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Abstract. The Hahn–Banach theorem is formulated as a construction of invariant subspaces

for algebras of transformations of a complex vector space into itself when the transformations

are adjoints of transformations of a conjugate dual space into itself. A two–sided represen-
tation of the algebra is constructed when the vector space and its conjugate dual space are

completions of a vector space in duality with itself with a scalar product which is symmetric
and positive. The representation is assumed to admit a topology compatible with a convex

structure constructed from the representation. The Hahn–Banach theorem separates a con-

vex set from an open convex set by a linear functional with convex kernel. The construction
of invariant subspaces is applied to a problem of polynomial approximation underlying the

Riemann mapping theorem.

A Weierstrass algebra is an algebra of transformations of a complex vector space H into
itself whose adjoints are transformations of the conjugate dual space H∗ into itself. The
scalar product

〈a, b〉

of an element a of H and an element b of H∗ is a complex number which is a linear function
of a for fixed b and a conjugate linear function of b for fixed a. If b is an element of H∗, b−
is the linear functional on H defined by the scalar product

b−a = 〈a, b〉

for every element a of H. The origin is assumed to be the only element of H which is
annihilated by b− for every element b of H∗. The scalar product

〈b, a〉 = 〈a, b〉−

of an element b of H∗ and an element a of H is the conjugate of the scalar product of the
element a of H and the element b of H∗. If a is an element of H, a− is the linear functional
on H∗ defined by the scalar product

a−b = 〈b, a〉

for every element b of H∗. The origin is assumed to be the only element of H∗ which is
annihilated by a− for every element a of H.
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The weak topology of H induced by H∗ is the weakest topology with respect to which
b− is continuous for every element b of H∗. The adjoint of a continuous transformation T
of H into itself is the transformation T− of H∗ into itself defined by the identity

〈Ta, b〉 = 〈a, T−b〉

for every element a of H and every element b of H∗. The weak topology of H∗ induced by
H is the weakest topology with respect to which a− is continuous for every element a of
H. A transformation of H∗ into itself is weakly continuous if, and only if, it is the adjoint
of a weakly continuous transformation of H into itself. The adjoint of a weakly continuous
transformation S of H∗ into itself is the transformation S− of H into itself defined by the
identity

〈S−a, b〉 = 〈a, Sb〉

for every element a of H and every element b of H∗. A transformation of H into itself is
weakly continuous if, and only if, it is the adjoint of a weakly continuous transformation
of H∗ into itself. If T is a transformation of H into itself and if S is a transformation of
H∗ into itself, then

S = T−

is the adjoint of T if, and only if,
T = S−

is the adjoint of S.

If a is an element of H and if b is an element of H∗, a continuous transformation ab−

of H into itself is defined by
(ab−)c = a(b−c)

for every element c of H. The adjoint is the transformation ba− of H∗ into itself defined
by

(ba−)c = b(a−c)

for every element c of H∗. A continuous transformation of H into itself with finite–
dimensional range is a finite sum of transformations ab− with a in H and b in H∗. A
continuous transformation of H∗ into itself with finite–dimensional range is a finite sum
of transformations ba− with a in H and b in H∗. A continuous transformation of H into
itself has finite–dimensional range if, and only if, its adjoint is a continuous transformation
of H∗ into itself which has finite–dimensional range.

The trace of a continuous transformation T ofH into itself with finite–dimensional range
is a complex number

spur(T )

which is a linear function of T and which is equal to

b−a

when
T = ab−
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for an element a of H and an element b of H∗. The trace of a continuous transformation
S of H∗ into itself with finite–dimensional range is a complex number

spur(S)

which is a linear function of S and which is equal to

a−b

when
S = ba−

for an element a of H and an element b of H∗. The identity

spur(S) = spur(T )−

holds when
S = T

is the adjoint of a continuous transformation T of H into itself with finite–dimensional
range.

The compositions ST and TS of a continuous transformation S of H into itself with
finite–dimensional range and a continuous transformation T of H into itself are continuous
transformations of H into itself which have finite–dimensional range and which have equal
trace. The compositions ST and TS of a continuous transformation S ofH∗ into itself with
finite–dimensional range and a continuous transformation T ofH∗ into itself are continuous
transformations of H∗ into itself which have finite–dimensional range and which have equal
trace.

A continuous transformation T of H into itself vanishes identically if

spur(ST ) = 0

for every continuous transformation S of H into itself with finite–dimensional range. The
space of continuous transformations of H into itself with finite–dimensional range is con-
sidered in the weakest topology with respect to which

spur(ST ) = spur(TS)

is a continuous function of S in the space for every continuous transformation T of H
into itself. Addition is continuous as a transformation of the Cartesian product of the
space with itself into the space. Continuous transformations of the space into itself are
defined by taking S into ST and S into TS for every continuous transformation T of
H into itself. A continuous transformation of H into itself is said to be of trace class if
it belongs to the closure of the subspace of transformations of finite–dimensional range.
The compositions ST and TS of a trace–class transformation S of H into itself and a
continuous transformation T of H into itself are trace–class transformations of H into
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itself. The trace has a continuous extension to the trace class of transformations of H into
itself. The identity

spur(ST ) = spur(TS)

holds when S is a trace–class transformation of H into itself and T is a continuous trans-
formation of H into itself.

A continuous transformation T of H∗ into itself vanishes identically if

spur(ST ) = 0

for every continuous transformation S of H∗ into itself with finite–dimensional range.
The space of continuous transformations of H∗ into itself with finite–dimensional range is
considered in the weakest topology with respect to which

spur(ST ) = spur(TS)

is a continuous function of S in the space for every continuous transformation T of H∗
into itself. Addition is continuous as a transformation of the Cartesian product of the
space with itself into the space. Continuous transformations of the space into itself are
defined by taking S into ST and S into TS for every continuous transformation T of H∗
into itself. A continuous transformation of H∗ into itself is said to be of trace class if
it belongs to the closure of the subspace of transformations of finite–dimensional range.
The compositions ST and TS of a trace-class transformation S of H∗ into itself and a
continuous transformation T of H∗ into itself are trace–class transformations of H∗ into
itself. The trace has a continuous extension to the trace class of transformations of H∗
into itself. The identity

spur(ST ) = spur(TS)

holds when S is a trace–class transformation of H∗ into itself and T is a continuous
transformation of H∗ into itself.

A continuous transformation T of H∗ into itself is of trace class if, and only if, it is the
adjoint

T = S∗

of a continuous transformation S of H∗ into itself. The identity

spur(T ) = spur(S)−

is then satisfied.

Additional hypotheses are imposed for the definition of a Weierstrass algebra. The
intersection of H and H∗ is assumed to be a vector space on which the vector space
operations of H and H∗ agree. The intersection is then a vector space whose inclusion in
H and whose inclusion in H∗ are linear transformations. The intersection is assumed to
be a dense vector subspace of H and a dense vector subspace of H∗. The scalar product

〈a, b〉
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of a as an element of H and of b as an element of H∗ is assumed to be equal to the scalar
product of a as an element of H∗ and b as an element of H when a and b belong to the
intersection of H and H∗. The scalar self–product

〈c, c〉

is assumed to be nonnegative when c belongs to the intersection of H and H∗.
A Weierstrass algebra is an algebra of continuous linear transformations of H into

itself which contains the identity transformation and which is closed in the weak topology
induced by the trace–class transformations of H into itself. The algebra of adjoints of
transformations in the Weierstrass algebra is then an algebra of continuous transformations
of H∗ into itself which contains the identity transformation and which is closed in the weak
topology induced by the trace–class transformations of H∗ into itself. The transformations
in a Weierstrass algebra are assumed to take the intersection of H and H∗ into itself and
to have continuous extensions as transformations of H∗ into itself. The adjoints of the
transformations of a Weierstrass algebra are assumed to take the intersection of H and H∗
into itself and to have continuous extensions as transformations of H into itself.

A weakly continuous linear transformation T of H into itself is said to be nonnegative
with respect to the Weierstrass algebra if it belongs to the weak closure of finite sums
of transformations of the form c into ξcξ− for an element ξ of the Weierstrass algebra.
The adjoint of a nonnegative transformation is denoted by the same symbol. Sums and
products of nonnegative transformations are nonnegative. The inequality

S ≤ T

for weakly continuous linear transformations S and T means that

T − S

is a nonnegative transformation. Multiplication by a nonnegative real number is a non-
negative transformation which is identified with the number. The inequality

0 ≤ T

for a weakly continuous linear transformation T means that T is a nonnegative transfor-
mation. A nonnegative transformation T is said to be positive if the inequality

ε ≤ T

holds for a positive number ε. The inequality

S < T

for weakly continuous transformations S and T means that the transformation T − S is
positive.
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Properties of positive transformations are required as hypotheses for the preparation
and proof of the Hahn–Banach theorem as well as its applications.

A positive transformation T is assumed to have an inverse, which is a nonnegative
transformation satisfying the inequality

T−1 ≤ 1

when T satisfies the inequality

1 ≤ T.

If P and Q are positive transformations, the transformation

(1− T )P + TQ

is then positive whenever T is a nonnegative transformation such that 1−T is nonnegative.

A convex combination

(1− T )a+ Tb

of elements a and b of the representation space is defined by a nonnegative transformation
T such that 1−T is nonnegative. A subset of the representation space is said to be convex
if it contains the convex combinations of every pair of elements.

A Hausdorff topology for the representation space of a Weierstrass algebra is said to be
locally convex if addition is continuous as a transformation of the Cartesian product of the
space with itself into the space and if every open set has an absorption property: Whenever
a is an element of the set and b is an element of the space, a positive transformation T
exists such that 1− T is nonnegative and such that the convex combination

(1− T )a+ Tb

belongs to the space.

The Cartesian product of the Weierstrass algebra with itself is assumed to have a topol-
ogy which is locally convex when the Cartesian product is treated as a representation space
over the algebra. The transformation of the Cartesian product of the algebra with itself
into the representation space which takes a pair of elements ξ and η of the algebra into the
element ξcη− of the representation space is assumed to be continuous for every element
c of the representation space. A nonnegative transformation T of the algebra into itself
determines a nonnegative transformation, also denoted T1 of the representation space into
itself. If an element ξ of the algebra exists such that T takes a into ξaξ− for every element
a of the algebra, then T takes b into ξbξ− for every element b of the representation space.

If a locally convex topology of a representation space of a Weierstrass algebra is given,
then a related locally convex topology is constructed using the concept of a hyperdisk. A
nonempty convex subset of the space is said to be a disk if it is disjoint from the closure
of every disjoint convex set.
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If A is a disk and if B is a convex set, then the intersection of A with the closure of B is
contained in the closure of the intersection of A with B. For an element of A which does
not belong to the closure of the intersection of A with B belongs to a convex open set C
whose intersection with A is disjoint from C. Since the intersection of B with C is a convex
set which is disjoint from A, the disk A is disjoint from the closure of the intersection of
B with C. Since C is an open set, the intersection of C with the closure of B is contained
in the closure of the intersection of B with C. It follows that the intersection of A with C
is disjoint from the closure of B.

The intersection of disks A and B is a disk if it is nonempty. For the intersection of A
and B is a convex set. If a convex set C is disjoint from the intersection of A and B, then
the intersection of B and C is a convex set which is disjoint from A. Since A is a disk, A is
disjoint from the closure of the intersection of B and C. Since B is a disk, the intersection
of B with the closure of C is contained in the closure of the intersection of B with C. It
follows that the intersection of A and B is disjoint from the closure of C.

The disk topology of a locally convex space is the locally convex topology whose open
sets are the unions of disks. The disk topology has the same closed convex sets as the
given topology. Since every nonempty convex set which is open for the given topology is a
disk, every convex set which is closed for the given topology is closed for the disk topology.
If a convex set B is closed for the disk topology, then an element of the space which does
not belong to B belongs to a disk A which is disjoint from B. Since A is disjoint from the
closure of B, an element of the space which does not belong to B does not belong to the
closure of B. The nonnegative transformations for the disk topology are identical with the
nonnegative transformations for the given locally convex topology.

The closure of a convex set B with respect to a locally convex topology is convex. For
if u and v are elements of the closure of B and if A is a convex open set containing the
origin, then elements a and b of B exist such that u−a and v− b belong to A. An element
of the convex span of u and v is a convex combination

(1− T )u+ Tv

with T a nonnegative transformation such that 1 − T is nonnegative. Since B is convex,
the convex combination

(1− T )a+ Tb

belongs to B. Since A is convex, the difference

[(1− T )u+ Tv]− [(1− T )a+ Tb] = (1− T )(u− a) + T (v − b)

belongs to A.

If B is a nonempty convex set and if s is an element of the locally convex space which
does not belong to B, then a convex set B(s) is constructed so that B is contained in B(s)
and so that s belongs to the closure of B(s). The set B(s) is the set of convex combinations

(1− T )s+ Tc
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with c an element of B and T a positive transformation such that 1 − T is nonnegative.
Every convex open set which contains s contains an element of B(s) by the definition of a
locally convex topology. It is sufficient by a translation to verify convexity of B(s) when
s is the origin. A convex combination

(1− T )Pa+ TQb

of elements Pa and Qb of B(s) is constructed from elements a and b of B with T a
nonnegative transformation such that 1 − T is nonnegative and with P and Q positive
transformations such that 1− P and 1−Q are nonnegative. Then

R = (1− T )P + TQ

is a nonnegative transformation such that

1− P = (1− T )(1− P ) + T (1−Q)

is nonnegative. Since P and Q are positive, R is positive. A nonnegative transformation
S such that 1− S is nonnegative is obtained as a solution of the equations

RS = TQ

and

R(1− S) = (1− T )P.

Since the set B is convex,

c = (1− S)a+ Sb

is an element of B. The convex combination

(1− T )Pa+ TQb = Rc

of elements Pa and Qb of the set B(s) is then an element Rc of the set B(s).

The Hahn–Banach theorem is a construction of continuous linear functionals with con-
vex kernel.

Theorem 1. If a disk A of a locally convex space H is disjoint from a convex subset B
of the space, then an element b of the dual space H∗ exists such that the kernel of b− is
convex and such that b− maps A and B into disjoint subsets of the real line.

Proof of Theorem 1. It can be assumed that the set B is nonempty. A maximal convex set
which contains B and is disjoint from A exists by the Zorn lemma. It is sufficient to give
a proof of the theorem with B is a maximal convex set which is disjoint from A. Since the
closure of B is convex and is disjoint from A, B is a closed convex set. It will be shown
that the complement of B is convex.
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If u belongs to the complement of B, a convex set B(u) is constructed as the set of
convex combinations

(1− P )u+ Pa

of u and elements a of B with P a positive transformation such that 1 − P is positive.
Since the closure of B(u) contains u and every element of B, the element of B(u) can be
chosen in A.

If v belongs to the complement of B, a convex set B(v) is obtained as the set of convex
combinations

(1−Q)v +Qb

of v and elements b of B with Q a positive transformation such that 1 − Q is positive.
Since the closure of B(v) contains v and every element of B, the element of B(v) can be
chosen in A.

A convex combination
(1− V )u+ V v

of u and v is defined using a nonnegative transformation V such that 1−V is nonnegative.
Since the transformation

(1− P )V + (1−Q)(1− V )

is positive, a nonnegative transformation T such that 1 − T is nonnegative exists which
satisfies the equation

T (1−Q)(1− V ) = (1− T )(1− P )V.

The transformations
R = (1− T )P + TQ

and
1−R = (1− T )(1− P ) + T (1−Q)

are positive. A nonnegative transformation U such that 1−U is nonnegative exists which
satisfies the identities

R(1− U) = (1− T )P

and
RU = TQ.

The identities
(1−R)(1− V ) = (1− T )(1− P )

and
(1−R)V = T (1−Q)

are satisfied. Since the identity

(1− T )[(1− P )u+ Pa] + T [(1−Q)u+Qb]

= (1−R)[(1− V )u+ V v] +R[(1− U)a+ Ub]
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is satisfied, the convex combination of elements

(1− P )u+ Pa

and
(1−Q)v +Qb

of elements of A is an element of A which is a convex combination of

(1− V )u+ V v

and the element
(1− U)a+ Ub

of B.

This completes the proof that the complement of B is convex. Since the convex set B
is closed, the complement of B is open. A continuous linear functional exists which maps
B and its complement into disjoint convex subsets of the real line and which has convex
kernel. The linear functional is represented by an element of H∗.

This completes the proof of the theorem.

A locally convex space admits a strongest locally convex topology. A convex set is open
for the strongest locally convex topology if for every element a of the set and for every
element b of the space, a convex combination

(1− T )a+ Tb

belongs to the set with T a positive transformation such that 1− T is nonnegative.

A characterization of disks is an application of the proof of the Hahn–Banach theorem.
A nonempty convex set, which is open for the strongest locally convex topology, is a disk
if, and only if, every linear functional with convex kernel which maps the set into a proper
subset of the real line is continuous.

The dual space of the representation space of a Weierstrass algebra is assumed to be
the vector span of the elements of the space which define linear functionals with convex
kernel. Every weakly open set is then a union of weakly open convex sets. If a is an
element of a weakly open set and if b is an element of the representation space, then the
convex combination

(1− T )a+ Tb

belongs to the set for some positive transformation T such that 1− T is nonnegative. The
representation space is locally convex in its weak topology.

A center for a subset of a locally convex space, or of its dual space, is an element a of
the set such that

(1− T )b+ T (2a− b)
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belongs to the set whenever b belongs to the set and T is a nonnegative transformation
such that 1−T is nonnegative. A set is said to be centered at an element a if a is a center
of the set.

A disk which is centered at the origin of a locally convex space is determined by a
centered weakly compact set of elements of the dual space which define linear functionals
with convex kernel.

Theorem 2. If a disk A of a locally convex space H is centered at the origin, then the set
B of elements b of the dual space H∗ such that b− maps A into the interval (−1, 1) and
such that the kernel of b− is convex is a weakly compact set which is centered at the origin
and which contains every element of its convex span which represents a linear functional
with convex kernel. The set A is the set of elements a of H such that a− maps B into the
interval (−1, 1).

Proof of Theorem 2. The set B is centered at the origin and contains every element of its
convex span which represents a linear functional with convex kernel. If c is an element of
H, a positive transformation T exists such that 1− T is nonnegative and such that

a = Tc

belongs to A. If an element b of H∗ represents a linear functional with convex kernel, the
action of b− on the convex span of c and −c is determined by the action of b− on the
convex span of a and −a. Since the interval [−1, 1] is a compact Hausdorff space I, the
set IA of all functions defined on A with values in I is a compact Hausdorff space in the
Cartesian product topology. An element b of H∗, which represents a linear functional with
convex kernel, belongs to B if, and only if, the restriction of b− to A belongs to IA. Since
A is a disk, these elements of B determine a closed subset of IA. Since IA is compact and
since the mapping of B into IA is a homeomorphism for the weak topology, the set B is
weakly compact.

If an element a of H belongs to A, a− maps B into the interval (−1, 1). It will be shown
that a− does not map B into the interval (−1, 1) when an element a of H does not belong
to A. An element b of H∗ exists by the Hahn–Banach theorem such that the kernel of b− is
convex and such that b−a does not belong to the image of A under b−. Since A is centered
at the origin, the image of A is a convex open subset of the real line which is centered at
the origin. Since b−a does not belong to the set, the choice of b can be made so that b−

maps A into the interval (−1, 1) and does not a into the interval. Then b is an element of
B such that a− does not b into the interval (−1, 1).

This completes the proof of the theorem.

A construction of disks of a locally convex space is made from weakly compact sets of
elements of the dual space which represent linear functionals with convex kernel.

Theorem 3. if a weakly compact subset B of the dual space H∗ of a locally convex space
is centered at the origin and contains every element of its convex span which represents a
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linear functional with convex kernel, then the set A of elements a of H such that a− maps
B into the interval (−1, 1) is a disk which is centered at the origin. The set B is the set
of elements b of H∗ such that b− has convex kernel and maps A into the interval (−1, 1).

Proof of Theorem 3. It will first be shown that B is the set of elements b of H∗ such that
b− has convex kernel and maps A into the interval (−1, 1). It is sufficient to make the
verification when the Weierstrass algebra is the field of real numbers, in which case H∗ is
treated as a locally convex space with H as dual space. An element b of H∗ which does
not belong to B belongs to a weakly open convex set which is disjoint from B. An element
a of H exists by the Hahn–Banach theorem such that a− maps B into a set which does
not contain the image of b. Since B is a weakly compact convex set which is centered at
the origin, the element a of H can be chosen in A such that a−b does not belong to the
interval (−1, 1). Then b− does not map A into the interval (−1, 1).

It remains to show that the set A, which is convex and centered at the origin, is a
disk. A proof is first given when the space H is considered in its strongest locally convex
topology. If a is an element of A and if c is an element of H, a positive number t exists
such that 1− t is nonnegative and such that

(1− t)a+ tc

belongs to A. The construction of t is an application of the weak compactness of B. A
positive number κ exists such that c− maps B into the interval (−κ, κ). Since a− maps
B into the interval (ε− 1, 1− ε) for some positive number ε, it is sufficient to choose t so
that the inequality

tκ < ε

is satisfied.

The set A is shown to be a disk for the given locally convex topology by showing that
an element b of the dual space of H for the strongest locally convex topology belongs to
H∗ if b− has convex kernel and maps A into a proper subset of the real line. Since A is
centered at the origin, it can be assumed that b− maps A into the interval (−1, 1). The
desired conclusion holds since b belongs to B.

This completes the proof of the theorem.

The completion of a locally convex space H in its disk topology is a locally convex space
H∧ over the same Weierstrass algebra. The dual space of the completion coincides as a set
with the dual space H∗ ofH. The inclusion ofH∗ in itself is continuous as a transformation
from the weak topology induced by H∧ into the weak topology induced by H. If B is a set
of elements of H∗ which represent linear functionals with convex kernel, if B is centered at
the origin, and if B contains every element of its convex span with convex kernel, then B
is compact in the weak topology induced by H∧ if, and only if, B is compact in the weak
topology induced by H. If a disk A of H is centered at the origin, then the closure of A in
H∧ contains a disk A∧ of H∧ which is centered at the origin and whose intersection with
H is A. A linear functional on H∗ is represented by an element of H∧ if, and only if, it is
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weakly continuous on every weakly compact subset of H∗ which is centered at the origin,
whose elements represent linear functionals with convex kernel, and which contains every
element of its convex span representing a linear functional with convex kernel.

A subset of the dual space H∗ of a locally convex space H is said to be bounded if its
image under a− is a bounded set of real numbers for every element a of H. Boundedness
is applied to subsets of H∗ whose elements represent linear functionals with convex kernel
and which contain every element of their convex span representing a linear functional
with convex kernel. The set is bounded if, and only if, its closure in the dual space of H
for the strongest locally convex topology is weakly compact. Weak compactness of such
bounded sets is a hypothesis in the closed graph theorem. An equivalent hypothesis is that
a nonempty convex subset of H is a disk whenever the set is open for the strongest locally
convex topology and its closure is equal to its closure for the strongest locally convex
topology.

The Krein-Šmulyan property is another hypothesis in the closed graph theorem. The
Krein-Šmulyan property states that certain subsets of the dual space of a locally convex
space are weakly closed. A set tested consists of elements of the dual space which rep-
resent linear functionals with convex kernel and contains the elements of its convex span
which represent linear functionals with convex kernel. The Krein-Šmulyan property is the
assertion that a test set is weakly closed if its intersection with every weakly compact test
set is weakly compact.

A locally convex space has the Krein–Milman property if a countable basis exists for
the neighborhoods of the origin in the disk topology. For then weakly compact test sets
Cn exist such that Cn is contained in Cn+1 for every positive integer n and such that every
weakly compact test set is contained in some set Cn. A test set B is to be shown weakly
closed if its intersection with every set Cn is weakly compact. It needs to be shown that an
element of the dual space does not belong to B if for every positive integer n the element
does not belong to the intersection of B with Cn. It can by a translation be assumed that
the element is the origin. The sets Cn can be assumed centered at the origin. Since the
origin does not belong to the intersection of B with Cn, a weakly open set Un exists which
contains the origin and is disjoint from the intersection of Bwith Cn. The sets Un are
constructed inductively so that the intersection of Un with Bn is contained in Un+1. A
weakly open set U then exists which is disjoint from C and which contains the intersection
of Un with Bn for every n.

The construction of the sets Un is an application of the Hahn–Banach theorem to the
dual space H∗ treated as a locally convex space with dual space H. The Weierstrass
algebra is then the real numbers. The weakly closed convex space of each set Cn is weakly
compact. The origin does not belong to the intersection of the weakly closed convex span
of B and the weakly closed convex span of Cn. The set Un is constructed as a weakly open
convex set such that the intersection of the weak closure of Un with the weakly closed
convex span of Cn is disjoint from the weakly closed convex span of B.

The continuity of a linear transformation T of a locally convex space P into a locally
convex space Q implies continuity in weak and disk topologies when T maps convex sets
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into convex sets and when the inverse image of every convex set is convex. The locally
convex space are assumed to be defined over the same Weierstrass algebra. The adjoint
transformation T ∗ takes an element a of the dual space Q∗ of Q into an element b of the
dual space P∗ of P when the identity

〈c, b〉 = 〈Tc, a〉

holds for every element c of P. Continuity of T implies that the domain of T ∗ contains
every element of Q∗. Since the inverse image of every convex subset of Q is a convex subset
of P, the adjoint transformation T ∗ maps every element of Q∗ which represents a linear
functional with convex kernel into an element of P∗ which represents a linear functional
with convex kernel. The transformation T is continuous from the weak topology of P into
the weak topology of Q. It follows that the transformation is continuous from the disk
topology of P into the disk topology of Q. For if A is a disk of Q, the inverse image of A
in P is convex. If a convex subset B of P is disjoint from the inverse image of A, then the
image of B in Q is a convex set which is disjoint from A. Since A is a disk, the closure
of the image of B in Q is a convex set C which is disjoint from A. Since T is continuous
from the weak topology of P into the weak topology of Q, the inverse image of C in P is
a closed convex set. Since B is contained in the inverse image of C and since the inverse
image of C is disjoint from the inverse image of A, the closure of B is disjoint from the
inverse image of A. This completes the verification that the inverse image of A is a disk.

The closed graph theorem concludes that a linear transformation of a locally convex
space into a locally convex space is continuous if it has a closed graph and if the spaces
and the transformation are well–related to convexity.

Theorem 4. A linear transformation T of a locally convex space P into a locally convex
space Q over the same Weierstrass algebra is continuous from the disk topology of P into
the disk topology of Q if the graph of the transformation is closed in the Cartesian product
of the weak topology of P and the weak topology of Q and if three hypotheses are satisfied:

1) The transformation maps convex sets into convex sets and the inverse image of every
convex set is convex. 2) A nonempty convex subset of P is a disk whenever it is open for
the strongest locally convex topology and its closure is equal to its closure for the strongest
locally convex topology. 3) The space Q has the Krein–Šmulyan property.

Proof of Theorem 4. Continuity of T is proved by showing that the domain of T ∗ is Q∗.
The adjoint has a closed graph in the Cartesian product of the weak topology of Q∗ and
the weak topology of P∗. The adjoint is a transformation since the domain of T is P.
Since T has a closed graph in the Cartesian product of the weak topology of P and the
weak topology of Q, T is the adjoint of T ∗. Since T is a transformation the domain of T ∗

is dense in Q∗. The proof of the theorem is completed by showing that the domain of T ∗

is weakly closed in Q∗.
The domain of T ∗ is the convex span of elements which represent linear functionals with

convex kernel. Since the space Q has the Krein–Šmulyan property, it is sufficient to show
that the domain of T ∗ has a weakly compact intersection with every weakly compact set A
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whose elements represent linear functionals with convex kernel and which contains every
element of its convex span representing a linear functional with convex kernel. The image
of A in P∗ consists of elements which represent linear functionals with convex kernel. The
set contains every element of its convex span which represents a linear functional with
convex kernel. The set is bounded since the identity

〈c, T ∗a〉 = 〈Tc, a〉

holds for every element a of A when c is in P. Since the closure B of the image of A
is weakly compact by hypothesis, the Cartesian product of A and B is a compact subset
of the Cartesian product of Q∗ and P∗. Since the graph of T ∗ is a closed subset of the
Cartesian product, it has a compact intersection with the Cartesian product of A and B.
It follows that the intersection of A with the domain of T ∗ is weakly compact.

This completes the proof of the theorem.

An example of a Weierstrass algebra is the set C(S) of all continuous real valued functions
on a Hausdorff space S. The space S is considered with the weakest topology with respect
to which every element of C(S) is continuous. The topology of pointwise convergence on S
is a locally convex topology of C(S) when C(S) is treated as a representation space of itself
as Weierstrass algebra. The space S is a subspace of an essentially unique Hausdorff space
S∧ such that every function f(s) of s in S admits a continuous extension as a function
f(s) of s in S∧ and such that every homomorphism of C(S) onto the real numbers is of
the form f into f(s) for a unique element s of S∧. The space S∧ is considered with the
weakest topology with respect to which every element f of C(S) is continuous as a function
f(s) of s in S∧. The topology of pointwise convergence on S∧ is a locally convex topology
of C(S). The determination of the Hausforff completion S∧ of S and of the locally convex
topologies of the equal spaces C(S) and C(S∧) is a fundamental problem of analysis.

The Weierstrass algebra C(S) is determined within an isomorphism by the cardinality
of S when S is a discrete space. If a cardinality of S exists such that S∧ is not equal to
S, then there is a least such cardinality. The Hausdorff completion of a discrete space is
itself when the cardinality of the space is sufficiently small.

A determination of the locally convex topologies of a Weierstrass algebra C(S) is due to
Shirota [6] when S is due to Shirota [6] when S is a complete uniform space whose discrete
subsets have sufficiently small cardinalities.

Theorem 6. The strongest locally convex topology of the Weierstrass algebra C(S) is the
topology of uniform convergence on compact subsets of S when S is a complete uniform
space whose discrete subsets are Hausdorff complete.

Proof of Theorem 11. A defining pseudo–metric for the uniform space is a function ρ(a, b)
of elements a and b of the space with nonnegative values which satisfies the identity

ρ(a, b) = ρ(b, a)
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for all elements a and b of the space and which satisfies the inequality

ρ(a, c) ≤ ρ(a, b) + ρ(b, c)

for all elements a, b, and c of the space. Continuity of a function f(s) of s in S means that
for every element a of S and every positive number ε a defining pseudo–metric ρ exists
such that the inequality

|f(a)− f(b)| < ε

holds whenever the inequality
ρ(a, b) < 1

is satisfied. The space of all continuous functions on a uniform space S forms a Weierstrass
algebra C(S). The space S is a subspace of a Hausdorff space S∧ such that every continuous
function f(s) of s in S has a unique continuous extension as a function f(s) of s in S∧ and
such that every homomorphism of the Weierstrass algebra C(S) onto the complex numbers
is of the form f into f(s) for a unique element s of S∧. It will be shown that every defining
pseudo–metric ρ(a, b) of a and b in S admits an extension as a pseudo–metric ρ(a, b) of a
and b in S∧ such that every element of the Weierstrass algebra C(S) is continuous on the
resulting uniform space S∧ and such that S is dense in S∧. It is sufficient to show that
for every defining pseudo–metric ρ and for every element s of S∧ an element a of S exists
such that the inequality

ρ(a, s) < 1

is satisfied.

A well–ordering of the space S is assumed for the construction of functions from a given
pseudo–metric ρ. An element b of the space is said to be generated by an element a of the
space if a is the least element of the space which satisfies the inequality

ρ(a, b) < 1.

The inequality
ρ(a, b) ≤ 1− 2−n

then holds when n is sufficiently large. The inequality

ρ(a′, b) ≥ 1

holds when a′ is less than a. If an element s of the space satisfies the inequality

ρ(b, s) < 2−n−1,

then the inequality
ρ(a, s) < 1− 2−n−1

is satisfied and the inequality
ρ(a′, s) > 1− 2−n−1
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holds when a′ is less than a. A function

δn(a, s′) = inf ρ(s, s′)

of s′ is defined as a greatest lower bound taken over the elements s such that either the
inequality

ρ(a, s) < 1− 2−n−1

is violated or the inequality

ρ(a′, s) > 1− 2−n−1

is violated for some element a′ less than a. The inequality

δn(a, b) ≥ 2−n−1

then holds when b is generated by a and the inequality

ρ(a, b) ≤ 1− 2−n

is satisfied. When a and a′ are distinct generators, the set of elements s such that δn(a, s)
is positive is disjoint from the set of elements s such that δn(a′, s) is positive.

For every positive integer n the sum∑
δn(a, s)

taken over all generators a is a continuous function of s in S which has a unique continuous
extension as a function of s in S∧. The sum has a positive limit in the limit of large n for
every element s of S∧. If k(a) is a function of generators a, then the sum∑

k(a)δn(a, s)

taken over all generators a is a continuous function of s in S which has a unique con-
tinuous extension as a function of s in S∧. The Weierstrass algebra of all functions on
the discrete space of generators admits a unique locally hyperconvex topology. Since the
taking of function values at an element s of S∧ is a hyperlinear functional on the algebra,
it determines a generator a such that

δn(a, s) > 0

and hence such that

ρ(a, s) < 1.

This completes the proof of the theorem.
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