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An application of applied mathematics is proposed for the solution of a problem in pure
mathematics. The Riemann hypothesis has acquired a reputation as the most important
unsolved problem in mathematics. A proof of the conjecture has not only an intrinsic
value, which can only be properly estimated by specialists, but also a value as a means
of communication between the mathematical community and a general public. Since this
relationship is essential to funding, serious proposals for a solution of the problem are
deserving of serious attention. The solid foundation in applied mathematics for the present
proposal removes it from the category of the many unsound proposals for a solution of the
problem. There are fifty years of research behind the present work.

The analysis of spectra is so pervasive in association with the Riemann hypothesis as
to defy identification of its source. Spectral analysis of periodic motion in astronomy was
applied by Legendre and later by Gauss to the distribution of prime numbers treated
as random motion. These contributions were made at the beginning of the nineteenth
century or before. The first systematic treatment was made toward the end of the century
by Hermite and Stieltjes, who treat zeros of polynomials and their generalization after the
conjecture of Riemann in the middle of the century. Spectral analysis is essentially the
study of invariant subspaces of transformations.

At the end of the nineteenth century Stieltjes axiomatized integration as it applies to
polynomials treated as functions of a real variable. A polynomial is seen to be nonnegative
if it has nonnegative values on the real line. An integral is characterized as a linear
functional on polynomials which has nonnegative values on nonnegative polynomials. An
integral is shown to be computed as a Stieltjes integral with respect to some nondecreasing
function of a real variable.

At the beginning of the twentieth century Hilbert adapted Stieltjes integration to an
abstract context. A Hilbert space is a complex vector space which is complete in the
uniform topology defined by a nonnegative quadratic form. A linear transformation with
domain and range in a Hilbert space is defined as nonnegative if an element of the domain
always has a nonnegative scalar product with the corresponding element of the range.
Such a transformation is continuous if it is everywhere defined. A sufficient condition
for spectral analysis is that the transformation be maximal: No proper linear extension
exists which maintains positivity. The existence of invariant subspaces is shown for max-
imal nonnegative transformations. The transformation is a Stieltjes integral of invariant
subspaces.
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An elementary but essential step in adapting the Hilbert spectral theory to the Riemann
hypothesis is to return to the context in which Stieltjes was working before by his death
from tuberculosis. The axiomatization in 1959 of the required Hilbert spaces of entire
functions marks the beginning of the present project on the Riemann hypothesis.

Hilbert spaces are introduced whose elements are entire functions and which have these
properties:

(H1) Whenever an entire function F'(z) of z belongs to the space and has a nonreal zero
w the entire function

F(z)(z—w™)/(z — w)
of z belongs to the space and has the same norm as F(z).

(H2) A continuous linear functional on the space is defined for every nonreal number w
by taking an entire function F'(z) of z into its value F(w) at w.

(H3) Whenever an entire function F(z) of z belongs to the space, the conjugate entire

function
F*(z)=F(z )"

of z belongs to the space and has the same norm as F(z).

A Hilbert space ‘H whose elements are entire functions, which satisfies the axioms (H1),
(H2), and (H3), and which contains a nonzero element, has an elementary structure which
was discovered by Stieltjes for spaces of finite dimension whose elements are polynomials.
The space is determined by an entire function F(z) of z which has no zeros above the real

axis since the inequality
|E(x —iy)| < [E(z +iy)|

holds for all real « when y is positive. The elements of the space are the entire functions
F(z) of z which are smaller than E(z) in the sense that the inequality

(2)]* — BT
21i(z— — z)

E
F(2)? < ||F||?
holds for all complex z where the integral

+oo
|72 = / P/ E(0)2dt

—00
converges.

Formulated as dynamics the structure of a Stieltjes space of polynomials is a vibrating
string fastened at a finite number of points. The project on the Riemann hypothesis con-
tinues by showing that every Hilbert space of entire functions which satisfies the axioms
has the structure of a vibrating string. The string satisfies constraints which permit analy-
sis by entire functions instead of the more general Hilbert spectral theory. The formulation
is advantageous for the Riemann hypothesis since spectral analysis is treated by the in-
verse problem: The generating differential operator is reconstructed from a knowledge of
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its spectral properties. The results are new since the inverse problem is shown to have a
unique solution.

The treatment is interesting because of an example in which there is a computation of
string structure. The resulting Hilbert space of entire functions satisfying the axioms is
defined by an entire function F(z) of z which has a zero—free half-plane larger than the
upper half-plane. The zeros of the function lie on a horizontal line at distance one—half
below the real axis. The relevance to the classical zeta function lies in its relationship to the
Euler gamma function, a predecessor of the zeta function which appears in the functional
identity discovered by Euler for the zeta function. The example applies the hypergeometric
series, discovered by Euler and applied in his proof of the functional identity.

Publication of these results in 1965 completes preliminaries to research on the Riemann
hypothesis. A search begins for other Hilbert spaces of entire functions whose defining func-
tions have the pattern of zeros expected in the Riemann hypothesis. Examples collected
over twenty years prepare an axiomatic treatment of spaces having the desired properties.

A linear transformation with domain and range in a Hilbert space is defined as dissipa-
tive if the real part of the scalar product of an element of the domain with a corresponding
element of the range is always nonnegative. Such a transformation is continuous if it is ev-
erywhere defined. Effectiveness of the dissipative property requires that the transformation
be maximal dissipative: No proper linear extension exists which maintains nonnegativity
of the real part of the scalar product of an element of the domain with the corresponding
element of the range.

A generalization of the Riemann hypothesis which applies to Hilbert spaces of entire
functions satisfying the axioms (H1), (H2), and (H3) is the existence of a maximal dissipa-
tive transformation whose domain and range are contained in the space. The transforma-
tion takes an entire function F'(z) into an entire function F'(z + i) whenever the functions

of z belong to the space.

The Riemann hypothesis for Hilbert spaces of entire functions is a generalization of the
Riemann hypothesis in the sense of imposing a constraint on zeros of the defining entire
function E(z): The function has no pair of distinct zeros A~ and A — i. The hypothesis
implies that the zeros of F(z) lie on the line

1z —i1z=-—1

if the functions E*(z) and E(z + i) are linearly dependent.

The Riemann hypothesis for Hilbert spaces of entire functions is not a conjecture to
be verified but a hypothesis in a theorem whose elementary proof removes all possible
doubt about its validity. The theorem supplies a procedure for verification of an expected
pattern of zeros in a function whose resemblance to the classical zeta function creates
such expectations. The theorem was published in 1986 as a research announcement in the
Bulletin of the American Mathematical Society.

A symposium on Fourier analysis was held at Cornell University in the summer 1956
to which Arne Beurling was an invited speaker. He posed a problem in complex analysis
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which was taken as the topic of the thesis in preparation for the Riemann hypothesis. Its
publication in 1958 was followed by a postdoctoral position at the Institute for Advanced
Study and an invitation to the International Symposium on Functional Analysis held at
Stanford University in the summer 1961. In his invited address Paul Malliavin presented
joint work with Beurling on the problem which is the topic of the 1956 lecture and the
thesis. The theorem of Beurling and Malliavin is a preliminary to the Riemann hypothesis
for Hilbert spaces of entire functions.

The Hardy space for the upper half plane is the Hilbert space of functions F'(z) of z,
analytic in the upper half—plane, such that the integrals

+o0o
| PP

— 0

are bounded functions of positive y. The least upper bound

+ oo + oo
/ F(a:)|2da::inf/ \F(z +iy)|*dx

— 00 — 0

is attained in the limit as y decreases to zero as the integral of a boundary value func-
tion F'(z) of = defined almost everywhere on the real axis. An element of the space is
characterized as a Fourier transform

F(z) = /000 exp(2mizt) f(t)dt

of a square integrable function f(¢) of real ¢ which vanishes for negative arguments. The

identity
—+ oo [e'e)
| p@pde= [ inopa
0

— 00
states the isometric property of the Fourier transformation. Norbert Wiener treated the

real variable t as time and applied the Hardy space in a prediction theory for future events
applying data from past times.

A generalization of Fourier analysis arises when functions which do not have representa-
tions as Fourier integrals have a meaningful action on Fourier transforms according to the
Wiener operational calculus. Hilbert spaces of functions analytic in the upper half-plane
appear which generalize the classical Hardy space. The spaces are defined by functions
which are analytic and without zeros in the upper half plane. The defining functions
are typically too large to be represented as Fourier transforms. Wiener created a Fourier
analysis of unbounded functions.

Notation is required for precision. An analytic weight function is a function which is
analytic and without zeros in the upper half plane. The weighted Hardy space F(W)
defined by an analytic weight function W(z) is the set of function F(z) of z which are
analytic in the upper half—plane, such that the integrals

/+oo |F(z + iy) /W (z + iy)|*dx

— 00
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are bounded functions of positive y. Multiplication by W (z) acts as an isometric transfor-
mation of the classical Hardy space onto the weighted Hardy space.

An analytic weight function acts as a symbol in the Wiener operational calculus. The
properties of the function are reflected in properties of the associated space of functions.
The relationship between space and defining function is an essential feature in the Riemann
hypothesis for Hilbert spaces of entire functions.

Prediction requires a good relationship between past and future. Time reversal inter-
changing past into future is represented by the conjugation which takes a function F(z) of
z into the function

F*(z)=F(z7)".

Nontrivial functions F(z) are needed such that the functions F'(z) and F*(z) of z both
belong to the weighted Hardy space. Such functions must be defined and analytic in
the upper and lower half-planes. Consistency of boundary value functions on the real
axis implies that the functions are analytic in the complex plane. Prediction requires the
existence of nontrivial entire functions F(z) of z such that the restrictions to the upper
half plane of the functions F'(z) and F*(z) of z belong to the weighted Hardy space.

When conditions on the weight function W(z) due to Norman Levinson are satisfied,
the set of entire functions F'(z) such that the functions F'(z) and F*(z) of z belong to the
space F(W) is a Hilbert space of entire functions which satisfies the axioms (H1), (H2),
and (H3) in the scalar product of the space F(W).

Beurling and Malliavin give conditions on the weight function W(z) for the existence
of a nontrivial entire function F'(z) such that the functions F'(z) and F*(z) of z belong to
the space F(W).

The Riemann hypothesis for Hilbert spaces of entire functions admits a formulation as
a condition on analytic weight functions. Since these weight functions are generalizations
of the weight function
W(z) =T(3 — i2)
associated with the Euler gamma function, they are called Euler weight functions.

An analytic weight function W (z) is said to be an Euler weight function if for every
h in the interval [0, 1] a maximal dissipative transformation in the weighted Hardy space
F (W) is defined by taking F(z) into F(z + ih) whenever the functions of z belong to the
space. The function W (z) of z then admits an extension to the half-plane iz— — iz > —1
which is analytic and without zeros. For h in the interval [0, 1] the function

W (z+ 3ih)/W (z — %ih)

of z is analytic and has nonnegative real part in the upper half plane. The definition of
an Euler weight function replaces the functional identity for the gamma function by an
inequality.

The theorem of Beurling and Malliavin is not known to apply generally to the space
F(W) when W(z) is an Euler weight function. When it does, the set of entire functions
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F(z) of z such that the functions F'(z) and F*(z) of z belong to the space F(W) is a
nontrivial Hilbert space of entire functions which satisfies the axioms (H1), (H2), and (H3)
in the scalar product of the space into the space F(W). For h in the interval [0,1] a
maximal dissipative transformation is defined in the space by taking F(z) into F(z + ih)

whenever the functions of z belong to the space.

A theorem of von Neumann is implicit in the definition of an Euler weight function.
A maximal dissipative transformation 7' belongs to a semi group of transformations 7"
whose elements are maximal dissipative transformations when A is in the interval [0, 1].
The transformations constructed by the von Neumann operational calculus are required
to be shifts taking F'(z) into F'(z + ¢h). These conditions are verified when
W(z) =T (% —iz)

2

by properties of the gamma function discovered by Euler.

The canonical measure for the complex plane is the Cartesian product measure of
Lebesgue measure for two coordinate lines. The Fourier transformation for the complex
plane is an isometric transformation of the Hilbert space of square integrable functions
with respect to the canonical measure which takes an integrable function f(z) into the
continuous function

g(z) = /exp(m'(z_w +w”2))f(w)dw

of z defined by integration with respect to the canonical measure. Fourier inversion

f(z) = /exp(m'(z_w +w™ 2))g(w)dw

applies with integration with respect to the canonical measure when the function g(z) of
z is integrable and the function f(z) of z is continuous.

The Fourier transformation for the complex plane commutes with the isometric trans-
formation which takes a function f(z) of z into the function f(wz) of z for every element
w of the complex plane which has its conjugate as inverse. The Hilbert space of square
integrable functions with respect to the canonical measure decomposes into the orthogonal
sum of invariant subspaces for the commuting transformations. An invariant subspace is
parametrized by an integer v and consists of the functions f(z) of z which satisfy the
identity

flwz) =w”f(2)

for every element w of the complex plane with conjugate as inverse. Attention is restricted
to the case v nonnegative since other cases are obtained under the isometric transformation
which takes a function f(z) of z into the function f(z7) of z.

The case v equal to zero is of special interest since these methods produce the Hilbert
spaces of entire functions constructed from the analytic weight function

W(z) =T(3 — i2)
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for which the analogue of the Riemann hypothesis true.

The classical zeta function is defined by Euler as a product taken over the primes
whose factors are functions analogous to the gamma function. The introduction of Fourier
analysis clarifies the transition from the gamma function to its analogue for a prime p.
The definition of the gamma function applies the additive and multiplicative structure
of the field of real numbers. A field of p—adic numbers is defined for every prime p as
the completion of the rational numbers in a topology which resembles the topology with
respect to which the field of real numbers is obtained. The definition of the p adic analogue
mimics the definition of the gamma function in a p—adic field.

The complex plane admits a p—adic analogue for every prime p as a field which is a
quadratic extension of the field of p adic numbers. The unique nontrivial automorphism
of the field is called a conjugation by analogy with the conjugation of the complex plane.
The prime p is required to factor as the product of an element of the field and its conjugate.
The field is called the p—adic plane since it is uniquely determined by these properties within
an isomorphism.

The constructions made in Fourier analysis on the complex plane generalize to construc-
tions on the p-adic plane since they apply only the additive and multiplicative properties
of a conjugated field. The analytic weight function

o 1
o 1 _pfé-i—iz 1 _pf‘;’-i—iz

W (z)

which replaces the analytic weight function

W(z) =T(3 — iz)
applies a doubling of the p—adic analogue of the gamma function which is analogous to the
Euler duplication formula for the gamma function:

27T (1s)L(3s+ 2) = D(3)T(s).

The classical zeta function is an Euler product of factors contributed by primes. Fourier
analysis on the real line produces an additional factor of a gamma function in the functional
identity. The analogous product in Fourier analysis on planes requires a reformulation of
previous results due to the absence of a conjugated field which is contained as a dense
subset of the complex plane and of the p—adic plane for every prime p.

A skew—field associated with a conjugated field contains the given field and extends the
conjugation of the field as an anti automorphism of the skew field. When the conjugated
field is called a plane, it is natural to call the associated skew field a skew plane. The
complex skew—plane is then the skew—field constructed from the complex plane. The
elements of the complex skew—plane are quaternions

t+ix + jy + kz



8 LOUIS DE BRANGES

with real numbers as coordinates. The dense subset of the complex skew—plane whose
elements have rational numbers as coordinates is a conjugated skew—field. The p—adic
skew plane is obtained by completion in a p adic topology. The elements of the p adic
skew plane are the quaternions with p adic numbers as coordinates.

Fourier analysis on a skew—plane is related to Fourier analysis on a plane by a Radon
transformation. The complementary space to a plane in a skew—plane is defined as the set
of elements 7 which satisfy the identity

ng=¢&n

for every element & of the plane. Elements of the complementary space are skew conjugate.
The product of an element of the plane and an element of the complementary space is an
element of the complementary space. The product of two elements of the complementary
space is an element of the plane. An element of the skew—plane is the unique sum of an
element of the plane and an element of the complementary space. The canonical measure
for the skew plane is the Cartesian product measure of the canonical measure for the plane
and a canonical measure for the complementary space.

The Radon transformation for a skew plane is a maximal dissipative transformation in
the Hilbert space of functions which are square integrable with respect to the canonical
measure. The transformation is defined as an integral on those elements of its domain
which are integrable with respect to the canonical measure. The transformation takes
a function f(£) of ¢ in the skew—plane which is integrable with respect to the canonical
measure into the function g(§) of £ in the skew plane defined almost everywhere by the
equation

g(w€) = / F(w€ + wn)dn

for every element w of the skew—plane with conjugate as inverse with integration with
respect to the canonical measure for the complementary space. The inequality

[1stwerie < [ rag

holds for every element w of the skew—plane with conjugate as inverse with integration on
the left with respect to the canonical measure for the plane and with integration on the
right with respect to the canonical measure for the skew plane.

The Radon transformation is the source of the maximal dissipative transformations
required for Euler weight functions.

Consistent use of Fourier analysis clarifies the nature of the functions to which the
Riemann hypothesis is expected to apply. These generalizations of the gamma function
are products of a duplicated gamma function and its analogues in p—adic Fourier analysis.
Further clarification results when the Riemann hypothesis as a conjecture about zeros is
replaced by the conjectured presence of an Euler weight function which has the desired
implication for zeros. The Riemann hypothesis is interesting only in a limit taken over an
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infinite number of primes. But the presence of Euler weight functions is interesting when
only a finite number of primes are taken since the properties of Euler weight functions are
preserved in a limit.

Fourier analysis is applied on the Cartesian product of the complex skew plane and the
p—adic skew—plane for a finite number of primes p. The Hilbert space of square integrable
functions with respect to the Cartesian product measure of the product space is acted
upon by a group of isometric transformations determined by the chosen primes.

A theorem attributed to Diophantus and confirmed by Lagrange states that every pos-
itive integer is the sum of four squares of integers. Equivalently a positive integer

n=w w

is the product of an integral element w of the complex skew—plane and its conjugate w™.
An integral element
w=t+1ir+jy+kz

is according to Hurwitz not only an element whose coordinates z, y, z, and ¢ are all integers
but also an element whose coordinates are all halves of odd integers. A generalization of the
Euclidean algorithm to integral elements of the complex skew plane gives an elementary
proof of the representation of a positive integer as a sum of four squares. The essential
case of the representation occurs when the positive integer is a prime. Since there are
twenty four representations of one, the number of representations of a positive integer is
always divisible by twenty four. The number of representations of a positive integer n is
shown by Jacobi to be equal to twenty—four times the sum of the odd positive divisors of
n.

The representation is applied to positive integers n whose prime divisors are restricted
to a given finite set of primes and to positive rational numbers whose numerator and
denominator are such positive integers. These positive rational numbers form a group
under multiplication. A noncommutative group of elements of the complex skew—plane is
generated by the integral elements of the complex skew—plane which represent such positive
integers n.

Nonzero elements of the complex skew—plane act as isometric operators on the Hilbert
space of square integrable functions with respect to the Cartesian product measure. They
act as multipliers on the independent variable. Such action is familiar in applications of
operator theory to complex analysis, but now has a new aspect since the independent
variable lies in a skew field. Multiplication is noncommutative.

The Hilbert space decomposes into irreducible invariant subspaces under the group
action producing special functions which are generalizations of theta functions. Jacobi
introduced theta functions in the first application of Fourier analysis to the Euler zeta
function. The zeta function appears multiplied by a gamma function when the Mellin
transformation is applied to the theta function. A proof of the functional identity for the
zeta function is obtained as an application of the Poisson summation in Fourier analysis.

The Jacobi construction of theta functions is an application of doubly periodic functions.
A more structured construction is needed to gather information from different components
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of Fourier analysis and assemble it in a quotient space. The desired maximal dissipative
property of a transformation is proved by a spectral decomposition using the theta func-
tions. The transformation is subnormal: It is unitarily equivalent to multiplication by an
analytic function in a Hilbert space whose elements are functions analytic in the upper
half-plane. The transformation is maximal dissipative because the multiplying analytic
function —iz has nonnegative real part in the half-plane. These properties generalize famil-
iar properties of the Laplace transformation. The theta function defines a generalization
of the Laplace transformation.

The theta functions which generalize the Jacobi theta function produce a generaliza-
tion of the Euler zeta function on application of the Mellin transformation. The Mellin
transform of a theta function is an Euler weight function which factors as the product
of a gamma function and a zeta function which satisfies a generalization of the Riemann
hypothesis. The zeta functions constructed are not new. They are identical with zeta
functions constructed by Erich Hecke from modular forms.

A proof of the classical Riemann hypothesis does not follow since an exceptional situ-
ation arises in which the underlying transformation is not maximal dissipative. There is
a problem of convergence in mixing the components of Fourier analysis. The transforma-
tion is however nearly maximal dissipative: It has a one-dimensional extension which is
maximal dissipative. The zeta function has an exceptional symmetry which permits the
desired information concerning zeros to be obtained from a weaker hypothesis.

The production and acceptance of a manuscript for publication is a challenge not only
for its author but also for its readers and depends on the support of organizations which
fund both activities.
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