
PROJECT SUMMARYTHE RIEMANN HYPOTHESISLouis de BrangesAn appli
ation of applied mathemati
s is proposed for the solution of a problem in puremathemati
s. The Riemann hypothesis has a
quired a reputation as the most importantunsolved problem in mathemati
s. A proof of the 
onje
ture has not only an intrinsi
value, whi
h 
an only be properly estimated by spe
ialists, but also a value as a meansof 
ommuni
ation between the mathemati
al 
ommunity and a general publi
. Sin
e thisrelationship is essential to funding, serious proposals for a solution of the problem aredeserving of serious attention. The solid foundation in applied mathemati
s for the presentproposal removes it from the 
ategory of the many unsound proposals for a solution of theproblem. There are �fty years of resear
h behind the present work.The analysis of spe
tra is so pervasive in asso
iation with the Riemann hypothesis asto defy identi�
ation of its sour
e. Spe
tral analysis of periodi
 motion in astronomy wasapplied by Legendre and later by Gauss to the distribution of prime numbers treatedas random motion. These 
ontributions were made at the beginning of the nineteenth
entury or before. The �rst systemati
 treatment was made toward the end of the 
enturyby Hermite and Stieltjes, who treat zeros of polynomials and their generalization after the
onje
ture of Riemann in the middle of the 
entury. Spe
tral analysis is essentially thestudy of invariant subspa
es of transformations.At the end of the nineteenth 
entury Stieltjes axiomatized integration as it applies topolynomials treated as fun
tions of a real variable. A polynomial is seen to be nonnegativeif it has nonnegative values on the real line. An integral is 
hara
terized as a linearfun
tional on polynomials whi
h has nonnegative values on nonnegative polynomials. Anintegral is shown to be 
omputed as a Stieltjes integral with respe
t to some nonde
reasingfun
tion of a real variable.At the beginning of the twentieth 
entury Hilbert adapted Stieltjes integration to anabstra
t 
ontext. A Hilbert spa
e is a 
omplex ve
tor spa
e whi
h is 
omplete in theuniform topology de�ned by a nonnegative quadrati
 form. A linear transformation withdomain and range in a Hilbert spa
e is de�ned as nonnegative if an element of the domainalways has a nonnegative s
alar produ
t with the 
orresponding element of the range.Su
h a transformation is 
ontinuous if it is everywhere de�ned. A suÆ
ient 
onditionfor spe
tral analysis is that the transformation be maximal: No proper linear extensionexists whi
h maintains positivity. The existen
e of invariant subspa
es is shown for max-imal nonnegative transformations. The transformation is a Stieltjes integral of invariantsubspa
es. 1



2 LOUIS DE BRANGESAn elementary but essential step in adapting the Hilbert spe
tral theory to the Riemannhypothesis is to return to the 
ontext in whi
h Stieltjes was working before by his deathfrom tuber
ulosis. The axiomatization in 1959 of the required Hilbert spa
es of entirefun
tions marks the beginning of the present proje
t on the Riemann hypothesis.Hilbert spa
es are introdu
ed whose elements are entire fun
tions and whi
h have theseproperties:(H1) Whenever an entire fun
tion F (z) of z belongs to the spa
e and has a nonreal zerow the entire fun
tion F (z)(z � w�)=(z � w)of z belongs to the spa
e and has the same norm as F (z).(H2) A 
ontinuous linear fun
tional on the spa
e is de�ned for every nonreal number wby taking an entire fun
tion F (z) of z into its value F (w) at w.(H3) Whenever an entire fun
tion F (z) of z belongs to the spa
e, the 
onjugate entirefun
tion F �(z) = F (z�)�of z belongs to the spa
e and has the same norm as F (z).A Hilbert spa
e H whose elements are entire fun
tions, whi
h satis�es the axioms (H1),(H2), and (H3), and whi
h 
ontains a nonzero element, has an elementary stru
ture whi
hwas dis
overed by Stieltjes for spa
es of �nite dimension whose elements are polynomials.The spa
e is determined by an entire fun
tion E(z) of z whi
h has no zeros above the realaxis sin
e the inequality jE(x� iy)j < jE(x+ iy)jholds for all real x when y is positive. The elements of the spa
e are the entire fun
tionsF (z) of z whi
h are smaller than E(z) in the sense that the inequalityjF (z)j2 � kFk2 jE(z)j2 � jE(z�)j22�i(z� � z)holds for all 
omplex z where the integralkFk2 = Z +1�1 jF (t)=E(t)j2dt
onverges.Formulated as dynami
s the stru
ture of a Stieltjes spa
e of polynomials is a vibratingstring fastened at a �nite number of points. The proje
t on the Riemann hypothesis 
on-tinues by showing that every Hilbert spa
e of entire fun
tions whi
h satis�es the axiomshas the stru
ture of a vibrating string. The string satis�es 
onstraints whi
h permit analy-sis by entire fun
tions instead of the more general Hilbert spe
tral theory. The formulationis advantageous for the Riemann hypothesis sin
e spe
tral analysis is treated by the in-verse problem: The generating di�erential operator is re
onstru
ted from a knowledge of



PROJECT SUMMARY THE RIEMANN HYPOTHESIS 3its spe
tral properties. The results are new sin
e the inverse problem is shown to have aunique solution.The treatment is interesting be
ause of an example in whi
h there is a 
omputation ofstring stru
ture. The resulting Hilbert spa
e of entire fun
tions satisfying the axioms isde�ned by an entire fun
tion E(z) of z whi
h has a zero{free half{plane larger than theupper half{plane. The zeros of the fun
tion lie on a horizontal line at distan
e one{halfbelow the real axis. The relevan
e to the 
lassi
al zeta fun
tion lies in its relationship to theEuler gamma fun
tion, a prede
essor of the zeta fun
tion whi
h appears in the fun
tionalidentity dis
overed by Euler for the zeta fun
tion. The example applies the hypergeometri
series, dis
overed by Euler and applied in his proof of the fun
tional identity.Publi
ation of these results in 1965 
ompletes preliminaries to resear
h on the Riemannhypothesis. A sear
h begins for other Hilbert spa
es of entire fun
tions whose de�ning fun
-tions have the pattern of zeros expe
ted in the Riemann hypothesis. Examples 
olle
tedover twenty years prepare an axiomati
 treatment of spa
es having the desired properties.A linear transformation with domain and range in a Hilbert spa
e is de�ned as dissipa-tive if the real part of the s
alar produ
t of an element of the domain with a 
orrespondingelement of the range is always nonnegative. Su
h a transformation is 
ontinuous if it is ev-erywhere de�ned. E�e
tiveness of the dissipative property requires that the transformationbe maximal dissipative: No proper linear extension exists whi
h maintains nonnegativityof the real part of the s
alar produ
t of an element of the domain with the 
orrespondingelement of the range.A generalization of the Riemann hypothesis whi
h applies to Hilbert spa
es of entirefun
tions satisfying the axioms (H1), (H2), and (H3) is the existen
e of a maximal dissipa-tive transformation whose domain and range are 
ontained in the spa
e. The transforma-tion takes an entire fun
tion F (z) into an entire fun
tion F (z + i) whenever the fun
tionsof z belong to the spa
e.The Riemann hypothesis for Hilbert spa
es of entire fun
tions is a generalization of theRiemann hypothesis in the sense of imposing a 
onstraint on zeros of the de�ning entirefun
tion E(z): The fun
tion has no pair of distin
t zeros �� and � � i. The hypothesisimplies that the zeros of E(z) lie on the lineiz� � iz = �1if the fun
tions E�(z) and E(z + i) are linearly dependent.The Riemann hypothesis for Hilbert spa
es of entire fun
tions is not a 
onje
ture tobe veri�ed but a hypothesis in a theorem whose elementary proof removes all possibledoubt about its validity. The theorem supplies a pro
edure for veri�
ation of an expe
tedpattern of zeros in a fun
tion whose resemblan
e to the 
lassi
al zeta fun
tion 
reatessu
h expe
tations. The theorem was published in 1986 as a resear
h announ
ement in theBulletin of the Ameri
an Mathemati
al So
iety.A symposium on Fourier analysis was held at Cornell University in the summer 1956to whi
h Arne Beurling was an invited speaker. He posed a problem in 
omplex analysis



4 LOUIS DE BRANGESwhi
h was taken as the topi
 of the thesis in preparation for the Riemann hypothesis. Itspubli
ation in 1958 was followed by a postdo
toral position at the Institute for Advan
edStudy and an invitation to the International Symposium on Fun
tional Analysis held atStanford University in the summer 1961. In his invited address Paul Malliavin presentedjoint work with Beurling on the problem whi
h is the topi
 of the 1956 le
ture and thethesis. The theorem of Beurling and Malliavin is a preliminary to the Riemann hypothesisfor Hilbert spa
es of entire fun
tions.The Hardy spa
e for the upper half{plane is the Hilbert spa
e of fun
tions F (z) of z,analyti
 in the upper half{plane, su
h that the integralsZ +1�1 jF (x+ iy)j2dxare bounded fun
tions of positive y. The least upper boundZ +1�1 jF (x)j2dx = inf Z +1�1 jF (x+ iy)j2dxis attained in the limit as y de
reases to zero as the integral of a boundary value fun
-tion F (x) of x de�ned almost everywhere on the real axis. An element of the spa
e is
hara
terized as a Fourier transformF (z) = Z 10 exp(2�izt)f(t)dtof a square integrable fun
tion f(t) of real t whi
h vanishes for negative arguments. Theidentity Z +1�1 jF (x)j2dx = Z 10 jf(t)j2dtstates the isometri
 property of the Fourier transformation. Norbert Wiener treated thereal variable t as time and applied the Hardy spa
e in a predi
tion theory for future eventsapplying data from past times.A generalization of Fourier analysis arises when fun
tions whi
h do not have representa-tions as Fourier integrals have a meaningful a
tion on Fourier transforms a

ording to theWiener operational 
al
ulus. Hilbert spa
es of fun
tions analyti
 in the upper half{planeappear whi
h generalize the 
lassi
al Hardy spa
e. The spa
es are de�ned by fun
tionswhi
h are analyti
 and without zeros in the upper half{plane. The de�ning fun
tionsare typi
ally too large to be represented as Fourier transforms. Wiener 
reated a Fourieranalysis of unbounded fun
tions.Notation is required for pre
ision. An analyti
 weight fun
tion is a fun
tion whi
h isanalyti
 and without zeros in the upper half{plane. The weighted Hardy spa
e F(W )de�ned by an analyti
 weight fun
tion W (z) is the set of fun
tion F (z) of z whi
h areanalyti
 in the upper half{plane, su
h that the integralsZ +1�1 jF (x+ iy)=W (x+ iy)j2dx



PROJECT SUMMARY THE RIEMANN HYPOTHESIS 5are bounded fun
tions of positive y. Multipli
ation by W (z) a
ts as an isometri
 transfor-mation of the 
lassi
al Hardy spa
e onto the weighted Hardy spa
e.An analyti
 weight fun
tion a
ts as a symbol in the Wiener operational 
al
ulus. Theproperties of the fun
tion are re
e
ted in properties of the asso
iated spa
e of fun
tions.The relationship between spa
e and de�ning fun
tion is an essential feature in the Riemannhypothesis for Hilbert spa
es of entire fun
tions.Predi
tion requires a good relationship between past and future. Time reversal inter-
hanging past into future is represented by the 
onjugation whi
h takes a fun
tion F (z) ofz into the fun
tion F �(z) = F (z�)�:Nontrivial fun
tions F (z) are needed su
h that the fun
tions F (z) and F �(z) of z bothbelong to the weighted Hardy spa
e. Su
h fun
tions must be de�ned and analyti
 inthe upper and lower half{planes. Consisten
y of boundary value fun
tions on the realaxis implies that the fun
tions are analyti
 in the 
omplex plane. Predi
tion requires theexisten
e of nontrivial entire fun
tions F (z) of z su
h that the restri
tions to the upperhalf{plane of the fun
tions F (z) and F �(z) of z belong to the weighted Hardy spa
e.When 
onditions on the weight fun
tion W (z) due to Norman Levinson are satis�ed,the set of entire fun
tions F (z) su
h that the fun
tions F (z) and F �(z) of z belong to thespa
e F(W ) is a Hilbert spa
e of entire fun
tions whi
h satis�es the axioms (H1), (H2),and (H3) in the s
alar produ
t of the spa
e F(W ).Beurling and Malliavin give 
onditions on the weight fun
tion W (z) for the existen
eof a nontrivial entire fun
tion F (z) su
h that the fun
tions F (z) and F �(z) of z belong tothe spa
e F(W ).The Riemann hypothesis for Hilbert spa
es of entire fun
tions admits a formulation asa 
ondition on analyti
 weight fun
tions. Sin
e these weight fun
tions are generalizationsof the weight fun
tion W (z) = �( 12 � iz)asso
iated with the Euler gamma fun
tion, they are 
alled Euler weight fun
tions.An analyti
 weight fun
tion W (z) is said to be an Euler weight fun
tion if for everyh in the interval [0; 1℄ a maximal dissipative transformation in the weighted Hardy spa
eF(W ) is de�ned by taking F (z) into F (z + ih) whenever the fun
tions of z belong to thespa
e. The fun
tion W (z) of z then admits an extension to the half{plane iz� � iz > �1whi
h is analyti
 and without zeros. For h in the interval [0; 1℄ the fun
tionW (z + 12 ih)=W (z � 12 ih)of z is analyti
 and has nonnegative real part in the upper half{plane. The de�nition ofan Euler weight fun
tion repla
es the fun
tional identity for the gamma fun
tion by aninequality.The theorem of Beurling and Malliavin is not known to apply generally to the spa
eF(W ) when W (z) is an Euler weight fun
tion. When it does, the set of entire fun
tions



6 LOUIS DE BRANGESF (z) of z su
h that the fun
tions F (z) and F �(z) of z belong to the spa
e F(W ) is anontrivial Hilbert spa
e of entire fun
tions whi
h satis�es the axioms (H1), (H2), and (H3)in the s
alar produ
t of the spa
e into the spa
e F(W ). For h in the interval [0; 1℄ amaximal dissipative transformation is de�ned in the spa
e by taking F (z) into F (z + ih)whenever the fun
tions of z belong to the spa
e.A theorem of von Neumann is impli
it in the de�nition of an Euler weight fun
tion.A maximal dissipative transformation T belongs to a semi{group of transformations Thwhose elements are maximal dissipative transformations when h is in the interval [0; 1℄.The transformations 
onstru
ted by the von Neumann operational 
al
ulus are requiredto be shifts taking F (z) into F (z + ih). These 
onditions are veri�ed whenW (z) = �( 12 � iz)by properties of the gamma fun
tion dis
overed by Euler.The 
anoni
al measure for the 
omplex plane is the Cartesian produ
t measure ofLebesgue measure for two 
oordinate lines. The Fourier transformation for the 
omplexplane is an isometri
 transformation of the Hilbert spa
e of square integrable fun
tionswith respe
t to the 
anoni
al measure whi
h takes an integrable fun
tion f(z) into the
ontinuous fun
tion g(z) = Z exp(�i(z�w + w�z))f(w)dwof z de�ned by integration with respe
t to the 
anoni
al measure. Fourier inversionf(z) = Z exp(��i(z�w + w�z))g(w)dwapplies with integration with respe
t to the 
anoni
al measure when the fun
tion g(z) ofz is integrable and the fun
tion f(z) of z is 
ontinuous.The Fourier transformation for the 
omplex plane 
ommutes with the isometri
 trans-formation whi
h takes a fun
tion f(z) of z into the fun
tion f(!z) of z for every element! of the 
omplex plane whi
h has its 
onjugate as inverse. The Hilbert spa
e of squareintegrable fun
tions with respe
t to the 
anoni
al measure de
omposes into the orthogonalsum of invariant subspa
es for the 
ommuting transformations. An invariant subspa
e isparametrized by an integer � and 
onsists of the fun
tions f(z) of z whi
h satisfy theidentity f(!z) = !�f(z)for every element ! of the 
omplex plane with 
onjugate as inverse. Attention is restri
tedto the 
ase � nonnegative sin
e other 
ases are obtained under the isometri
 transformationwhi
h takes a fun
tion f(z) of z into the fun
tion f(z�) of z.The 
ase � equal to zero is of spe
ial interest sin
e these methods produ
e the Hilbertspa
es of entire fun
tions 
onstru
ted from the analyti
 weight fun
tionW (z) = �( 12 � iz)



PROJECT SUMMARY THE RIEMANN HYPOTHESIS 7for whi
h the analogue of the Riemann hypothesis true.The 
lassi
al zeta fun
tion is de�ned by Euler as a produ
t taken over the primeswhose fa
tors are fun
tions analogous to the gamma fun
tion. The introdu
tion of Fourieranalysis 
lari�es the transition from the gamma fun
tion to its analogue for a prime p.The de�nition of the gamma fun
tion applies the additive and multipli
ative stru
tureof the �eld of real numbers. A �eld of p{adi
 numbers is de�ned for every prime p asthe 
ompletion of the rational numbers in a topology whi
h resembles the topology withrespe
t to whi
h the �eld of real numbers is obtained. The de�nition of the p{adi
 analoguemimi
s the de�nition of the gamma fun
tion in a p{adi
 �eld.The 
omplex plane admits a p{adi
 analogue for every prime p as a �eld whi
h is aquadrati
 extension of the �eld of p{adi
 numbers. The unique nontrivial automorphismof the �eld is 
alled a 
onjugation by analogy with the 
onjugation of the 
omplex plane.The prime p is required to fa
tor as the produ
t of an element of the �eld and its 
onjugate.The �eld is 
alled the p{adi
 plane sin
e it is uniquely determined by these properties withinan isomorphism.The 
onstru
tions made in Fourier analysis on the 
omplex plane generalize to 
onstru
-tions on the p{adi
 plane sin
e they apply only the additive and multipli
ative propertiesof a 
onjugated �eld. The analyti
 weight fun
tionW (z) = 11� p� 12+iz 11� p� 32+izwhi
h repla
es the analyti
 weight fun
tionW (z) = �( 12 � iz)applies a doubling of the p{adi
 analogue of the gamma fun
tion whi
h is analogous to theEuler dupli
ation formula for the gamma fun
tion:2s�1�( 12s)�( 12s+ 12 ) = �( 12)�(s):The 
lassi
al zeta fun
tion is an Euler produ
t of fa
tors 
ontributed by primes. Fourieranalysis on the real line produ
es an additional fa
tor of a gamma fun
tion in the fun
tionalidentity. The analogous produ
t in Fourier analysis on planes requires a reformulation ofprevious results due to the absen
e of a 
onjugated �eld whi
h is 
ontained as a densesubset of the 
omplex plane and of the p{adi
 plane for every prime p.A skew{�eld asso
iated with a 
onjugated �eld 
ontains the given �eld and extends the
onjugation of the �eld as an anti{automorphism of the skew{�eld. When the 
onjugated�eld is 
alled a plane, it is natural to 
all the asso
iated skew{�eld a skew{plane. The
omplex skew{plane is then the skew{�eld 
onstru
ted from the 
omplex plane. Theelements of the 
omplex skew{plane are quaternionst+ ix+ jy + kz



8 LOUIS DE BRANGESwith real numbers as 
oordinates. The dense subset of the 
omplex skew{plane whoseelements have rational numbers as 
oordinates is a 
onjugated skew{�eld. The p{adi
skew{plane is obtained by 
ompletion in a p{adi
 topology. The elements of the p{adi
skew{plane are the quaternions with p{adi
 numbers as 
oordinates.Fourier analysis on a skew{plane is related to Fourier analysis on a plane by a Radontransformation. The 
omplementary spa
e to a plane in a skew{plane is de�ned as the setof elements � whi
h satisfy the identity �� = ���for every element � of the plane. Elements of the 
omplementary spa
e are skew{
onjugate.The produ
t of an element of the plane and an element of the 
omplementary spa
e is anelement of the 
omplementary spa
e. The produ
t of two elements of the 
omplementaryspa
e is an element of the plane. An element of the skew{plane is the unique sum of anelement of the plane and an element of the 
omplementary spa
e. The 
anoni
al measurefor the skew{plane is the Cartesian produ
t measure of the 
anoni
al measure for the planeand a 
anoni
al measure for the 
omplementary spa
e.The Radon transformation for a skew{plane is a maximal dissipative transformation inthe Hilbert spa
e of fun
tions whi
h are square integrable with respe
t to the 
anoni
almeasure. The transformation is de�ned as an integral on those elements of its domainwhi
h are integrable with respe
t to the 
anoni
al measure. The transformation takesa fun
tion f(�) of � in the skew{plane whi
h is integrable with respe
t to the 
anoni
almeasure into the fun
tion g(�) of � in the skew{plane de�ned almost everywhere by theequation g(!�) = Z f(!� + !�)d�for every element ! of the skew{plane with 
onjugate as inverse with integration withrespe
t to the 
anoni
al measure for the 
omplementary spa
e. The inequalityZ jg(!�)jd� � Z jf(�)jd�holds for every element ! of the skew{plane with 
onjugate as inverse with integration onthe left with respe
t to the 
anoni
al measure for the plane and with integration on theright with respe
t to the 
anoni
al measure for the skew{plane.The Radon transformation is the sour
e of the maximal dissipative transformationsrequired for Euler weight fun
tions.Consistent use of Fourier analysis 
lari�es the nature of the fun
tions to whi
h theRiemann hypothesis is expe
ted to apply. These generalizations of the gamma fun
tionare produ
ts of a dupli
ated gamma fun
tion and its analogues in p{adi
 Fourier analysis.Further 
lari�
ation results when the Riemann hypothesis as a 
onje
ture about zeros isrepla
ed by the 
onje
tured presen
e of an Euler weight fun
tion whi
h has the desiredimpli
ation for zeros. The Riemann hypothesis is interesting only in a limit taken over an



PROJECT SUMMARY THE RIEMANN HYPOTHESIS 9in�nite number of primes. But the presen
e of Euler weight fun
tions is interesting whenonly a �nite number of primes are taken sin
e the properties of Euler weight fun
tions arepreserved in a limit.Fourier analysis is applied on the Cartesian produ
t of the 
omplex skew{plane and thep{adi
 skew{plane for a �nite number of primes p. The Hilbert spa
e of square integrablefun
tions with respe
t to the Cartesian produ
t measure of the produ
t spa
e is a
tedupon by a group of isometri
 transformations determined by the 
hosen primes.A theorem attributed to Diophantus and 
on�rmed by Lagrange states that every pos-itive integer is the sum of four squares of integers. Equivalently a positive integern = !�!is the produ
t of an integral element ! of the 
omplex skew{plane and its 
onjugate !�.An integral element ! = t+ ix+ jy + kzis a

ording to Hurwitz not only an element whose 
oordinates x; y; z, and t are all integersbut also an element whose 
oordinates are all halves of odd integers. A generalization of theEu
lidean algorithm to integral elements of the 
omplex skew{plane gives an elementaryproof of the representation of a positive integer as a sum of four squares. The essential
ase of the representation o

urs when the positive integer is a prime. Sin
e there aretwenty{four representations of one, the number of representations of a positive integer isalways divisible by twenty{four. The number of representations of a positive integer n isshown by Ja
obi to be equal to twenty{four times the sum of the odd positive divisors ofn. The representation is applied to positive integers n whose prime divisors are restri
tedto a given �nite set of primes and to positive rational numbers whose numerator anddenominator are su
h positive integers. These positive rational numbers form a groupunder multipli
ation. A non
ommutative group of elements of the 
omplex skew{plane isgenerated by the integral elements of the 
omplex skew{plane whi
h represent su
h positiveintegers n.Nonzero elements of the 
omplex skew{plane a
t as isometri
 operators on the Hilbertspa
e of square integrable fun
tions with respe
t to the Cartesian produ
t measure. Theya
t as multipliers on the independent variable. Su
h a
tion is familiar in appli
ations ofoperator theory to 
omplex analysis, but now has a new aspe
t sin
e the independentvariable lies in a skew{�eld. Multipli
ation is non
ommutative.The Hilbert spa
e de
omposes into irredu
ible invariant subspa
es under the groupa
tion produ
ing spe
ial fun
tions whi
h are generalizations of theta fun
tions. Ja
obiintrodu
ed theta fun
tions in the �rst appli
ation of Fourier analysis to the Euler zetafun
tion. The zeta fun
tion appears multiplied by a gamma fun
tion when the Mellintransformation is applied to the theta fun
tion. A proof of the fun
tional identity for thezeta fun
tion is obtained as an appli
ation of the Poisson summation in Fourier analysis.The Ja
obi 
onstru
tion of theta fun
tions is an appli
ation of doubly periodi
 fun
tions.A more stru
tured 
onstru
tion is needed to gather information from di�erent 
omponents



10 LOUIS DE BRANGESof Fourier analysis and assemble it in a quotient spa
e. The desired maximal dissipativeproperty of a transformation is proved by a spe
tral de
omposition using the theta fun
-tions. The transformation is subnormal: It is unitarily equivalent to multipli
ation by ananalyti
 fun
tion in a Hilbert spa
e whose elements are fun
tions analyti
 in the upperhalf{plane. The transformation is maximal dissipative be
ause the multiplying analyti
fun
tion �iz has nonnegative real part in the half{plane. These properties generalize famil-iar properties of the Lapla
e transformation. The theta fun
tion de�nes a generalizationof the Lapla
e transformation.The theta fun
tions whi
h generalize the Ja
obi theta fun
tion produ
e a generaliza-tion of the Euler zeta fun
tion on appli
ation of the Mellin transformation. The Mellintransform of a theta fun
tion is an Euler weight fun
tion whi
h fa
tors as the produ
tof a gamma fun
tion and a zeta fun
tion whi
h satis�es a generalization of the Riemannhypothesis. The zeta fun
tions 
onstru
ted are not new. They are identi
al with zetafun
tions 
onstru
ted by Eri
h He
ke from modular forms.A proof of the 
lassi
al Riemann hypothesis does not follow sin
e an ex
eptional situ-ation arises in whi
h the underlying transformation is not maximal dissipative. There isa problem of 
onvergen
e in mixing the 
omponents of Fourier analysis. The transforma-tion is however nearly maximal dissipative: It has a one{dimensional extension whi
h ismaximal dissipative. The zeta fun
tion has an ex
eptional symmetry whi
h permits thedesired information 
on
erning zeros to be obtained from a weaker hypothesis.The produ
tion and a

eptan
e of a manus
ript for publi
ation is a 
hallenge not onlyfor its author but also for its readers and depends on the support of organizations whi
hfund both a
tivities. Referen
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