A is of class α, the corresponding disk B of class β is
obtained fromA under the transformation c into c− for elements of the algebraic skew–field.
The equivalence class of β is determined by the equivalence class of α. If α is a maximal
Cauchy class, then β is a maximal Cauchy class. If the Cauchy class α is determined
by an element of the algebraic skew–field, then the Cauchy class β is determined by the
conjugate element of the algebraic skew–field. If the Cauchy class

β = α−

is the conjugate of the Cauchy class α, then the Cauchy class

α = β−

is the conjugate of the Cauchy class β.
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A Cauchy class is self–conjugate if, and only if, every member of the class contains a
self–conjugate element of the algebraic skew–field. The inequality

α ≤ β

for self–conjugate Cauchy classes α and β is defined to mean that for every disk A of class
α and for every disk B of class β the inequality

a ≤ b

holds for some self–conjugate element a of A and for some self–conjugate element b of B.
When α and γ are equivalent Cauchy classes and when β and δ are equivalent Cauchy
classes, the inequality

γ ≤ δ

holds if, and only if, the inequality
α ≤ β

is satisfied. Self–conjugate Cauchy classes α and β are equivalent if the inequalities

α ≤ β

and
β ≤ α

are satisfied. The inequality
γ ≤ γ

holds for every self–conjugate Cauchy class γ. The inequality

α ≤ γ

holds for Cauchy classes α and γ if the inequalities

α ≤ β

and
β ≤ γ

hold for a Cauchy class β. When a Cauchy class α is determined by a self–conjugate
element a of the algebraic skew–field and a Cauchy class β is determined by an element b
of the algebraic skew–field, the inequality

α ≤ β

holds if, and only if, the inequality
a ≤ b

is satisfied.
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An open subset of the Euclidean skew–plane is determined by an open set A for the
disk topology of the algebraic skew–plane. The open set A′ of the Euclidean skew–plane
is the set of maximal Cauchy classes whose members are disks having a nonempty inter-
section with A. Finite intersections of open subsets of the Euclidean skew–plane are open.
Unions of open subsets of the Euclidean skew–plane are open. The Euclidean skew–plane
is a Hausorff space which contains the algebraic skew–plane as a dense subset. The disk
topology of the algebraic skew–plane is the subspace topology of the Euclidean skew–plane.
An element of the Euclidean skew–plane is said to be algebraic if it is an element of the
algebraic skew–plane.

Since addition is continuous as a transformation of the Cartesian product of the algebraic
skew–plane with itself into the algebraic skew–plane in the disk topology, addition has a
unique continuous extension as a transformation of the Cartesian product of the Euclidean
skew–plane with itself into the Euclidean skew–plane. The associative law

α+ (β + γ) = (α+ β) + γ

holds for all elements α, β, and γ of the Euclidean skew–plane. The commutative law

α+ β = β + α

holds for all elements α and β of the Euclidean skew–plane. The origin of the algebraic
skew–plane is the origin of the Euclidean skew–plane since the identity

0 + γ = γ = γ + 0

holds for every element γ of the Euclidean skew–plane. For every element γ of the Euclidean
skew–plane a unique element −γ exists which satisfies the identities

(−γ) + γ = 0 = γ + (−γ).

Another completion of the algebraic skew–plane is constructed from the homomorphisms
of the ring of integral elements into finite quotient ring. An element of the algebraic plane
is said to be integral if it is represented by a polynomial with integral coefficients. Sums
and products of integral elements are integral. The conjugate of an integral element is
integral. A polynomial with integer coefficients is divisible by a positive integer r, if and
only if, its coefficients are divisible by r. The quotient ring of the ring of polynomials
with integer coefficients modulo the ideal of polynomial whose coefficients are divisible
by r is isomorphic to the ring of polynomials with coefficients in the integers modulo r.
Since the generating polynomial of the algebraic field has integer coefficients, it determines
a polynomial with coefficients in the integers modulo r. The polynomial obtained with
coefficients in the integers modulo r generates an ideal in the ring of polynomials in the
integers modulo r. When r is not one, the quotient ring of the ring of polynomials with
coefficients in the integers modulo r is a nontrivial finite ring.

An element ω of the algebraic skew–plane is said to be an integral unit if

ωn = 1
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for some positive integer n and if for some

ω−ω = 1.

An element of the algebraic skew–plane is said to be integral if it is a finite sum of units.
Sums and products of integral elements of the algebraic skew–plane are integral. The
conjugate of an integral element of the algebraic skew–plane is integral.

The adic topology of the algebraic skew–plane is a topology with respect to which
addition is continuous as a transformation of the Cartesian product of the algebraic skew–
plane with itself into the algebraic skew–plane. A basic neighborhood of the origin for the
adic topology of the algebraic skew–plane is defined for a positive rational number t as the
set of products tγ with γ an integral element of the algebraic skew–plane.

The topology is computable on the ring of integral elements of the algebraic skew–plane.
For every positive integer r a basic neighborhood of the origin is the set of products rγ
with γ an element of the ring. The neighborhood of the origin is an ideal of the ring which
is closed under conjugation. Since the quotient ring is finite, it admits a unique topology
with respect to which it is a Hausdorff space. Every subset of the quotient ring is both
open and closed. Addition and multiplication are continuous as transformations of the
Cartesian product of the quotient ring with itself into the quotient ring. Conjugation is
continuous as a transformation of the quotient ring into itself. The adic topology of the
ring of integral elements of the algebraic skew–plane is the weakest topology with respect
to which the projection into the quotient ring is continuous for every positive integer r.
Addition and multiplication are continuous as transformations of the Cartesian product
of the ring of integral elements with itself into the ring. Conjugation is continuous as a
transformation of the ring of integral elements into itself.

The adic skew–plane is an algebra over the rational numbers which contains the algebraic
skew–plane as a subalgebra and which has a topology whose subspace topology is the
adic topology of the algebraic skew–plane. Addition is continuous as a transformation of
the Cartesian product of the adic skew–plane with itself into the adic skew–plane. The
algebraic skew–plane is dense in the adic skew–plane. An element of the adic skew–plane
is said to be integral if it belongs to the closure of the ring of integral elements of the
algebraic skew–plane. The set of integral elements of the adic skew–plane is a compact
open subring of the adic skew–plane. Multiplication by a positive rational number is a
continuous transformation of the adic skew–plane into itself. Every element of the adic
skew–plane is a product

tγ

of a positive rational number t and an integral element γ of the adic skew–plane. Multi-
plication is continuous as a transformation of the Cartesian product of the ring of integral
elements with itself into the ring. Conjugation is continuous as a transformation of the
adic skew–plane with itself into the adic skew–plane. An element of the adic skew–plane
is said to be algebraic if it belongs to the algebraic skew–plane.

The p–adic skew–plane is a quotient algebra of the adic skew–plane which is defined
for every prime p. The p–adic skew–plane is constructed as the completion of a quotient
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space of the algebraic skew–plane in a topology for which addition is continuous as a
transformation of the Cartesian product of the skew–field with itself into the skew–field.
A basic neighborhood of the origin for the p–adic topology is an ideal of the ring of inte-
gral elements which is generated by a power of the prime p. Since the ideal is invariant
under automorphisms and the conjugation, the finite quotient algebra of the ring of in-
tegral elements inherits automorphisms and a conjugation. The completion of the ring
of integral elements is a compact Hausdorff space since the p–adic topology of the ring
of integral elements is the weakest topology with respect to which each projection onto
a finite quotient algebra is continuous. An element of the p–adic skew–plane is said to
be integral if it belongs to the closure of the ring of integral elements of the algebraic
skew–plane in the p–adic topology. The ring of integral elements of the p–adic skew–plane
is a compact Hausdorff space which is a neighborhood of the origin for the p–adic topology
of the p–adic skew–plane. Addition has a continuous extension as a transformation of the
Cartesian product of the p–adic skew–plane with itself into the p–adic skew–plane. The
automorphisms and the conjugation of the algebraic skew–field have continuous extensions
as automorphisms and a conjugation of the p–adic skew–plane. An element of the p–adic
skew–plane is said to be algebraic if it is an element of the algebraic skew–plane. Multipli-
cation by an algebraic element of the p–adic skew–plane has a continuous extension as a
transformation of the p–adic skew–plane into itself. An invertible integral element of the
p–adic skew–plane is said to be a unit if its inverse is integral. An element of the p–adic
skew–plane is invertible if, and only if, it is the product of a unit of the p–adic skew–plane
and a nonzero algebraic element of the p–adic skew–plane.

The adic skew–plane is canonically isomorphic to a subalgebra of the Cartesian product
of the p–adic skew–planes taken over all primes p. An element of the Cartesian product
determines an element of the adic skew–plane if, and only if, it is integral for all but a
finite number of primes p.

The compactification of the Euclidean skew–plane is a quotient space of the Carte-
sian product of the Euclidean skew–plane and the adic skew–plane. An element ξ of the
Cartesian product has an Euclidean component ξ+, which is an element of the Euclidean
skew–plane, and an adic component ξ−, which is an element of the adic skew–plane. An
algebraic element of the Euclidean skew–plane is an element of the adic skew–plane. Ele-
ments ξ and η of the Cartesian product are considered equivalent if

η+ = ξ+ + γ

and
η− = ξ− − γ

for an element γ of the algebraic skew–plane. The sum of elements α and β of the quotient
space is the element

γ = α+ β

of the quotient space whose Euclidean component

γ+ = α+ + β+
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is the sum of the Euclidean components of α and β and whose adic component

γ− = α− + β−

is the sum of the adic components of α and β. The definition does not depend on the
choice of representatives in equivalence classes.

The product
η = γξ

of an element γ of the algebraic skew–plane and an element ξ of the quotient space is the
element η of the quotient space whose Euclidean component

η+ = γξ+

is the product of γ with the Euclidean component of ξ and whose adic component

η− = γξ−

is the product of γ with the adic component of ξ. The definition does not depend on the
choice of representatives in equivalence classes.

The product
η = ξγ

of an element γ of the algebraic skew–plane and an element ξ of the quotient space is the
element η of the quotient space whose Euclidean component

η+ = ξ+γ

is the product of γ with the Euclidean component of ξ and whose adic component

η− = ξ−γ

is the product of γ with the adic component of ξ. The definition does not depend on the
choice of representatives in equivalence classes.

The quotient space inherits a conjugation. The quotient space is a compact Hausdorff
space in the quotient topology of the Cartesian product space. A computation of topology
results from the construction of a fundamental domain for the equivalence relation on the
Cartesian product space. If ξ is an element of the Euclidean skew–plane, a nearest integral
element η of the Euclidean skew–plane is found by minimizing the nonnegative number

spur [(ξ − η)−(ξ − η)].

The fundamental domain for the Cartesian product space is the set of elements with integral
adic component for which the integral element of the Euclidean skew–plane nearest the
Euclidean component is unique and is the origin. The fundamental domain is an open
set whose closure is compact. Addition by an element of the Cartesian product space
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equivalent to the origin maps the fundamental region onto an open set containing the
element. Open set containing distinct elements equivalent to the origin are disjoint. The
Cartesian product space is the union of the closures of the open sets.

The Euclidean skew–plane, the adic skew–plane, the Cartesian product, and the quotient
space are examples of locally compact additive groups. In Fourier analysis a character
is defined as a continuous homomorphism of the group into the multiplicative group of
complex numbers of absolute value one. A character for the Euclidean skew–plane is a
function

exp[πi spur(ξ−η + η−ξ)]

of ξ in the Euclidean skew–plane. The trace

spur(ξ−η + η−ξ)

is a rational number when ξ and η are elements of the algebraic skew–plane. The trace is
an integer when ξ and η are integral.

If η is an element of the algebraic skew–plane, the function

exp[πi spur(ξ−η + η−ξ)]

of elements ξ of the algebraic skew–plane is continuous with respect to the adic topology.
The function has a unique continuous extension as a function

exp[πi spur(ξ−η + η−ξ)]

of elements ξ of the adic skew–plane. If η is an element of the adic skew–plane, the function

exp[πi spur(ξ−η + η−ξ)]

of elements ξ of the algebraic skew–plane is continuous with respect to the adic topology.
The function has a unique continuous extension as a function

exp[πi spur(ξ−η + η−ξ)]

of ξ in the adic skew–plane.

A Fourier character for the Cartesian product space is determined by an element η of
the Cartesian product space as a function

exp[πi spur(ξ−+η+ + η−+ξ+)] exp[πi spur(ξ−−η− + η−−ξ−)]

of ξ in the Cartesian product space. A Fourier character for the quotient space is then de-
termined when the Euclidean and adic components of η are equal elements of the algebraic
skew–plane.

A dense set of elements of the fundamental domain in the Cartesian product space have
integral algebraic elements as adic component. Since these elements of the fundamental
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domain are equivalent to elements of the Cartesian product space with vanishing adic
component, they are determined by elements of the Euclidean skew–plane. The quotient
space is isomorphic as a locally compact additive group to the completion of the Euclidean
skew–plane in a topology with respect to which addition is continuous as a transformation
of the Cartesian product of the Euclidean skew–plane with itself into the Euclidean skew–
plane. The topology is the weakest topology with respect to which

exp[πi spur(ξ−η + η−ξ)]

is a continuous function of ξ in the Euclidean skew–plane for every element η of the
algebraic skew–plane.

Haar measure for a locally compact additive group is an essentially unique nonnegative
measure on the Baire subsets of the group which is invariant under translation, has finite
values on compact sets, and has positive values on nonempty open sets. The measure is
unique within a constant factor. Since the Euclidean skew–plane is a vector space of finite
dimension over the real numbers, Haar measure is a normalization of Lebesgue measure.
The measure is normalized so that measure one is assigned to the set of elements of the
Euclidean skew–plane which have the origin as nearest integral element. Haar measure for
the adic skew–plane is normalized so that measure one is assigned to the set of integral
elements. Haar measure for the Cartesian product space is the Cartesian product of Haar
measure for the Euclidean skew–plane and Haar measure for the adic skew–plane. The
fundamental domain of the Cartesian product space has measure one. Haar measure for
the quotient space is determined by Haar measure on the fundamental domain.

The Fourier transformation for the Euclidean skew–plane is an isometric transformation
of the space of square integrable functions with respect to Haar measure onto itself. The
transformation takes a function f(ξ) of ξ in the Euclidean skew–plane into a function g(η)
of η in the Euclidean skew–plane when the integral

g(η) =
∫

exp[πi spur(ξ−η + η−ξ)]

is absolutely convergent. The inverse transformation takes a function f(ξ) of ξ in the
Euclidean skew–plane into a function g(η) of η in the Euclidean skew–plane when the
Fourier transformation takes the conjugate function f(ξ)− of ξ in the Euclidean skew–
plane into the conjugate function g(η)− of η in the Euclidean skew–plane.

The Fourier transformation for the adic skew–plane is an isometric transformation of
the space of square integrable functions with respect to Haar measure onto itself. The
transformation takes a function f(ξ) of ξ in the adic skew–plane into a function g(η) of η
in the adic skew–plane when the integral

g(η) =
∫

exp[πi spur(ξ−η + η−ξ)]

is absolutely convergent. The inverse transformation takes a function f(ξ) of ξ in the adic
skew–plane into a function g(η) of η in the adic skew–plane when the Fourier transformation
takes the conjugate function f(ξ)− of ξ in the adic skew–plane into the conjugate function
g(η)− of η in the adic skew–plane.
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The Fourier transformation for the Cartesian product space is an isometric transfor-
mation of the space of square integrable functions with respect to Haar measure onto
itself. The transformation takes a function f(ξ) of ξ in the Cartesian product space into a
function g(η) of η in the Cartesian product space when the integral

g(η) =
∫

exp[πi spur(ξ−+η+ + η−+ξ+) exp[πi spur(ξ−−η− + η−−ξ−)]

is absolutely convergent. The inverse transformation takes a function f(ξ) of ξ in the
Cartesian product space into a function g(η) of η in the Cartesian product space when the
Fourier transformation takes the conjugate function f(ξ)− of ξ in the Cartesian product
space into the conjugate function g(η)− of η in the Cartesian product space.

The Fourier transformation for the quotient space is an isometric transformation of the
space of square integrable functions with respect to Haar measure for the quotient space
onto the space of square summable functions of algebraic elements of the Euclidean skew–
plane. The transformation takes a function f(ξ) of ξ in the quotient space into a function
g(η) of elements of the algebraic skew–plane defined by the integral

g(η) =
∫

exp[πi spur(ξ−+η+ + η−+ξ+)] exp[πi spur(ξ−−η− + η−−ξ−)]

with respect to Haar measure for the quotient space. The identity∫
|f(ξ)|2dξ =

∑
|g(η)|2

holds with integration with respect to Haar measure for the quotient space and with
summation over the elements of the algebraic skew–plane. The inverse transformation
takes a function f(ξ) of elements of the algebraic skew–plane into a function g(η) of η in
the quotient space defined by the orthogonal expansion

g(η)− =
∑

exp[πi spur(ξ−+η+ + η−+ξ−)] exp[πi spur(ξ−−η− + η−−ξ−)]

of conjugate functions.

Poisson summation constructs an integrable function with respect to Haar measure
on the quotient space from an integrable function with respect to Haar measure on the
Cartesian product space. The Poisson sum

f ′(ξ) =
∑

f(ξ + η)

of a function f(ξ) of ξ in the Cartesian product space is a function f ′(ξ) of ξ in the quotient
space defined by summation over the elements η of the Cartesian product space which are
equivalent to the origin. The inequality∫

|f ′(ξ)|dξ ≤
∫
|f(ξ)|dξ

holds with integration on the left with respect to Haar measure for the quotient space
and with integration on the right with respect to Haar measure for the Cartesian product
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space. If γ is an element of the Cartesian product space whose Euclidean component γ+

and whose adic component γ− are equal elements of the algebraic skew–plane, then the
integral ∫

exp[πi spur(ξ−+γ+ + γ−+ξ+)] exp[πi spur(ξ−−γ− + γ−−ξ−)]

with respect to Haar measure for the quotient space is equal to the integral∫
exp[πi spur(γ−+ξ+ + ξ−+γ+)] exp[πi spur(γ−−ξ− + ξ−γ−)]

with respect to Haar measure for the Cartesian product space.

The Poisson formula ∑
f(η) =

∑
g(η)

states that the Poisson sum of a bounded integrable function f(ξ) of ξ in the Cartesian
product space has the same value at the origin as the Poisson sum of its Fourier transform
when the Fourier transform is a bounded integrable function g(ξ) of ξ in the Cartesian
product space. Boundedness and integrability imply the square integrability condition
under which the Fourier transformation has been defined. The function values applied in
the Poisson formula are meaningful since the Fourier transform of an integrable function
is continuous. The Poisson formula is obtained by Fourier analysis on the quotient space.
The Fourier coefficients of a function of ξ on the quotient space are determined by the
values g(η) when η is equivalent to zero since this condition means that the Euclidean
component η+ and the adic component η− are algebraic elements with sum zero. The sum∑

g(η)

taken over the elements η of the Cartesian product space which are equivalent to zero is
the value at the origin of a function∑

exp[πi spur(ξ−+η+ + η−+ξ+)] exp[−πi spur(ξ−−η− − η−−ξ−)]

of ξ in the Cartesian product space which has the same value at the origin as f ′(ξ).

A function of
ξ = t+ ix+ jy + kz

is an Euclidean skew–field is said to be a homogeneous polynomial of degree ν if it is a
linear combination of monomials

xaybzctd

whose exponents a, b, c, and d are nonnegative integers with sum ν. The space of homo-
geneous polynomials of degree ν is a Hilbert space which admits the monomials as an
orthogonal basis. The scalar self–product of the monomial with exponents a, b, c, and c is

a! b! c!

ν!
.
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Isometric transformations of the space of homogeneous polynomials of degree ν into itself
are defined by taking a function f(ξ) of ξ in the Euclidean skew–field into the functions
f(ωξ) and f(ξω) of ξ in the Euclidean skew–field for every unit ω of the Euclidean skew–
field.

The Laplacian
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+

∂2

∂t2

acts as a linear transformation of the space of homogeneous polynomials of degree ν into
the space of homogeneous polynomials of degree ν − 2 when ν is greater than one and
annihilates homogeneous polynomials of smaller degree. The Laplacian commutes with
the transformations which take a function f(ξ) of ξ in the Euclidean skew–field into the
functions f(ωξ) and f(ξω) of ξ in the Euclidean skew–field for every unit ω of the Euclidean
skew–field.

A homogeneous polynomial of degree ν is said to be harmonic if it is annihilated by
the Laplacian. The homogeneous harmonic polynomials of degree ν form an invariant
subspace of dimension 1 + 2ν for the transformation which takes f(ξ) into f(ω−ξω) for
every unit ω of the Euclidean skew–field.

A harmonic polynomial of degree ν is a homogeneous polynomial of degree ν which is
annihilated by the Laplacian. The harmonic polynomials of degree ν form an invariant
subspace for the transformations which take a function f(ξ) of ξ in the Euclidean skew–
field into the functions f(ωξ) and f(ξω) of ξ in the Euclidean skew–field for every unit ω
of the Euclidean skew–field. The dimension of the space of homogeneous polynomials of
degree ν is

(ν + 1)(ν + 2)(ν + 3)/6.

The dimension of the space of harmonic polynomials of degree ν is

(ν + 1)2.

Commuting self–adjoint transformations ∆(n) are defined in the space of harmonic
polynomials of degree ν for every positive integer n. The transformation ∆(n) takes a
function f(ξ) of ξ in the Euclidean skew–plane into the function g(ξ) of ξ in the Euclidean
skew–plane defined by the summations

n
1
2 νg(ξ) =

∑
f(ω−ξ)

over the integral elements ω of the algebraic skew–field such that

n = ω−ω.

The identity

∆(m)∆(n) =
∑

∆(mn/k2)∆(1)



HYPERCOMPLEX ANALYSIS 17

holds for all positive integers m and n with summation over the common divisors k of
m and n. Each transformation ∆(n) commutes with the transformation which takes a
function f(ξ) of ξ in the Euclidean skew–plane into the function

f∗(ξ) = f(ξ−)−

of ξ in the Euclidean skew–plane.

The transformations ∆(n) take harmonic polynomials of degree ν into harmonic poly-
nomials of degree ν. The transformations are self–adjoint in the space of harmonic poly-
nomials of degree v. The space is the orthogonal sum of simultaneous invariant subspaces
for the transformations ∆(n). Each invariant subspace is invariant under the transforma-
tion f(ξ) into f∗(ξ). The nonzero elements of an invariant subspace are characterized as
eigenfunctions of ∆(n) for a real eigenvalue τ(n) for every positive integer n. The identity

τ(m)τ(n) =
∑

τ(mn/k2)

holds for all positive integers m and n with summation over the common divisors k of m
and n.

A nonzero harmonic polynomial of degree ν, which is an eigenfunction of the transfor-
mation ∆(n) for some eigenvalue τ(n) for every positive integer n, is said to be primitive
modulo ν if no nonzero harmonic polynomial of smaller degree exists which is an eigen-
function of the transformation ∆(n) for the same eigenvalue τ(n) for every positive integer
n.

The Poisson summation formula is applied to functions of ξ in the Cartesian product of
the Euclidean skew–plane and the adic skew–plane which vanish when the adic component
of ξ is not integral and whose value is independent of the adic component of ξ when the
adic component of ξ is not integral. Such a function on the Cartesian product space is
determined by the function f(ξ+) of ξ+ in the Euclidean skew–plane which is obtained when
the adic component of ξ is integral. The function of ξ in the Cartesian product space is
square integrable with respect to Haar measure for the Cartesian product space if, and only
if, the function f(ξ+) of ξ+ in the Euclidean skew–plane is square integrable with respect
to Haar measure for the Euclidean skew–plane. The Fourier transform for the Cartesian
product space of the square integrable function of ξ in the Cartesian product space is a
function of ξ in the Cartesian product space which vanishes when the adic component of ξ
is not integral and whose value is independent of ξ when the adic component of ξ is integral.
The function obtained on the Cartesian product is determined by the function g(ξ+) of
ξ+ in the Euclidean skew–plane obtained when the adic component of ξ is integral. The
function g(ξ) of ξ in the Euclidean skew–plane is the Fourier transform for the Euclidean
skew–plane of the function f(ξ) of ξ in the Euclidean skew–plane. The functions f(ξ) and
g(ξ) of ξ in the Euclidean skew–plane are integrable with respect to Haar measure for the
Euclidean skew–plane if, and only if, the functions determined on the Cartesian product
space are integrable with respect to Haar measure on the Cartesian product space. The
Poisson summation formula ∑

f(η) =
∑

g(η)
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then applies with summation over the integral elements η of the algebraic skew–field.

A computation of Fourier transforms is made when the Euclidean skew–plane is the
Euclidean skew–field of hypercomplex numbers with real coordinates. If z is in the upper
half–plane, the function

ϕ(ξ) exp(πizξ−ξ)

of ξ in the Euclidean skew–plane is square integrable with respect to Haar measure for the
Euclidean skew–plane whenever ϕ(ξ) is a harmonic polynomial of degree ν. The Fourier
transform for the Euclidean skew–plane is a function

(i/z)2+4νψ(ξ) exp(−πiz−1ξ−ξ)

of ξ in the Euclidean skew–plane for a harmonic polynomial ψ(ξ) of degree ν. If the
harmonic polynomial ϕ(ξ) is an eigenfunction of ∆(n) for the eigenvalue τ(n) for every
positive integer n, then the harmonic polynomial ψ(ξ) is an eigenfunction of ∆(n) for the
eigenvalue τ(n) for every positive integer n. If the harmonic polynomial ϕ(ξ) is primitive
for the given eigenvalues, then the polynomials ϕ(ξ) and ψ(ξ) are linearly dependent. The
identity

ψ(ξ) = σϕ(ξ)

holds for a real number σ of absolute value one.

The Poisson summation formula

(i/z)2+ν
∑

φ(ξ) exp(−πiz−1ξ−ξ) = σ
∑

φ(ξ) exp(πizξ−ξ)

holds with summation over the integral elements ξ of the algebraic skew–field when z is in
the upper half–plane. Since the identity

τ(n)n
1
2 νφ(1) =

∑
ϕ(ξ−ξ)

holds for every positive integer n with summation over the integral elements ξ of the
algebraic skew–field such that

n = ξ−ξ,

the Poisson summation formula reads

(i/z)2+ν
∑

θ6au(n)n
1
2 ν exp(−πinz−1) = σ

∑
τ(n)n

1
2 ν exp(πinz)

with summation over the positive integers n when z is in the upper half–plane.

The modular group is the set of matrices(
A B
C D

)
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with integer entries and determinant one. The signature for the modular group is a ho-
momorphism of the group into the fourth roots of unity whose action on the matrix is
written

sgn

(
A B
C D

)
.

The matrix (
1 1
0 1

)
has signature minus one. The matrix (

0 −1
1 0

)
has signature i. The identity

θ(z) = sgnν
(
A B
C D

)
1

(Cz +D)2+ν
θ

(
Az +B

Cz +D

)
holds for every element (

A B
C D

)
of the modular group when

θ(z) =
∑

τ(n)n
1
2 ν exp(πinz).

The zeta function
ζ(s) =

∑
n−

1
2 τ(n)n−s

is defined as a sum over the positive integers n in the half–plane Rs > 1. The zeta
function has an analytic extension as a function of s in the complex plane which satisfies
the functional identity

π−
1
2 ν−

1
2 +s−1Γ( 1

2ν + 1
2 + 1− s)ζ(1− s)

= σπ−
1
2 ν−

1
2−sΓ( 1

2ν + 1
2 + s)ζ(s).

The Euler product

ζ(s)−1 =
∏

(1− p− 1
2 τ(p)p−s),

taken over the primes p, converges in the half–plane Rs > 1.

The domain of the Laplace transformation of order ν and harmonic φ for the Euclidean
skew–plane is the space of functions f(ξ) of ξ in the Euclidean skew–plane which satisfy
the identity

φ(ξ)f(ξω) = φ(ξω)f(ξ)
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for every unit ω of the Euclidean skew–plane and which are square integrable with respect
to Haar measure for the Euclidean skew–plane. The Laplace transform of the function
f(ξ) of ξ in the Euclidean skew–plane is the analytic function

g(z) =

∫
φ(ξ)−f(ξ) exp(πizξ−ξ)dξ

of z in the upper half–plane defined by integration with respect to Haar measure for the
Euclidean skew–plane. When w is in the upper half–plane, the Laplace transform of the
function

φ(ξ) exp(−πiw−ξ−ξ)
of ξ in the upper half–plane is the function

π
‖φ‖2Γ(2 + ν)

(πiw− − πiz)2+ν

of z in the upper half–plane with the norm of the harmonic polynomial φ taken in the
Hilbert space of homogeneous polynomials of degree ν. An analytic function g(z) of z in
the upper half–plane is a Laplace transform of order ν and harmonic φ if, and only if, the
least upper bound

sup

∫ ∞
0

∫ +∞

−∞
|g(x+ iy)|2yνdxdy,

taken over all positive numbers y, is finite. The least upper bound is then equal to the
integral

(2π)−νΓ(1 + ν)‖φ‖2
∫
|f(ξ)|2dξ

with respect to Haar measure for the Euclidean skew–plane.

An isometric transformation of the range of the Laplace transformation onto itself is
defined by taking an analytic function g(z) of z in the upper half–plane into the analytic
function

(i/z)2+νg(−1/2)

of z in the upper half–plane. The Hankel transformation of order ν and harmonic φ for
the Euclidean skew–plane is an isometric transformation of the domain of the Laplace
transformation onto itself which takes a function f(ξ) of ξ in the Euclidean skew–plane
into a function g(ξ) of ξ in the Euclidean skew–plane when the identity∫

φ(ξ)−g(ξ) exp(πizξ−ξ)dξ

= (i/z)2+ν

∫
φ(ξ)−f(ξ) exp(−πiz−1ξ−ξ)dξ

holds for z in the upper half–plane with integration with respect to Haar measure for the
Euclidean plane. The identity ∫

|f(ξ)|2dξ =

∫
|g(ξ)|2dξ
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holds with integration with respect to Haar measure for the Euclidean skew–plane. The
function f(ξ) of ξ in the Euclidean skew–plane is the Hankel transform of order ν and
harmonic φ for the Euclidean skew–plane of the function g(ξ) of ξ in the Euclidean skew–
plane.

The Mellin transformation of order ν and harmonic φ for the Euclidean skew–plane is a
spectral theory for the Laplace transformation of order ν and harmonic φ for the Euclidean
skew–plane. The domain of the Mellin transformation of order ν and harmonic φ for the
Euclidean skew–plane is the space of functions which belong to the domain of the Laplace
transformation of order ν and harmonic φ for the Euclidean skew–plane and which vanish
in a neighborhood of the origin. The Laplace transform of a function f(ξ) of ξ in the
Euclidean skew–plane is an analytic function

g(z) =

∫
φ(ξ)−f(ξ) exp(πizξ−ξ)dξ

of z in the upper half–plane defined by integration with respect to Haar measure for the
Euclidean skew–plane. The Mellin transform of order ν and harmonic φ for the Euclidean
skew–plane of the function f(ξ) of ξ in the Euclidean skew–plane is the analytic function

F (z) =

∫ ∞
0

g(it)t
1
2 ν−izdt

of z in the upper half–plane. Since the function

W (z) = π−
1
2 ν−

1
2 +izΓ( 1

2ν + 1
2 − iz)

admits the integral representation

W (z) = (ξ−ξ)
1
2 ν+1−iz

∫ ∞
0

exp(−πtξ−ξ)t 1
2 ν−izdt

when z is in the upper half–plane, the identity

F (z)/W (z) =

∫
φ(ξ)−f(ξ)(ξ−ξ)iz−1− 1

2 νdξ

holds when z is in the upper half–plane with integration with respect to Haar measure for
the Euclidean skew–plane. If f(ξ) vanishes when

ξ−ξ < a

for some positive number a, then the least upper bound

sup

∫ +∞

−∞
ay|F (x+ iy)/W (x+ iy)|2dN
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taken over all positive numbers y is equal to the integral

2π2‖φ‖2
∫
|f(ξ)|2dξ

with respect to Haar measure for the Euclidean skew–plane.

The Radon transformation of order ν and harmonic φ for the Euclidean skew–plane is a
maximal dissipative transformation in the domain of the Laplace transformation of order
ν and harmonic φ for the Euclidean skew–plane. The transformation takes a function f(ξ)
of ξ in the Euclidean skew–plane into a function g(ξ) of ξ in the Euclidean skew–plane
when the identity

g(ξ) =

∫
f(ξ + η)|η|− 1

2 dη

holds formally with integration with respect to a normalization of Haar measure for the
space of elements η of the Euclidean skew–plane such that

η−ξ + ξ−η = 0.

Haar measure is normalized so that the set of elements η such that η−η < 1 has measure
4π/3. The integral is accepted as the definition when

f(ξ) = φ(ξ) exp(πizξ−ξ)

with z in the upper half–plane, in which case

g(ξ = (2i/z)f(ξ).

The adjoint of the Radon transformation of order ν and harmonic φ for the Euclidean
skew–plane takes a function f(ξ) of ξ in the Euclidean skew–plane into a function g(ξ) of
ξ in the Euclidean skew–plane when the identity∫

φ(ξ)−g(ξ) exp(πizξ−ξ)dξ

= (2i/z)

∫
φ(ξ)−f(ξ) exp(πizξ−ξ)dξ

holds when z is in the upper half–plane with integration with respect to Haar measure for
the Euclidean skew–plane.


