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Abstract. A proof of the Riemann hypothesis is obtained for zeta functions whose Dirichlet

coefficients are defined as eigenvalues of Hecke operators. The argument is formulated in
Hilbert spaces of entire functions [1] which generalize the Stieltjes integral representation

of positive linear functionals on polynomials in a context related to the Hermite class of

entire functions. The Riemann hypothesis for Hilbert spaces of entire functions [2] formulates
properties of the spaces essential to the argument. The verification of these properties applies

a Radon transformation which relates Fourier analysis on fields to Fourier analysis on skew–

fields. Since the Radon transformation in two dimensions inverts the infinitessimal generator
for the flow of heat, the proof of the Riemann hypothesis applies a generalization of the Fourier

treatment of heat flow to four dimensions. The argument presumes a minimal knowledge of
Fourier analysis. The Riemann hypothesis for Dirichlet zeta functions is a corollary of the

Riemann hypothesis for associated Hecke zeta functions. The Riemann hypothesis for the

Euler zeta function is obtained in the same way but with a variant of the argument demanded
by the singularity of the zeta function.

Section 1 The Algebraic Skew–plane begins with a noncommutative algebra to be com-
pleted in various topologies.

Section 2 The Dedekind Skew–plane continues with the classical completion of the alge-
braic skew–plane.

Section 3 Adic Skew–planes presents the nonclassical completions.

Section 4 Product Skew–planes composes the classical and nonclassical completions and
passes to a compact quotient space.

Section 5 Fourier Analysis for the Dedekind Skew–plane is the classical formulation
of Fourier analysis in a quaternionic context as required for a treatment of the Radon
transformation.

Section 6 Fourier Analysis for Adic Skew–planes adapts the Fourier transformation to
nonclassical completions in a quaternionic context as required for the Radon transforma-
tion.

Section 7 Fourier Analysis for Product Skew–planes is a spectral analysis of the Radon
transformation on product skew–planes as an application of zeta functions defined by Hecke
operators.
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Section 8 The Riemann Hypothesis for Hilbert Spaces of Entire Functions is a formula-
tion of the Riemann hypothesis which applies to Hecke zeta functions related to Dirichlet
zeta functions and to the Euler zeta function.

1. The algebraic skew-plane

The algebraic skew–plane is the set of quaternions

ξ = t+ ix+ jy + kz

whose coordinates x, y, z, and t are rational numbers. The conjugate element of the alge-
braic skew–plane is

ξ− = t− ix− jy − kz.

Conjugation is an anti–automorphism ξ into ξ− of the algebraic skew–plane. Rational
numbers are identified with self–conjugate elements of the algebraic skew–plane. An ele-
ment of the algebraic skew–plane is said to be integral if its coordinates are all integers
or all halves of odd integers. Sums and products of integral elements of the algebraic
skew–plane are integral. The conjugate of an integral element of the algebraic skew–plane
is integral. A theorem originating with Diophantus and confirmed by Lagrange states that
every positive integer

r = ξ−ξ

is represented by an integral element ξ of the algebraic skew–plane. A theorem of Jacobi
states that the number of representations is twenty–four times the sum of the odd positive
divisors of r.

The proof of the theorem by Adolf Hurwitz applies a Euclidean algorithm for integral
elements of the algebraic skew–plane. If α is an integral element of the algebraic skew–
plane and if β is a nonzero integral element of the algebraic skew–plane, an integral element
γ of the algebraic skew–plane exists which satisfies the inequality

(α− βγ)−(α− βγ) < β−β.

A right ideal of the integral elements of the algebraic skew–plane, which contains a
nonzero element, contains a nonzero element β which minimizes β−β. An integral element
of the algebraic skew–plane which belongs to the ideal is a product

α = βγ

with γ an integral element of the algebraic skew–plane.

If an integral element ω of the algebraic skew–plane represents

2 = ω−ω,
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the element ωξω−1 of the algebraic skew–plane is integral whenever ξ is an integral element
of the algebraic skew–plane. The ideal generated by ω is independent of the choice of
integral element which represents two.

When ρ is a positive integer or is the product of a positive integer and an integral
element of the algebraic skew–plane which represents two, the left ideal generated by ρ
is a right ideal since it contains ξ− whenever it contains ξ. The quotient space is a ring
which inherits a conjugation. Integral elements of the algebraic skew–plane are said to be
congruent modulo ρ if they represent the same element of the quotient space.

When ρ1 and ρ2 are relatively prime positive integers, or when one is an odd positive
integer and the other is the product of a relatively prime positive integer and an integral
element of the algebraic skew–plane which represents two, the quotient ring modulo ρ1ρ2

is isomorphic to the Cartesian product of the quotient ring modulo ρ1 and the quotient
ring modulo ρ2. The quotient ring is said to be p–adic when ρ is a power of a prime p
or when ρ is the product of a power of the even prime p and an integral element of the
algebraic skew–plane which represents the even prime.

The quotient ring is isomorphic to the ring of quaternions with coordinates in the
integers modulo ρ when ρ is an odd positive integer. When ρ is an integral element of the
algebraic skew–plane which represents two, the quotient space modulo ρ is a field of four
elements obtained by adjoining a cube root of unity to the integers modulo two.

When ρ is twice an integral element of the algebraic skew–plane which represents two,
the quotient space modulo ρ contains sixty–four elements of which forty–eight are in-
vertible. Twenty–four invertible elements have conjugate congruent to the inverse and
twenty–four have conjugate congruent to minus the inverse. An element whose conjugate
is congruent to its inverse is represented by an integral element of the algebraic skew–plane
with conjugate as inverse.

The algebraic line is the field of self–conjugate elements of the algebraic skew–plane.
The elements of the algebraic line are rational numbers. An algebraic plane is defined
by an integral element ι of the algebraic skew–plane which is not self–conjugate. The
algebraic plane is the field of elements of the algebraic skew–plane which commute with ι.
An algebraic plane contains ξ− whenever it contains ξ. An element

α+ ιβ

of the algebraic plane is defined by rational numbers α and β.

A character χ modulo ρ is defined for a positive integer ρ whose prime divisors are
divisors of ι−ι. The character is a function χ(ξ) of ξ in the algebraic line which vanishes
when ξ is nonintegral, which has equal values at integral elements which are congruent
modulo ρ, which satisfies the identity

χ(ξη) = χ(ξ)χ(η)

for all integral elements ξ and η, and which has a nonzero value at an integral element if,
and only if, the element is invertible modulo ρ.
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A character modulo ρ is said to be primitive modulo ρ if it does not agree on integral
elements which are invertible modulo ρ with a character modulo a proper divisor of ρ.

2. The Dedekind skew–plane

The Dedekind topology of the algebraic skew–plane originates in the Dedekind con-
struction of the real numbers from the rational numbers. Convexity introduces topology.

A convex combination
α(1− t) + βt

of elements α and β of the algebraic skew–plane is defined by a nonnegative rational
number t such that 1− t is nonnegative. A subset of the algebraic skew–plane is said to be
convex if it contains the convex combinations of any two of its elements. An intersection
of convex sets is convex.

The Dedekind topology of the algebraic skew–plane is determined by convexity. The
closure of a nonempty convex subset B of the algebraic skew–plane is the set B− of elements
α of the algebraic skew–plane such that for some, and hence every, element β of B the
convex combination

α(1− t) + βt

belongs to B for every positive rational number t such that 1 − t is nonnegative. The
empty set is a convex set whose closure is defined to be itself. The closure of a convex
subset of the algebraic skew–plane is a convex subset whose closure is equal to itself.

A convex subset of the algebraic skew–plane is said to be open if it is disjoint from
the closure of every disjoint convex set. A nonempty convex subset A of the algebraic
skew–plane is open if, and only if, for every element α of A and every element β of the
algebraic skew–plane, a positive rational number t exists such that 1 − t is nonnegative
and such that the convex combination

α(1− t) + βt

belongs to A. If A is an open convex set and if B is a convex set, then the intersection
of A with the closure of B is contained in the closure of the intersection of A with B. A
finite intersection of open convex sets is open.

The algebraic skew–plane is a Hausdorff space whose open sets are defined as the unions
of open convex sets. A subset of the algebraic skew–plane is said to be closed if it is the
complement of an open set. Finite unions of closed sets are closed. Intersections of closed
sets are closed. A convex set is closed if, and only if, its closure is equal to itself.

The Hahn–Banach theorem formulates a property of convex sets which is implicit in
the Dedekind construction of real numbers from the rational numbers. A nonempty open
convex set A which is disjoint from a nonempty convex set B is contained in an open
convex set which is disjoint from B and whose complement is convex.

Addition is continuous as a transformation of the Cartesian product of the algebraic
skew–plane with itself into the algebraic skew–plane when the algebraic skew–plane is
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given the Dedekind topology. The completion of the algebraic skew–plane in the uniform
Dedekind topology is the space of quaternions

t+ ix+ jy + kz

whose coordinates x, y, z, and t are real numbers. The Dedekind construction of the com-
pletion is applicable to the algebraic skew–plane. The Cauchy construction of a completion
applies in every uniform topology.

A Cauchy class of closed sets is defined by two conditions. The intersection of a finite
number of members of the class is always nonempty. Whenever an open set U contains the
origin, a member B of the class exists such that all differences b − a of elements a and b
of B belongs to U . Cauchy classes are considered equivalent when they are contained in a
common Cauchy class. The union of equivalent Cauchy classes is a maximal Cauchy class.
The maximal Cauchy class determined by an element of the algebraic skew–plane is the
class of all closed sets containing the element. The set of maximal Cauchy classes admits
a convex structure and a topology compatible with the convex structure and topology of
the algebraic skew–plane. The maximal Cauchy classes determined by elements of the
algebraic skew–plane form a dense subset of the resulting completion, which is isomorphic
to the space of quaternions with real coordinates. The Dedekind skew–plane is defined as
the completion of the algebraic skew–plane in the Dedekind uniform topology.

The Baire subsets of the Dedekind skew–plane are defined in two equivalent ways.
The Baire subsets are the smallest class of subsets containing the open sets such that a
countable intersection of members of the class is a member of the class and a countable
union of members of the class is a member of the class. The Baire subsets are the smallest
class of subsets containing the closed sets such that a countable union of members of the
class is a member of the class and a countable intersection of members of the class is a
member of the class.

The Dedekind plane determined by an algebraic plane is the set of elements of the
Dedekind skew–plane which commute with elements of the algebraic plane. The Dedekind
plane is a field which contains ξ− whenever it contains ξ. The Dedekind line is the subset
of the Dedekind plane whose elements are the self–conjugate elements of the Dedekind
skew–plane. The elements of the Dedekind line are real numbers.

The Dedekind topology of the Dedekind plane is the subspace topology of the Dedekind
topology of the Dedekind skew–plane. The Dedekind topology of the Dedekind line is the
subspace topology of the Dedekind topology of the Dedekind plane. Since an element of
the Dedekind plane is a unique sum

x+ ιy

for real numbers x and y, the Dedekind plane is isomorphic in additive structure to the
Cartesian product of two Dedekind lines. The Dedekind topology of the Dedekind plane
is the Cartesian product topology of the Dedekind topologies of two Dedekind lines.

The complementary space to the Dedekind plane in the Dedekind skew–plane is the set
of skew–conjugate elements ξ of the Dedekind skew–plane which satisfy the identity

ξη = η−ξ
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for every element η of the Dedekind plane. An element of the Dedekind skew–plane is the
unique sum of an element of the Dedekind plane and an element of the complementary
space to the Dedekind plane in the Dedekind skew–plane. The Dedekind topology of the
complementary space to the Dedekind plane in the Dedekind skew–plane is the subspace
topology of the Dedekind topology of the Dedekind skew–plane.

Since an element of the complementary space to the Dedekind plane in the Dedekind
skew–plane is a unique sum

ix+ jy + kz

for real numbers x, y, z such that

(ι−i− iι)x+ (ι−j − jι)y + (ι−k − kι) = 0,

the complementary space to the Dedekind plane in the Dedekind skew–plane is isomorphic
in additive structure to the Cartesian product of two Dedekind lines. The Dedekind
topology of the complementary space to the Dedekind plane in the Dedekind skew–plane
is the Cartesian product topology of the Dedekind topologies of two Dedekind lines.

Open subsets and closed subsets of the Dedekind plane and of the Dedekind line are
Baire subsets of the Dedekind skew–plane. Open subsets and closed subsets of the com-
plementary space to the Dedekind plane in the Dedekind skew–plane are Baire subsets of
the Dedekind skew–plane.

Lebesgue measure is chosen as the canonical measure for the Dedekind line. Convexity
is an underlying concept in the construction of the measure. An open subset of the line is
a countable union of disjoint convex open subsets. The measure of an open set is defined
as the sum of the measures of convex open subsets with b−a as the measure of an interval
(a, b) and with infinite measure for other convex open sets. The measure is defined on
Baire sets in the unique way such that the measure of a countable union of disjoint sets
is the sum of the measures of the sets. The transformation of the line into itself which
takes ξ into ξ + η is measure preserving for every element η of the line. A nonnegative
measure on the Baire subsets of the line is a constant multiple of Lebesgue measure if the
transformation which takes ξ into ξ + η is measure preserving for every element η of the
line. Multiplication by an element γ of the line multiplies Lebesgue measure by a factor
of the absolute value |γ| of γ.

The Dedekind skew–plane is a Cartesian product of four Dedekind lines since an element

ξ = t+ ix+ jy + kz

of the Dedekind skew–plane has four real coordinates x, y, z, and t. The canonical measure
for the Dedekind skew–plane is a nonnegative measure on Baire subsets which is a con-
stant multiple of the Cartesian product measure of the canonical measures of the Dedekind
lines. The transformation of the Dedekind skew–plane into itself which takes ξ into ξ+η is
measure preserving for every element η of the Dedekind skew–plane. A nonnegative mea-
sure on Baire subsets is a constant multiple of the canonical measure if the transformation
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which takes ξ into ξ+ η is measuring preserving for every element η. Multiplication by an
element γ of the Dedekind skew–plane multiplies the canonical measure by

(γ−γ)2 = |γ|4.

The definition of the canonical measure for the Dedekind skew–plane is made by anal-
ogy with the definition of the canonical measure for the Dedekind line. Elements of the
Dedekind skew–plane are congruent modulo integral elements of the algebraic skew–plane
when their difference is integral. A fundamental domain is the set of elements

ξ + t+ ix+ jy + kz

which satisfy the inequalities
−1 < 2t < 1

and
−1 < 2x < 1

and
−1 < 2y < 1

and
−1 < 2z < 1

and
−1 < t± x± y +±z < 1.

Every element of the Dedekind skew–plane is congruent to an element of the closure of
the fundamental domain. Congruent elements of the fundamental domain are equal. The
canonical measure for the Dedekind skew–plane is defined so that the fundamental domain
and its closure have measure one. The canonical measure for the Dedekind skew–plane is
twice the Cartesian product measure for the canonical measures for coordinate lines.

Since the Dedekind plane is a Cartesian product of two Dedekind lines, the canonical
measure for the Dedekind plane is defined as a constant multiple of the Cartesian product
measure of the canonical measures of two Dedekind lines. When an element of the Dedekind
plane is written as a unique sum

x+ ιy

for real numbers x and y, the canonical measure for the Dedekind plane is obtained from the
Cartesian product measure of the canonical measures of the Dedekind lines on multiplying
by

1
2 |ι− ι−|.

The canonical measure is a nonnegative measure on the Baire subsets of the plane such
that the transformation ξ into ξ + η is measure preserving for every element η of the
plane. A nonnegative measure on the Baire subsets of the plane is a constant multiple of
the canonical measure if the transformation α into ξ + η is measure preserving for every
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element η of the plane. Multiplication by an element γ of the plane multiplies the canonical
measure by a factor of

γ−γ = |γ|2.

The canonical measure for the complementary space to the Dedekind plane in the
Dedekind skew–plane is defined as a constant multiple of the Cartesian product measure
of the canonical measure for two Dedekind lines. At least one of the coefficients

ι−i− iι, ι−j − jι, ι−k − kι

is nonzero. If for example
ι−k − kι

is nonzero, real numbers α and β are defined by the equations

α(ι−k − kι) = ι−i− iι

and
β(ι−k − kι) = ι−j − jι.

When elements
(i− αk)x+ (j − βk)y

of the complementary space to the Dedekind plane in the Dedekind skew–plane are parametrized
by real numbers x and y, the canonical measure for the complementary space to the
Dedekind plane in the Dedekind skew–plane is obtained from the Cartesian product mea-
sure of the canonical measures for the Dedekind lines on multiplying by

2|iα+ jβ + k|.

The canonical measure is a nonnegative measure on the Baire subsets of the complemen-
tary space such that the transformation ξ into ξ+η is measure preserving for every element
η of the complementary space. A nonnegative measure on the Baire subsets of the comple-
mentary space is a constant multiple of the canonical measure if the transformation ξ into
ξ+η is measure preserving for every element η of the complementary space. Multiplication
by an element γ of the Dedekind plane is a transformation of the complementary space
into itself which multiplies the canonical measure by a factor of

γ−γ = |γ|2.

The Dedekind skew–plane is the Cartesian product of the Dedekind plane and the
complementary space to the Dedekind plane in the Dedekind skew–plane. The Dedekind
topology of the skew–plane is the Cartesian product topology of the Dedekind topology of
the plane and the Dedekind topology of the complementary space. The canonical measure
for the skew–plane is the Cartesian product measure of the canonical measure for the plane
and the canonical measure for the complementary space.
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3. Adic skew–planes

The familiar Dedekind topology prepares topologies which are as well related to addition
and multiplication as the Dedekind topology.

An element ξ of the algebraic skew–plane is said to be integral modulo r for a positive
integer r if nξ is integral for a positive integer n which is relatively prime to r. The
elements of the algebraic skew–plane which are integral modulo r form a subring which
contains ξ− whenever it contains ξ. An element of the subring is said to be divisible by r
if it is the product of r and an element of the subring. The elements of the subring which
are divisible by r form an ideal which contains ξ− whenever it contains ξ. Elements of
the quotient ring are represented by integral elements of the algebraic skew–plane. The
quotient ring of the ring of integral elements modulo r is isomorphic to the quotient ring
of the ring of integral elements.

The quotient ring modulo r is a finite ring which inherits a conjugation. The discrete
topology is the unique topology for which a finite set is a Hausdorff space. Addition and
multiplication are continuous as transformations of the Cartesian product of the quotient
ring with itself into the quotient ring.

An adic topology is defined on the algebraic skew–plane by a set of generating primes
which contains two and the prime divisors of ι−ι when an algebraic plane is defined by ι.

The adic topology is initially defined on the set of elements of the algebraic skew–plane
which are integral modulo r for every generating positive integer r. The subset which are
open and closed determine the topology since every open set is a union of open and closed
sets and every closed set is an intersection of open and closed sets. A set is defined as open
and closed if for some generating positive integer r the set is an inverse image of some
subset of the quotient space modulo r.

The adic topology of the algebraic skew–plane is derived from the adic topology of the
set of elements which are integral modulo r for every positive integer r. It is sufficient
to define the sets which are open and closed since every open set is a union of open and
closed sets and every closed set is an intersection of open and closed sets. A subset of the
algebraic skew–plane is defined to be open and closed if for every positive integer r the set
of products rξ with ξ in the set which are integral modulo n for every generating positive
integer n is open and closed.

The algebraic skew–plane is a Hausdorff space in the adic topology. Addition is contin-
uous as a transformation of the Cartesian product of the algebraic skew–plane with itself
into the algebraic skew–plane. Multiplication by an element of the algebraic skew–plane
is continuous as a transformation of the algebraic skew–plane into itself. Conjugation is
continuous as a transformation of the algebraic skew–plane into itself.

The adic skew–plane is the Cauchy completion of the algebraic skew–plane in the uni-
form adic topology. Addition extends continuously as a transformation of the Cartesian
product of the adic skew–plane with itself into the adic skew–plane. Multiplication by
an element of the algebraic skew–plane extends continuously as a transformation of the
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adic skew–plane into itself. Conjugation extends continuously as a transformation of the
adic skew–plane into itself. The adic skew–plane is a ring on which conjugation acts as
an anti–automorphism. The adic line is defined as the ring of self–conjugate elements of
the adic skew–plane. The adic skew–plane is isomorphic to the ring of quaternions with
coordinates in the adic line.

The Baire subsets of the adic skew–plane are the smallest class of sets containing the
open and closed sets such that a countable union of members of the class is a member of
the class and a countable intersection of members of the class is a member of the class.

Integral elements of the adic skew–plane are defined as elements of the closure of the
elements of the algebraic skew–plane which are integral modulo r for every generating
positive integer r. The set of integral elements of the adic skew–plane is a compact subring
which contains ξ− whenever it contains ξ. Addition and multiplication are continuous as
transformations of the Cartesian product of the ring with itself into the ring. The set
of integral elements of the adic skew–plane which are divisible by a generating positive
integer r is a closed ideal which contains ξ− whenever it contains ξ. The quotient ring of
the ring of integral elements of the adic skew–plane modulo the ideal is isomorphic to the
quotient ring of the ring of integral elements of the algebraic skew–plane modulo the ideal
of elements divisible by r.

An integral element of the adic skew–plane is said to be p–adic for a generating prime p
if it is divisible by every generating positive integer which is not divisible by p. The p–adic
elements of the ring of integral elements of the adic skew–plane form a compact ideal which
contains ξ− whenever it contains ξ. The ring of integral elements of the adic skew–plane
is isomorphic to the Cartesian product of its p–adic ideals taken over all generating primes
p. The topology of the ring of integral elements of the adic skew–plane is the Cartesian
product topology of the p–adic ideals.

An element of the adic skew–plane is said to be p–adic for a generating prime p if its
product with some generating positive integer is a p–adic integral element of the adic skew–
plane. The p–adic elements of the adic skew–plane form a closed ideal which contains ξ−

whenever it contains ξ. A p–adic line is the field of self–conjugate elements of a p–adic
ideal. The elements of a p–adic line are identified with p–adic numbers. The ring of p–adic
elements is isomorphic to the ring of quaternions whose coordinates are p–adic numbers.
The adic skew–plane is isomorphic to a subring of the Cartesian product of its p–adic
ideals taken over all generating primes p. An element of the Cartesian product represents
an element of the adic skew–plane if, and only if, its p–adic component is integral for all
but a finite number of generating primes p. The topology of the adic skew–plane is the
subspace topology of the Cartesian product topology of the p–adic ideals.

An adic plane is a commutative subring of the adic skew–plane which contains an
element ξ if, and only if, it contains the p–adic component of ξ for every generating prime
p. When p is a generating prime, the adic plane is assumed to contain some p–adic element
of the adic skew–plane which is not self–conjugate. The p–adic component of ι is assumed
to belong to the adic plane when p is a divisor of ι−ι. When p is a generating prime, a
p–adic element of the adic skew–plane is assumed to belong to the adic plane if, and only
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if, it commutes with some p–adic element of the adic plane which is not self–conjugate.
The field of p–adic elements of the adic plane is a quadratic extension of the field of p–adic
numbers. When p is an odd prime, an integral element ω of the field exists which represents

p = ω−ω.

The adic plane is said to be rectangular if an integral element ω of the field exists which
represents

p = ω−ω

when p is the even prime. The adic plane is said to be hexagonal when it is not rectangular.

The complementary space to the adic plane in the adic skew–plane is the set of skew–
conjugate elements ξ of the adic skew–plane which satisfy the identity

ξη = η−ξ

for every element η of the adic plane. An element of the adic skew–plane is the unique
sum of an element of the adic plane and an element of the complementary space to the
adic plane in the adic skew–plane.

The canonical measure for the adic skew–plane is determined on the ring of integral
elements by quotient rings modulo r for generating positive integers r. The canonical
measure for the quotient ring modulo r assigns to a set the number of its elements divided
by the number of elements in the quotient ring. The inverse image of a subset of the
quotient ring is an open and closed set of integral elements which is assigned the same
measure. The measure is defined on Baire sets of integral elements so that the measure of
a countable union of disjoint sets is the sum of the measures of the sets. The measure of a
Baire subset C of the adic skew–plane is defined as the least upper bound of products of r4

with the measure of the set of integral products rγ with γ in C taken over all generating
positive integers r.

The adic plane is a Hausdorff space in the subspace topology of the adic skew–plane.
The canonical measure for the adic plane is determined on the ring of integral elements by
quotient rings modulo r for generating positive integers r. The canonical measure for the
quotient ring modulo r assigns to a set the number of its elements divided by the number
of elements in the quotient ring modulo r. The inverse image of a subset of the quotient
ring modulo r is an open and closed set of integral elements of the adic plane which is
given the same measure. The measure is defined on Baire sets of integral elements so that
the measure of a countable union of disjoint sets is the sum of the measures of the sets.
The measure of a Baire subset C of the adic plane is defined as the least upper bound of
products of r2 with the measure of the set of integral products rγ with γ in C taken over
the generating positive integers r.

The complementary space to the adic plane in the adic skew–plane is a Hausdorff space
in the subspace topology of the adic skew–plane. A subset of the complementary space
is open if, and only if, it is a union of sets which are open and closed. A subset of the
complementary space is closed if, and only if, it is an intersection of spaces which are



12 LOUIS DE BRANGES September 4, 2009

open and closed. The complementary space is the image of the adic skew–plane under a
homomorphism of additive structure whose kernel is the adic plane.

A subset A of the complementary space is open and closed if, and only if, an open and
closed subset A′ of the adic skew–plane is defined as the set of elements a+ b with a in A
and b an integral element of the adic plane. The canonical measure of an open and closed
subset A of the complementary space is defined as the canonical measure of the open and
closed subset A′ of the adic skew–plane. The canonical measure is defined on Baire subsets
of the complementary space so that the measure of a countable union of disjoint sets is
the sum of the measures of the sets. The canonical measure for the adic skew–plane is the
Cartesian product measure of the canonical measure for the adic plane and the canonical
measure for the complementary space to the adic plane in the adic skew–plane.

The adic line is a Hausdorff space in the subspace topology of the adic skew–plane.
The canonical measure for the adic line is determined on the ring of integral elements
by quotient rings modulo r for generating positive integers r. The canonical measure for
the quotient ring modulo r assigns to a subset the number of its elements divided by the
number of elements in the quotient ring modulo r. The inverse image of a subset of the
quotient ring modulo r is an open and closed set of integral elements of the adic line which
is given the same measure. The measure is defined on Baire sets of integral elements of
the adic line so that the measure of a countable union of disjoint sets is the sum of the
measures of the sets. The measure of a Baire subset C of the adic line is defined as the
least upper bound of products of r with the measure of the set of integral products rγ
with γ in C taken over the generating positive integers r.

The modulus of an invertible element λ of the adic line is defined as the positive rational
number |λ| which is a ratio of generating positive integers such that

|λ|−1λ

is an integral element of the adic line with integral inverse. The modulus of an invertible
element λ of the adic skew–plane is defined as the positive solution |λ| of the equation

|λ|2 = |λ−λ|.
The modulus of a noninvertible element of the adic skew–plane is infinite.

Multiplication by an invertible element λ of the adic skew–plane multiplies the canonical
measure by a factor of |λ|−4. Multiplication by an invertible element λ of the adic plane
multiplies the canonical measure by a factor of |λ|−2. Multiplication by an invertible ele-
ment λ of the adic line multiplies the canonical measure by a factor of |λ|−1. Multiplication
by noninvertible elements annihilates canonical measures.

A character χ modulo ρ is a function χ(ξ) of ξ in the algebraic line which admits a
unique continuous extension as a function χ(ξ) of ξ in the adic line. The function of ξ in
the adic line vanishes when ξ is nonintegral, has equal values at integral elements which
are congruent modulo ρ, satisfies the identity

χ(ξη) = χ(ξ)χ(η)

for all integral elements ξ and η, and has a nonzero value at an integral element if, and
only if, the element is invertible modulo ρ.
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4. Product skew–planes

A product skew–plane is the Cartesian product of the Dedekind skew–plane and an
adic skew–plane. The product skew–plane is the set of pairs ξ = (ξ+, ξ−) with ξ+ in
the Dedekind skew-plane and ξ− in the adic skew-plane. The product skew–plane is a
Hausdorff space in the Cartesian product topology of the Dedekind topology and the adic
topology. Addition is defined on the product skew-plane so that the coordinate projections
are homomorphisms of additive structure. If ω is an element of the algebraic skew–plane,
continuous transformations of the product skew-plane into itself are defined by taking
ξ = (ξ+, ξ−) into

ωξ = (ωξ+, ωξ−)

and
ξω = (ξ+ω, ξ−ω).

A product plane is constructed from a product skew–plane when a Dedekind plane
and an adic plane are constructed from an algebraic plane. The product plane is the
set of elements ξ = (ξ+, ξ−) of the product skew-plane whose Dedekind component ξ+
belongs to the Dedekind plane and whose adic component ξ− belongs to the adic plane.
The topology of the product plane is defined as the Cartesian product topology of the
Dedekind topology and the adic topology. The topology of the product plane coincides
with the subspace topology of the topology of the product skew-plane.

The Cartesian product of the Dedekind plane and the complementary space to the adic
plane in the adic skew–plane is the set of elements ξ = (ξ+, ξ−) of the product skew–plane
with Dedekind component ξ+ in the Dedekind plane and with adic component ξ− in the
complementary space to the adic plane in the adic skew–plane. The Cartesian product
topology coincides with the subspace topology from the product skew–plane.

The Cartesian product of the complementary space to the Dedekind plane in the
Dedekind skew–plane and the adic plane is the set of elements ξ = (ξ+, ξ−) of the product
skew–plane with Dedekind component ξ+ in the complementary space to the Dedekind
plane in the Dedekind skew–plane and with adic component ξ− in the adic plane. The
Cartesian product topology coincides with the subspace topology from the product skew–
plane.

The Cartesian product of the complementary space to the Dedekind plane in the
Dedekind skew–plane and the complementary space to the adic plane in the adic skew–
plane is the set of elements ξ = (ξ+, ξ−) of the product skew–plane with Dedekind compo-
nent ξ+ in the complementary space to the Dedekind plane in the Dedekind skew–plane
and with adic component ξ− in the complementary space to the adic plane in the adic
skew–plane. The Cartesian product topology coincides with the subspace topology from
the product skew–plane.

The complementary space to the product plane in the product skew–plane is a subspace
of the product skew–plane which is a Cartesian product of three subspaces of the product
skew–plane: 1) the Cartesian product of the Dedekind plane and the complementary space
to the adic plane in the adic skew–plane, 2) the Cartesian product of the complementary
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space to the Dedekind plane in the Dedekind skew–plane and the adic skew–plane, and 3)
the Cartesian product of the complementary space to the Dedekind plane in the Dedekind
skew–plane and the complementary space to the adic plane in the adic skew–plane. The
Cartesian product topology coincides with the subspace topology from the product skew–
plane.

An element of the product skew–plane is the unique sum of an element of the product
plane and an element of the complementary space to the product in the product skew–
plane. The topology of the product skew–plane coincides with the Cartesian product
topology of the topology of the product plane and the topology of the complementary
space to the product plane in the product skew–plane.

The canonical measure for the product skew–plane is defined as the Cartesian product
measure of the canonical measure for the Dedekind skew–plane and the canonical measure
for the adic skew–plane.

The canonical measure for the product plane is defined as the Cartesian product measure
of the canonical measure for the Dedekind plane and the canonical measure for the adic
plane.

The canonical measure for the Cartesian product of the complementary space to the
Dedekind plane in the Dedekind skew–plane and the adic plane is defined as the Cartesian
product measure of the canonical measure for the complementary space to the Dedekind
plane in the Dedekind skew–plane and the canonical measure for the adic plane.

The canonical measure for the Cartesian product of the complementary space to the
Dedekind plane in the Dedekind skew–plane and the complementary space to the adic
plane in the adic skew–plane is defined as the Cartesian product measure of the canonical
measure for the complementary space to the Dedekind plane in the Dedekind skew–plane
and the canonical measure for the complementary space to the adic plane in the adic
skew–plane.

The canonical measure for the complementary space to the product plane in the product
skew–plane is defined as the Cartesian product measure of three measures: 1) the canonical
measure for the Cartesian product of the Dedekind plane and the complementary space to
the adic plane in the adic skew–plane, 2) the canonical measure for the Cartesian product
of the complementary space to the Dedekind plane in the Dedekind skew–plane and the
adic plane, and 3) the canonical measure for the Cartesian product of the complementary
space to the Dedekind plane in the Dedekind skew–plane and the complementary space to
the adic plane in the adic skew–plane.

The canonical measure for the product skew–plane is the Cartesian product measure of
the canonical measure for the product plane and the canonical measure for the comple-
mentary space to the product plane in the product skew–plane.

A quotient skew–plane of the product skew–plane is defined by an equivalence relation
when all primes are generating primes. A closed subspace of the product skew–plane
consists of elements ξ = (ξ+, ξ−) whose Dedekind and adic components are elements of the
algebraic skew–plane with zero sum. If ω is an element of the algebraic skew–plane, the
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elements ωξ and ξω of the product skew–plane belong to the subspace whenever ξ belongs
to the subspace. Elements of the product skew–plane are defined to be equivalent if their
difference belongs to the subspace.

The quotient skew–plane is a Hausdorff space in the topology whose open sets are the
sets whose inverse image in the product skew–plane is open and whose closed sets are the
sets whose inverse image in the product skew–plane is closed. Addition is defined on the
quotient skew–plane so that the projection onto the quotient space is a homomorphism of
additive structure. Addition is continuous as a transformation of the Cartesian product
of the quotient skew–plane with itself into the quotient skew–plane. If ω is an element
of the algebraic skew–plane, continuous transformations of the quotient skew–plane into
itself are defined by taking ξ into ωξ and into ξω.

A fundamental domain is the set of elements ξ = (ξ+, ξ−) of the product skew–plane
whose Dedekind component ξ+ satisfies the inequality

ξ−+ξ+ < (ξ+ − λ)−(ξ+ − λ)

for every nonzero integral element λ of the algebraic skew–plane and whose adic component
ξ− is an integral element of the adic skew–plane. The closure of the fundamental domain
is the set of elements ξ = (ξ+, ξ−) of the product skew–plane whose Dedekind component
ξ+ satisfies the inequality

ξ−+ξ+ ≤ (ξ+ − λ)−(ξ+ − λ)

for every nonzero integral element λ of the algebraic skew–plane and whose adic component
ξ− is an integral element of the adic skew–plane. Every element of the product skew–plane
is equivalent to an element of the closure of the fundamental domain. Equivalent elements
of the fundamental domain are equal.

The closure of the fundamental domain is the Cartesian product of a compact subset
of the Dedekind skew–plane of measure one and a compact subset of the adic skew–plane
of measure one. In the Dedekind skew–plane the compact subset is the closure of the
fundamental domain with respect to congruence modulo integral elements. The compact
subset of the adic skew–plane is the set of integral elements.

The quotient skew–plane is a compact Hausdorff space. A subset of the quotient skew–
plane is a Baire set if, and only if, its inverse image in the product skew–plane is a Baire
set. The canonical measure of the quotient skew–plane is defined as the image of the
canonical measure of the product skew–plane as it acts on Baire subsets of the closure of
the fundamental domain.

5. Fourier analysis for the Dedekind skew–plane

The function
exp(2πiξη)

of ξ in the Dedekind line defines a homomorphism of additive structure for the Dedekind
line into multiplicative structure for the complex numbers of absolute value one for every
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element η of the Dedekind line. The homomorphism has value one on every integer ξ if,
and only if, η is an integer. A continuous homomorphism of additive structure for the
Dedekind line into multiplicative structure for the complex numbers of absolute value one
is defined by a unique element η of the adic line.

The Fourier transform of a function f(ξ) of ξ in the Dedekind line, which is integrable
with respect to Lebesgue measure, is a bounded continuous function

g(ξ) =

∫
f(η) exp(2πiξη) dη

of ξ in the Dedekind line which is defined by integration with respect to Lebesgue measure.
Fourier inversion

f(ξ) =

∫
g(η) exp(−2πiξη) dη

applies for almost all elements ξ of the Dedekind line when the function g(ξ) of ξ in the
Dedekind line is integrable with respect to Lebesgue measure. The Fourier transformation
admits a unique continuous extension as an isometric transformation of the Hilbert space
of square integrable functions with respect to Lebesgue measure into itself.

The function
exp(πi(ξ−η + η−ξ))

of ξ in the Dedekind plane is a homomorphism of additive structure for the Dedekind
plane into multiplicative structure for the complex numbers of absolute value one for every
element η of the Dedekind plane. A continuous homomorphism of additive structure for
the Dedekind plane into multiplicative structure for the complex numbers of absolute value
one is determined by a unique element η of the Dedekind plane.

The Fourier transform of a function f(ξ) of ξ in the Dedekind plane, which is integrable
with respect to the canonical measure, is a bounded continuous function

g(ξ) =

∫
f(η) exp(πi(ξ−η + η−ξ))dη

of ξ in the Dedekind plane which is defined by integration with respect to the canonical
measure. Fourier inversion

f(ξ) =

∫
g(η) exp(−πi(ξ−η + η−ξ))dη

applies for almost all elements ξ of the Dedekind plane when the function g(ξ) of ξ in
the Dedekind plane is integrable with respect to the canonical measure. The Fourier
transformation admits a unique continuous extension as an isometric transformation of
the Hilbert space of square integrable functions with respect to the canonical measure into
itself.

The function
exp(πi(ξ−η + η−ξ))
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of ξ in the Dedekind skew–plane defines a homomorphism of additive structure for the
Dedekind skew–plane into multiplicative structure for the complex number of absolute
value one for every element η of the Dedekind skew–plane. A continuous homomorphism
of additive structure for the Dedekind skew–plane into multiplicative structure for the
complex numbers of absolute value one is defined by a unique element η of the Dedekind
skew–plane.

The Fourier transform of a function f(ξ) of ξ in the Dedekind skew–plane, which is
integrable with respect to the canonical measure, is a bounded continuous function.

g(ξ) = 1
2

∫
f(η) exp(πi(ξ−η + η−ξ)) dη

of ξ in the Dedekind skew–plane which is defined by integration with respect to the canon-
ical measure. Fourier inversion

f(ξ) = 1
2

∫
g(η) exp(−πi(ξ−η + η−ξ)) dη

applies for almost all element ξ of the Dedekind skew–plane when the function g(ξ) of ξ in
the Dedekind skew–plane is integrable with respect to the canonical measure. The Fourier
transformation admits a unique continuous extension as an isometric transformation of
the Hilbert space of square integrable functions with respect to the canonical measure into
itself.

The Radon transformation for the Dedekind skew–plane factors the Fourier transforma-
tion for the Dedekind skew–plane as a composition with the Fourier transformation for the
Dedekind plane. The domain of the Radon transformation is the space of functions which
are integrable with respect to the canonical measure. The Radon transformation takes a
function f(ξ) of ξ in the Dedekind skew–plane into a function g(ξ) of ξ in the Dedekind
skew–plane when the identity

g(ωξ) = 1
2

∫
f(ωξ + ωη)dη

holds for almost all elements ξ of the Dedekind plane for every element ω of the Dedekind
skew–plane with conjugate as inverse with integration with respect to the canonical mea-
sure for the complementary space to the Dedekind plane in the Dedekind skew–plane. The
inequality ∫

|g(ωξ)|dξ ≤ 1
2

∫
|f(ξ)|dξ

holds for every element ω of the Dedekind skew–plane with conjugate as inverse with
integration on the left with respect to the canonical measure for the Dedekind plane and
with integration on the right with respect to the canonical measure for the Dedekind
skew–plane.

The Radon transformation for the Dedekind skew–plane is inverted by the Fourier trans-
formation for the Dedekind skew–plane. If the Radon transform of an integrable function
f(ξ) of ξ in the Dedekind skew–plane is equal almost everywhere to the inverse Fourier
transform of an integrable function g(ξ) of ξ in the Dedekind skew–plane, then the Radon
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transform of the function g(ξ) of ξ in the Dedekind skew–plane is equal almost everywhere
to the Fourier transform of the function f(ξ) of ξ in the Dedekind skew–plane.

Symplectic transformations for the Dedekind skew–plane are isometric transformations
of the Hilbert space of square integrable functions with respect to the canonical measure
into itself which are related to the Radon transformation in the same way as the Fourier
transformation.

The Heisenberg group for the Dedekind skew–plane is a twisted Cartesian product of
the Dedekind skew–plane with itself. The elements of the group act as isometric transfor-
mations of the Hilbert space of square integrable functions with respect to the canonical
measure into itself. If α and β are elements of the Dedekind skew–plane, the transforma-
tion S(α, β) is defined to take a function f(ξ) of ξ in the Dedekind skew–plane into the
function

exp(πi(β−ξ + ξ−β))f(ξ + α)

of ξ in the Dedekind skew–plane. The identity

S(α, β)S(γ, δ) = exp(πi(δ−α + α−δ))S(α+ γ, β + δ)

holds for all elements α, β, γ, and δ of the Dedekind skew–plane.

A symplectic matrix (
A B
C D

)
for the Dedekind skew–plane is a matrix with entries in the Dedekind skew–plane which
has the matrix (

D− −B−
−C− A−

)
as inverse. A nonzero element ω of the Dedekind skew–plane exists such that the matrix(

ω−A ω−B
ω−C ω−D

)
has self–conjugate numbers as entries.

A symplectic transformation associated with a symplectic matrix(
A B
C D

)
is an isometric transformation T of the Hilbert space of square integrable functions with
respect to the canonical measure into itself such that the transformations

S(α, β)T

and
TS(γ, δ)
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are linearly dependent whenever α and β are elements of the Dedekind skew–plane and

(γ, δ) = (α, β)

(
A B
C D

)
.

The Fourier transformation is a symplectic transformation associated with the matrix(
0 1
−1 0

)
.

If h is a real number, a symplectic transformation associated with the matrix(
1 h
0 1

)
is defined by taking a function f(ξ) of ξ in the Dedekind skew–plane into the function

exp(πihξ−ξ)f(ξ)

of ξ in the Dedekind skew–plane. A symplectic transformation associated with the matrix(
ω−1 0

0 ω−

)
is defined by taking a function f(ξ) of ξ in the Dedekind skew–plane into the function

|ω|2f(ξω)

of ξ in the Dedekind skew–plane for every nonzero element ω of the Dedekind skew–plane.

If a symplectic transformation T1 is associated with the matrix(
A1 B1

C1 D1

)
and if a symplectic transformation T2 is associated with the matrix(

A2 B2

C2 D2

)
,

then a symplectic transformation
T = T1T2

is associated with the matrix(
A B
C D

)
=

(
A1 B1

C1 D1

)(
A2 B2

C2 D2

)
.
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An element ω of the Dedekind skew–plane with conjugate as inverse acts on the Hilbert
space of square integrable functions with respect to the canonical measure. An isometric
transformation of the space into itself is defined by taking a function f(ξ) of ξ in the
Dedekind skew–plane into the function f(ωξ) of ξ in the Dedekind skew–plane. The
Hilbert space decomposes into invariant subspaces under the group action. A computation
of invariant subspaces is made in spaces of homogeneous polynomials.

A homogeneous polynomial of degree ν is a function f(ξ) of

ξ = t+ ix+ jy + kz

of ξ in the Dedekind skew–plane which is a linear combination of monomials

xaybzctd

with exponents nonnegative integers whose sum is ν. The functions f(ωξ) and f(ξω) of ξ
in the Dedekind skew–plane are homogeneous polynomials of degree ν for every element
ω of the Dedekind skew–plane with conjugate as inverse if the function f(ξ) of ξ in the
Dedekind skew–plane is a homogeneous polynomial of degree ν. The dimension of the
space of homogeneous polynomials of degree ν is

(1 + ν)(2 + ν)(3 + ν)/6.

The space of homogeneous polynomials of degree ν is a Hilbert space with scalar product
determined so that the monomials form an orthogonal set with

a! b! c! d!

ν!

as the scalar self–product of the monomial

xaybzctd

with nonnegative integers as exponents whose sum is ν. Isometric transformations of the
space into itself are defined by taking a function f(ξ) of ξ in the Dedekind skew–plane into
the functions f(ωξ) and f(ξω) of ξ in the Dedekind skew–plane for every element ω of the
Dedekind skew–plane with conjugate as inverse.

Scalar products of homogeneous polynomials of degree ν are computed by integration
with respect to the canonical measure for the compact group of elements of the Dedekind
skew–plane with conjugate as inverse. The canonical measure is a nonnegative measure on
Baire subsets which is determined within a constant factor by invariance under the group
action: A measure preserving transformation of the group into itself is defined by taking
ξ into ωξ for every element ω of the group. The measure is defined so that the group has
measure

8π.
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The compact group is a normal subgroup of the multiplicative group of nonzero elements
of the Dedekind skew–plane. The compact group is the kernel of the homomorphism of the
group of nonzero elements of the Dedekind skew–plane onto the positive half–line which
takes ξ into ξ−ξ. The homomorphism takes the canonical measure for the Dedekind skew–
plane into the nonnegative measure on the Baire subsets of the positive half–line whose
value on a set is an integral

8π

∫
tdt

over the set with respect to Lebesgue measure.

The scalar product of functions f(ξ) and g(ξ) of ξ in the Dedekind skew–plane which
are homogeneous polynomials of degree ν is computed as an integral

8π〈f, g〉 =

∫
g(ξ)−f(ξ)dξ

with respect to the canonical measure for the compact group of elements of the Dedekind
skew–plane with conjugate as inverse.

The Laplacian
∂2

∂t2
+

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

is applied in the decomposition of the Hilbert space into invariant subspaces. The Lapla-
cian annihilates homogeneous polynomials of degree less than two and takes homogeneous
polynomials of greater degree ν into homogeneous polynomials of degree ν−2. The Lapla-
cian commutes with the transformations which take a function f(ξ) of ξ in the Dedekind
skew–plane into the functions f(ωξ) and f(ξω) of ξ in the Dedekind skew–plane for ev-
ery element ω of the Dedekind skew–plane with conjugate as inverse. A homogeneous
polynomial of degree ν is said to be harmonic if it is annihilated by the Laplacian. A
homogeneous polynomial of degree less than two is harmonic. A homogeneous polynomial
of degree ν greater than one is harmonic if, and only if, it is orthogonal to products of ξ−ξ
with homogeneous polynomials of degree ν−2. The dimension of the space of homogeneous
harmonic polynomials of degree ν is

(1 + ν)2.

A function f(ξ) of ξ in the Dedekind skew–plane is said to be of spin µ for an integer
µ if the identity

f(ξω) = ωµf(ξ)

holds for every element ω of the Dedekind plane with conjugate as inverse. If a function
f(ξ) of ξ in the Dedekind skew–plane is a homogeneous harmonic polynomial of degree
ν, then the function f(ξω) of ξ in the Dedekind skew–plane is a homogeneous harmonic
polynomial of degree ν for every element ω of the Dedekind plane with conjugate as inverse.
The Hilbert space of homogeneous harmonic polynomials of degree ν is the orthogonal sum



22 LOUIS DE BRANGES September 4, 2009

of subspaces whose elements are of spin µ for integers µ of the same parity as ν which
satisfy the inequalities

−ν ≤ µ ≤ ν.

The space of homogeneous harmonic polynomials of order ν and spin µ admits an
orthogonal basis indexed by the integers n of the same parity as ν which satisfy the
inequalities

−ν ≤ n ≤ ν.
A basic element is a function f(ξ) of ξ in the Dedekind skew–plane which satisfies the
identity

f(ωξ) = ωnf(ξ)

for every element ω of the Dedekind plane with conjugate as inverse. The dimension of
the space of homogeneous harmonic polynomials of degree ν and spin µ is

1 + ν.

If a function f(ξ) of ξ in the Dedekind skew–plane is a homogeneous harmonic poly-
nomial of degree ν and spin µ, then the function f(ωξ) of ξ in the Dedekind skew–plane
is a homogeneous harmonic polynomial of degree ν and spin µ for every element ω of the
Dedekind skew–plane with conjugate as inverse. Every homogeneous harmonic polyno-
mial of degree ν and spin µ is a finite linear combination of functions f(ωξ) of ξ in the
Dedekind skew–plane for elements ω of the Dedekind skew–plane with conjugate as inverse
if the function f(ξ) of ξ in the Dedekind skew–plane does not vanish identically.

If a function φ(ξ) of ξ in the Dedekind skew–plane is a homogeneous harmonic polyno-
mial of degree ν, the function

φ(ξ) exp(πizξ−ξ)

of ξ in the Dedekind skew–plane is an eigenfunction of the Radon transformation for the
eigenvalue

i/z

when z is in the upper half–plane. The Laplace transformation of harmonic φ permits
a spectral analysis of the Radon transformation in a space determined by the harmonic
polynomial. The Laplace transformation is defined when the harmonic polynomial has
norm one in the Hilbert space of homogeneous polynomials of degree ν.

The domain of the Laplace transformation is the Hilbert space of functions f(ξ) of
ξ in the Dedekind skew–plane which are square integrable with respect to the canonical
measure and which satisfy the identity

φ(ξ)f(ωξ) = φ(ωξ)f(ξ)

for every element ω of the Dedekind skew–plane with conjugate as inverse. The Laplace
transform of a function f(ξ) of ξ in the Dedekind skew–plane is an analytic function

F (z) =

∫
φ(ξ)−f(ξ) exp(πizξ−ξ) dξ
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of z in the upper half–plane defined by integration with respect to the canonical measure.

When
f(ξ) = φ(ξ)h(ξ−ξ),

the Laplace integral reads

(1 + 2ν)F (x+ iy) = 8π

∫ ∞
0

(ξ−ξ)1+νh(ξ−ξ) exp(−πyξ−ξ) exp(πixξ−ξ)d(ξ−ξ)

with x real and y positive. The identity

1
2
(1 + 2ν)2

∫ +∞
−∞ |F (x+ iy)|2dx = 64π2

∫∞
0

(ξ−ξ)2+2ν|h(ξ−ξ)|2 exp(−2πyξ−ξ)d(ξ−ξ)

is an application of the isometric property of the Fourier transformation for the Dedekind
line. Since the identity reads

1
2 (1 + 2ν)

∫ +∞
−∞ |F (x+ iy)|2dx = 8π

∫
(ξ−ξ)1+ν |f(ξ)|2 exp(−2πyξ−ξ)dξ

with integration on the right with respect to the canonical measure, the identity

(1 + 2ν)

∫ ∞
0

∫ +∞

−∞
|F (x+ iy)|2yνdxdy = 8(2π)−νΓ(1 + ν)

∫
|f(ξ)|2dξ

holds with integration on the right with respect to the canonical measure. An analytic
function F (z) of z in the upper half–plane is a Laplace transform if the integral on the left
converges.

The Laplace transformation of harmonic φ computes the adjoint of the Radon transfor-
mation in the Hilbert space of functions f(ξ) of ξ in the Dedekind skew–plane which are
square integrable with respect to the canonical measure and which satisfy the identity

φ(ξ)f(ωξ) = φ(ωξ)f(ξ)

for every element ω of the Dedekind skew–plane with conjugate as inverse. The closure
of the Radon transformation is a maximal dissipative transformation in the Hilbert space
whose adjoint takes a function f(ξ) of ξ in the Dedekind skew–plane into the function g(ξ)
of ξ in the Dedekind skew–plane when the identity∫

φ(ξ)−g(ξ) exp(πizξ−ξ) dξ = (i/z)

∫
φ(ξ)−f(ξ) exp(πizξ−ξ) dξ

holds for z in the upper half–plane with integration with respect to the canonical measure.

A relation T with domain and range in a Hilbert space is said to be maximal dissipative
if

(T − λ−)/(T + λ)
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is an everywhere defined and contractive transformation in the space for some, and hence
every, complex number λ in the right half–plane. The relation is said to be dissipative
if a partially defined contractive transformation is obtained for some, and hence every,
complex number w in the right half–plane. A dissipative transformation admits a maximal
dissipative extension which need not be a transformation.

A maximal dissipative transformation −iH, which is the inverse of the adjoint of the
Radon transformation, is defined in the Hilbert space of square integrable functions with
respect to the canonical measure by taking a function f(ξ) of ξ in the Dedekind skew–plane
into a function g(ξ) of ξ in the Dedekind skew–plane when the identity∫

φ(ξ)−g(ξ) exp(πizξ−ξ)dξ = −iz
∫
φ(ξ)−f(ξ) exp(πizξ−ξ)dξ

holds with integration with respect to the canonical measure for the Dedekind skew–plane
for all z in the upper half–plane whenever φ is a homogeneous harmonic polynomial of
degree ν for some nonnegative integer ν.

A symplectic transformation associated with a symplectic matrix(
A B
C D

)
for the Dedekind skew–plane which has self–conjugate entries is defined by taking a function
f(ξ) of ξ in the Dedekind skew–plane into a function g(ξ) of ξ in the Dedekind skew–plane
when the identity ∫

φ(ξ)−g(ξ) exp(πizξ−ξ)dξ

= (Cz +D)−2−ν
∫
φ(ξ)−f(ξ) exp(πi(Cz +D)−1(Az +B)ξ−ξ)dξ

holds with integration with respect to the canonical measure for the Dedekind skew–plane
for all z in the upper half–plane whenever φ is a homogeneous harmonic polynomial of
degree ν for a nonnegative integer ν.

The Fourier transformation for the Dedekind skew–plane determines an isometric trans-
formation of the Hilbert space of homogeneous harmonic polynomials of degree ν into itself
which commutes with the transformations which take a function f(ξ) of ξ in the Dedekind
skew–plane into the functions f(ωξ) and f(ξω) of ξ in the Dedekind skew–plane for every
element ω of the Dedekind skew–plane with conjugate as inverse. If a function φ(ξ) of ξ in
the Dedekind skew–plane is a homogeneous harmonic polynomial of degree ν, the function

φ∧(ξ) = iνφ(ξ)

of ξ in the Dedekind skew–plane is a homogeneous harmonic polynomial of degree ν. The
Fourier transform of the function

φ(ξ) exp(πizξ−ξ)
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of ξ in the Dedekind skew–plane is the function

(i/z)2+νφ∧(ξ) exp(−πiz−1ξ−ξ)

of ξ in the Dedekind skew–plane when z is in the upper half–plane.

The Laplace transformation for the Dedekind skew–plane computes the Fourier trans-
formation for the Dedekind skew–plane. If a function f(ξ) of ξ in the Dedekind skew–plane
is square integrable with respect to the canonical measure and satisfies the identity

φ(ξ)f(ωξ) = φ(ωξ)f(ξ)

for every element ω of the Dedekind skew–plane with conjugate as inverse, then its Fourier
transform is a function g(ξ) of ξ in the Dedekind skew–plane which is square integrable
with respect to the canonical measure and satisfies the identity

φ∧(ξ)g(ωξ) = φ∧(ωξ)g(ξ)

for every element ω of the Dedekind skew–plane with conjugate as inverse. The identity∫
φ∧(ξ)−g(ξ) exp(πizξ−ξ)dξ = (i/z)2+ν

∫
φ(ξ)−f(ξ) exp(−πiz−1ξ−ξ)dξ

holds with integration with respect to the canonical measure when z is in the upper half–
plane.

The Mellin transformation of harmonic φ for the Dedekind skew–plane is derived from
the Laplace transformation of harmonic φ for the Dedekind skew–plane. The domain of the
Mellin transformation is the set of elements of the domain of the Laplace transformation
which vanish in a neighborhood of the origin. The Laplace transform of a function f(ξ) of
ξ in the Dedekind skew–plane is the analytic function

g(z) =

∫
φ(ξ)−f(ξ) exp(πizξ−ξ) dξ

of z in the upper half–plane defined by integration with respect to the canonical measure.
The Mellin transform of the function f(ξ) of ξ in the Dedekind skew–plane is the analytic
function

F (z) =

∫ ∞
0

g(it)t
1
2 ν−iz dt

of z in the upper half–plane. Since the analytic function

W (z) = π−
1
2 ν−1+izΓ( 1

2
ν + 1− iz)

of z admits the integral representation

W (z) = (ξ−ξ)
1
2 ν+1−iz

∫ ∞
0

exp(−πtξ−ξ)t 1
2 ν−iz dt
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when z is in the upper half–plane, the identity

F (z)/W (z) =

∫
φ(ξ)−f(ξ)(ξ−ξ)iz−

1
2 ν−1 dξ

holds when z is in the upper half–plane with integration with respect to the canonical
measure. The identity

(1 + 2ν)

∫ +∞

−∞
|F (x+ iy)/W (x+ iy)|2dx = 16π2

∫
|f(ξ)|2(ξ−ξ)−2ydξ

holds when y is positive with integration on the right with respect to the canonical measure.
An analytic function F (z) of z in the upper half–plane is the Mellin transform of a function
f(ξ) of ξ in the Dedekind skew–plane which vanishes when ξ−ξ < a if, and only if, the
least upper bound

sup a2y

∫ +∞

−∞
|F (x+ iy)/W (x+ iy)|2dx

taken over all positive y is finite.

6. Fourier analysis for adic skew–planes

Fourier analysis for an adic skew–plane resembles Fourier analysis for a Dedekind skew–
plane when the adic plane is rectangular. The treatment of Fourier analysis is restricted to
adic planes which are rectangular since fundamental examples of the Riemann hypothesis
are constructed with rectangular adic planes.

The function
exp(2πiξ)

of ξ in the algebraic line admits a unique continuous extension as a function

exp(2πiξ)

of ξ in the adic line. When η is in the adic line, the function

exp(2πiξη)

of ξ in the adic line defines a homomorphism of additive structure for the adic line into
multiplicative structure for the complex numbers of absolute value one. The function has
value one on integral elements of the adic line if, and only if, η is an integral element
of the adic line. A continuous homomorphism of additive structure for the adic line into
multiplicative structure for the complex numbers of absolute value one is determined by a
unique element η of the adic line.

The Fourier transform of a function f(ξ) of ξ in the adic line which is integrable with
respect to the canonical measure is the bounded continuous function

g(ξ) =

∫
f(η) exp(2πiξη) dη
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of ξ in the adic line which is defined by integration with respect to the canonical measure.
Fourier inversion

f(ξ) =

∫
g(η) exp(−2πiξη) dη

applies for almost all elements ξ of the adic line when the function g(ξ) of ξ in the adic line
is integrable with respect to the canonical measure. The Fourier transformation admits a
unique continuous extension as an isometric transformation of the Hilbert space of square
integrable functions with respect to the canonical measure into itself.

The function
exp(πi(ξ−η + η−ξ))

of ξ in the adic plane is a homomorphism of additive structure for the adic plane into
multiplicative structure for the complex numbers of absolute value one which has value one
on integral elements if, and only if, η is an integral element of the adic plane. A continuous
homomorphism of additive structure for the adic plane into multiplicative structure for the
complex numbers of absolute value one is determined by a unique element η of the adic
plane.

The Fourier transform of a function f(ξ) of ξ in the adic plane which is integrable with
respect to the canonical measure is the bounded continuous function

g(ξ) =

∫
f(η) exp(πi(ξ−η + η−ξ))dη

of ξ in the adic plane which is defined by integration with respect to the canonical measure
Fourier inversion

g(ξ) =

∫
g(η) exp(−πi(ξ−η + η−ξ))dη

applies for almost all elements ξ of the adic plane when the function g(ξ) of ξ in the adic
plane is integrable with respect to the canonical measure. The Fourier transformation
admits a unique continuous extension as an isometric transformation of the Hilbert space
of square integrable functions with respect to the canonical measure into itself.

The function
exp(πi(ξ−η + η−ξ))

of ξ in the adic skew–plane is a homomorphism of additive structure for the adic skew–
plane into multiplicative structure for the complex numbers of absolute value one which
has value one on integral elements if, and only if, η is an integral element of the adic skew–
plane such that the element 1

2
η−η of the adic line is integral. A continuous homomorphism

of additive structure for the adic skew–plane into multiplicative structure for the complex
numbers of absolute value one is determined by a unique element η of the adic skew–plane.

The Fourier transform of a function f(ξ) of ξ in the adic skew–plane which is integrable
with respect to the canonical measure is the bounded continuous function

g(ξ) = 2

∫
f(η) exp(πi(ξ−η + η−ξ))dη
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of ξ in the adic skew–plane which is defined by integration with respect to the canonical
measure. Fourier inversion

f(ξ) = 2

∫
g(η) exp(−πi(ξ−η + η−ξ))dη

applies for almost all elements ξ of the adic skew–plane when the function g(ξ) of ξ in
the adic skew–plane is integrable with respect to the canonical measure. The Fourier
transformation admits a unique continuous extension as an isometric transformation of
the Hilbert space of square integrable functions with respect to the canonical measure into
itself.

A Heisenberg group for the adic skew–plane applies to functions f(ξ) of ξ in the adic
skew–plane which satisfy constraints modulo ρ for a generating positive integer ρ: The
function vanishes when the p–adic component of ξ is nonintegral for some prime divisor p
of ρ. When ρ is odd, the function has equal values at elements whose p–adic components
are integral and congruent modulo ρ for every prime divisor p of ρ and whose p–adic
components are equal for every other generating prime p. An integral element ω of the
algebraic plane which represents

2 = ω−ω

is chosen when ρ is even. The function has equal values at elements whose p–adic com-
ponents are integral and congruent modulo ρ/ω for every prime divisor p of ρ and whose
p–adic components are equal for every other generating prime p.

Functions to character χ are functions which satisfy the constraints modulo ρ when χ
is a primitive character modulo ρ. A function f(ξ) of ξ in the adic skew–plane which is
of character χ vanishes when the p–adic component of ξ is nonintegral for some prime
divisor p of ρ. When ρ is odd, the function has equal values at elements of the adic kew–
plane whose p–adic components are equal for every prime divisor p of ρ and whose p–adic
components have equal p–adic modulus for every other generating prime p. An integral
element ω of the algebraic plane which represents

2 = ω−ω

is chosen when ρ is even. The function has equal values at elements whose p–adic com-
ponents are integral and congruent modulo ρ/ω for every prime divisor p of ρ and whose
p–adic components have equal p–adic modulus for every other generating prime p.

These conditions imply that the function f(ωξ) of elements ξ of the adic skew–plane with
integral p–adic component for every prime divisor p of ρ is determined by the congruence
class of ω modulo ρ when ω is an integral element of the adic skew–plane whose p–adic
component has integral inverse for every generating prime p not dividing ρ.

A function f(ξ) of ξ in the adic skew–plane which is of character χ satisfies the identity∑
f(ωξ) = χ(r)

∑
f(ωξ)
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for every integer r modulo ρ when the p–adic component of ξ is integral for every prime
divisor p of ρ. Summation on the left is over the congruence classes modulo ρ of integral
elements ω of the adic skew–plane which represent

r = ω−ω

modulo ρ and whose p–adic component has integral inverse for every generating prime p
which is not a divisor of ρ. Summation on the right is over the congruence classes modulo
ρ of integral elements ω of the adic skew–plane which represent

1 = ω−ω

modulo ρ and whose p–adic component has integral inverse for every generating prime p
which is not a divisor of ρ.

The Heisenberg group which applies to functions satisfying the constraints modulo ρ is
the set of pairs (α, β) of elements α and β of the adic skew–plane such that the p–adic
component of α is integral for every prime divisor p of ρ, the p–adic component of ρβ is
integral for every prime divisor p of ρ if ρ is odd, and the p–adic component of ρω−1β
is integral for every prime divisor p of ρ if ρ is even with ω an integral element of the
algebraic plane which represents

2 = ω−ω.

An element (α, β) of the Heisenberg group defines an isometric transformationS(α, β) of
a Hilbert space into itself. The space is the set of functions which are square integrable with
respect to the canonical measure for the adic skew–plane and which satisfy the constraints
modulo ρ. The transformation takes a function f(ξ) of ξ in the adic skew–plane into the
function

exp(πi(β−ξ + ξ−β))f(ξ + α)

of ξ in the adic skew–plane. The identity

S(α, β)S(γ, δ) = exp(πi(δ−α + α−δ))S(α+ γ, β + δ)

holds for all elements (α, β) and (γ, δ) of the Heisenberg group.

A symplectic matrix (
A B
C D

)
for the adic skew–plane which is compatible with constraints modulo ρ is a matrix with
entries in the adic skew–plane which has the matrix(

D− −B−
−C− A−

)
as inverse such that the p–adic components of A and D are integral for every prime divisor
p of ρ, such that the p–adic components of ρ−1C and ρB are integral for every prime divisor
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p of ρ if ρ is odd, and such that the p–adic components of ρ−1ωC and ρω−1B are integral
for every prime divisor p of ρ if ρ is even with ω an integral element of the algebraic plane
which represents

2 = ω−ω.

The conditions imply that

(γ, δ) = (α, β)

(
A B
C D

)
belongs to the Heisenberg group for functions satisfying the constraints modulo ρ whenever
(α, β) belongs to the Heisenberg group for functions satisfying the constraints modulo ρ.

A symplectic transformation associated with a symplectic matrix(
A B
C D

)
which is compatible with the constraints modulo ρ is an isometric transformation T of a
Hilbert space into itself whose elements are the functions which are square integrable with
respect to the canonical measure for the adic skew–plane and which satisfy the constraints
modulo ρ. The transformations

S(α, β)T

and

TS(γ, δ)

are required to be linearly dependent whenever

(γ, δ) = (α, β)

(
A B
C D

)
.

The symplectic matrix (
1 h
0 1

)
is compatible with the constraints modulo ρ when h is an element of the adic line such
that the p–adic component of 1

2
ρh is integral for every prime divisor p of ρ. An associated

symplectic transformation is defined by taking a function f(ξ) of ξ in the adic skew–plane
into the function

exp(πihξ−ξ)f(ξ)

of ξ in the adic skew–plane.

The symplectic matrix (
ω−1 0

0 ω−

)
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is compatible with the constraints modulo ρ when ω is an invertible element of the adic
skew–plane such that the p–adic component of ω is integral and has integral inverse for
every prime divisor p of ρ. An associated symplectic transformation is defined by taking a
function f(ξ) of ξ in the adic skew–plane into the function

|ω|−2f(ξω)

of ξ in the adic skew–plane.

The Radon transformation for the adic skew–plane factors the Fourier transformation
for the adic skew–plane as a composition with the Fourier transformation for the adic plane.
The domain of the Radon transformation is the space of functions which are integrable
with respect to the canonical measure. The Radon transformation takes a function f(ξ) of
ξ in the adic skew–plane into a function g(ξ) of ξ in the adic skew–plane when the identity

g(ωξ) = 2

∫
f(ωξ + ωη)dη

holds for almost all elements ξ of the adic plane for every element ω of the adic skew–plane
with conjugate as inverse with integration with respect to the canonical measure for the
complementary space to the adic plane in the adic skew–plane. The inequality∫

|g(ωξ)|dξ ≤ 2

∫
|f(ξ)|dξ

holds for every element ω of the adic skew–plane with conjugate as inverse with integration
on the left with respect to the canonical measure for the adic plane and with integration
on the right with respect to the canonical measure for the adic skew–plane.

The Radon transform of a function of character χ is a function of character χ. Laplace
transformations for the adic skew–plane permit a spectral analysis of the Radon transfor-
mation on functions of character χ.

A Laplace kernel κ of character χ is a function κ(ξ) of ξ in the adic skew–plane, which
is of character χ and has equal values at elements whose p–adic components are equal for
every prime divisor p of ρ, such that the integral∫

|κ(ξ)|2dξ

with respect to the canonical measure for the adic skew–plane over the set of integral
elements is equal to the measure of the set of integral elements which are invertible modulo
ρ.

The Laplace measure is the nonnegative measure on the Baire subsets of the adic line
which is obtained from the canonical measure for the adic skew–plane under the homo-
morphism which takes ξ into ξ−ξ. Multiplication by an invertible element λ of the adic
line multiplies the Laplace measure by

|λ|−2.
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The set of integral elements of the adic line has measure one.

The domain of the Laplace transformation with kernel κ is the Hilbert space of functions
f(ξ) of ξ in the adic skew–plane which are square integrable with respect to the canonical
measure, which are of character χ, and which satisfy the identity

κ(ξ)f(ωξ) = κ(ωξ)f(ξ)

for every integral element ω of the adic skew–plane with conjugate as inverse.

The range of the Laplace transformation is the Hilbert space of functions g(ξ) of ξ in the
adic line which are square integrable with respect to the Laplace measure, which vanish
when the p–adic component of 2ρξ is nonintegral for some prime divisor p of ρ, and which
satisfy the identity

g(ξω) = g(ξ)χ(ω)−

for every integral element ω of the adic line whose p–adic component has integral inverse
for every generating prime p which is not a divisor of ρ when the p–adic component of 2ρξ
is integral for every prime divisor p of ρ.

The Laplace transform of a function f(ξ) of ξ in the adic skew–plane which is integrable
with respect to the canonical measure is the bounded continuous function

g(ξ) = 2

∫
κ(η)−f(η)χ(η−η) exp(πiξη−η)dη

of ξ in the adic line which is defined by integration with respect to the canonical measure.
The identity ∫

|g(ξ)|2dξ =

∫
|f(ξ)|2dξ

holds with integration on the left with respect to the Laplace measure and with integration
on the right with respect to the canonical measure. The Laplace transformation is defined
so as to maintain the identity.

The domain of the Laplace transformation is an invariant subspace for the Radon trans-
formation. The adjoint of the Radon transformation is a nonnegative self–adjoint trans-
formation in the Hilbert space which takes a function f(ξ) of ξ in the adic skew–plane into
a function g(ξ) of ξ in the adic skew–plane when the identity∫

κ(η)−g(η)χ(η−η) exp(πiξη−η)dη = |ξ|
∫
κ(η)−f(η)χ(η−η) exp(πiξη−η)dη

holds for almost all element ξ of the adic line with respect to the Laplace measure. The
integrals with respect to the canonical measure are interpreted as Laplace transforms when
they are not absolutely convergent.

A nonnegative self–adjoint transformation −iH is defined as the inverse of the adjoint
of the Radon transformation in the Hilbert space of functions which are square integrable
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with respect to the canonical measure for the adic skew–plane. The domain of the Laplace
transformation with kernel k is an invariant subspace.

A symplectic transformation which has the domain of the Laplace transformation with
kernel κ as an invariant subspace is associated with a symplectic matrix(

A B
C D

)
for the adic skew–plane whose entries are self–conjugate and which is compatible with the
constraints modulo ρ. The transformation takes a function f(ξ) of ξ in the adic plane into
a function g(ξ) of ξ in the adic plane when the identity∫

κ(η)−g(η)χ(η−η) exp(πiξη−η)dη

= |Cξ +D|2
∫
κ(η)−f(η)χ(η−η) exp(πi(Cξ +D)−1(Aξ +B)η−η)dη

holds for almost all elements ξ of the adic line with respect to the Laplace measure. The
integrals with respect to the canonical measure are interpreted as Laplace transforms when
they are not absolutely convergent.

A computation of Fourier transforms is an application of the Laplace transformation
with kernel κ. A Laplace kernel κ∧ of character χ− is associated with a Laplace kernel κ of
character χ when χ is a primitive character modulo ρ. If ρ is even, the Fourier transform
of the function of ξ in the adic skew–plane whose value is κ(ξ) when ξ is integral and which
vanishes otherwise is the function of ξ in the adic skew–plane whose value is

4ρ−2κ∧( 1
2ρξ)

when 1
2
ρξ is integral and which vanishes otherwise. When ρ is odd, an integral element ω

of the algebraic plane is chosen which represents

2 = ω−ω.

The Fourier transform of the function of ξ in the adic skew–plane whose value is κ(ξ) when
ξ is integral and which vanishes otherwise is the function of ξ in the adic skew–plane whose
value is

2ρ−2κ∧(ρω−1ξ)

when ρω−1ξ is integral and which vanishes otherwise.

When ρ is even, the Fourier transform of a function f(ξ) of ξ in the adic skew–plane
which belongs to the domain of the Laplace transformation with kernel κ is the function

4ρ−2g( 1
2ρξ)
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of ξ in the adic skew–plane for a function g(ξ) of ξ in the adic skew–plane which belongs
to the domain of the Laplace transformation with kernel κ∧. The identity∫

κ∧(η)−g(η)χ(η−η)− exp(2πiρ−1ξη−η)dη

= |ξ|2
∫
κ(η)−f(η)χ(η−η) exp(−2πiρ−1ξ−1η−η)dη

holds for almost all elements ξ of the adic line with respect to the Laplace measure. The
integrals with respect to the canonical measure are interpreted as Laplace transforms when
they are not absolutely convergent.

When ρ is odd, the Fourier transform of a function f(ξ) of ξ in the adic skew–plane
which belongs to the domain of the Laplace transformation with kernel κ is the function

2ρ−2g(ρω−1ξ)

of ξ in the adic skew–plane for a function g(ξ) of ξ in the adic skew–plane which belongs
to the domain of the Laplace transformation with kernel κ∧. The identity∫

κ∧(η)−g(η)χ(η−η)− exp(πiρ−1ξη−η)dη

= |ξ|2
∫
κ(η)−f(η)χ(η−η) exp(−πiρ−1ξ−1η−η)dη

holds for almost all elements ξ of the adic line with respect to the Laplace measure. The
integrals with respect to the canonical measure are interpreted as Laplace transforms when
they are not absolutely convergent.

7. The Fourier transformation for product skew–planes

Fourier analysis for a product skew–plane introduces the zeta functions whose properties
permit a proof of the Riemann hypothesis.

The Radon transformation for the product skew–plane generates the symplectic trans-
formations which formulate Fourier analysis on the product skew–plane.

The domain of the Radon transformation is the space of functions which are integrable
with respect to the canonical measure for the product skew–plane. The Radon transforma-
tion takes a function f(ξ+, ξ−) of ξ = (ξ+, ξ−) in the product skew–plane into a function
g(ξ+, ξ−) of ξ = (ξ+, ξ−) in the product skew–plane when the identity

g(ω+ξ+, ω−ξ−) =

∫
f(ω+ξ+ + ω+η+, ω−ξ− + ω−η−)dη

holds for almost all elements ξ = (ξ+, ξ−) of the product plane for every element ω+ of the
Dedekind skew–plane with conjugate as inverse and every element ω− of the adic skew–
plane with conjugate as inverse with integration with respect to the canonical measure for
the complementary space to the product plane in the product skew–plane. The inequality∫

|g(ω+ξ+, ω−ξ−)|dξ ≤
∫
|f(ξ+, ξ−)|dξ
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holds for every element ω+ of the Dedekind skew–plane with conjugate as inverse and every
element ω− of the adic skew–plane with conjugate as inverse with integration on the left
with respect to the canonical measure for the product plane and with integration on the
right with respect to the canonical measure for the product skew–plane.

A Heisenberg group for the product skew–plane applies to functions f(ξ+, ξ−) of ξ =
(ξ+, ξ−) in the product skew–plane such that the function of ξ− in the adic skew–plane
satisfies the constraints modulo ρ for every element ξ+ of the Dedekind skew–plane. A
function f(ξ+, ξ−) of ξ = (ξ+, ξ−) in the product skew–plane is said to be of character χ
if the function of ξ− in the adic skew–plane is of character χ for every element ξ+ of the
Dedekind skew–plane. Functions of character χ satisfy the constraints modulo ρ when χ
is a primitive character modulo ρ.

The Heisenberg group for the product skew–plane is the set of pairs (α, β) of elements
α and β of the product skew–plane such that (α+, β+) belongs to the Heisenberg group for
the Dedekind skew–plane and (α−, β−) belongs to the Heisenberg group for the adic skew–
plane. An element (α, β) of the Heisenberg group determines an isometric transformation
S(α, β) of a Hilbert space into itself. The space is the set of functions which are square
integrable with respect to the canonical measure for the product skew–plane and which
satisfy the constraints modulo ρ. The transformation takes a function f(ξ+, ξ−) of ξ =
(ξ+, ξ−) in the product skew–plane into the function

exp(πi(β−+ξ+ + ξ−+β+)) exp(−πi(β−−ξ− + ξ−−β−))f(ξ+ + α+, ξ− + α−)

of ξ = (ξ+, ξ−) in the product skew–plane. The identity

S(α, β)S(γ, δ) = exp(πi(δ−+α+ + α−+δ+)) exp(−πi(δ−−α− + α−−δ−)S(α+ γ, β + δ)

holds for all elements (α, β) and γ, δ) of the Heisenberg group.

A symplectic matrix (
A B
C D

)
for the product skew–plane which is compatible with the constraints modulo ρ is a matrix
with entries in the product skew–plane such that(

A+ B+

C+ D+

)
is a symplectic matrix for the Dedekind skew–plane and(

A− B−
C− D−

)
is a symplectic matrix for the adic skew–plane which is compatible with the constraints
modulo ρ.
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A symplectic transformation T associated with the matrix is an isometric transformation
of a Hilbert space into itself. The space is the set of functions which are square integrable
with respect to the canonical measure for the product skew–plane and which satisfy the
constraints modulo ρ. The transformations

S(α, β)T

and

TS(γ, δ)

are required to be linearly dependent whenever (α, β) and (γ, δ) are elements of the Heisen-
berg group which satisfy the identity

(γ, δ) = (α, β)

(
A B
C D

)
.

A symplectic matrix (
A B
C D

)
for the algebraic skew–plane which is compatible with the constraints modulo ρ is a matrix
with entries in the algebraic skew–plane which is a symplectic matrix for the Dedekind
skew–plane and is a symplectic matrix for the adic skew–plane which is compatible with
the constraints modulo ρ.

A symplectic transformation T associated with the matrix is an isometric transformation
of the Hilbert space into itself such that the transformations

S(α, β)T

and

TS(γ, δ)

are linearly dependent whenever elements (α, β) and (γ, δ) are elements of the Heisenberg
group which satisfy the identities

(γ+, δ+) = (α+, β+)

(
A B
C D

)
and

(γ−, δ−) = (α−, β−)

(
A B
C D

)
and such that the transformations are equal whenever each of the elements α, β, γ, and
δ of the product skew–plane has equal Dedekind and adic components in the algebraic
skew–plane.
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When h is an element of the algebraic line such that the p–adic component of 1
2
ρh is

integral for every prime divisor p of ρ, a symplectic transformation associated with the
symplectic matrix (

1 h
0 1

)
for the algebraic skew–plane is defined by taking a function f(ξ+, ξ−) of ξ = (ξ+, ξ−) in
the product skew–plane into the function

exp(πihξ−+ξ+) exp(−πihξ−−ξ−)f(ξ+, ξ−)

of ξ = (ξ+, ξ−) in the product skew–plane.

When ω is a nonzero element of the algebraic skew–plane whose Dedekind modulus is
equal to its adic modulus such that the p–adic component of ω is integral and has integral
inverse for every prime divisor p of ρ, a symplectic transformation associated with the
symplectic matrix (

ω−1 0
0 ω−

)
for the algebraic skew–plane is defined by taking a function f(ξ+, ξ−) of ξ = (ξ+, ξ−) in
the product skew–plane into the function

f(ξ+ω, ξ−ω)

of ξ = (ξ+, ξ−) in the product skew–plane.

The Fourier transform of a function f(ξ+, ξ−) of ξ = (ξ+, ξ−) in the product skew–
plane which is integrable with respect to the canonical measure is the bounded continuous
function

g(ξ+, ξ−) =

∫
f(η+, η−) exp(πi(ξ−+η+ + η−+ξ+)) exp(−πi(ξ−−η− + η−−ξ−))dη

of ξ = (ξ+, ξ−) in the product skew–plane which is defined by integration with respect to
the canonical measure. Fourier inversion

f(ξ+, ξ−) =

∫
g(η+, η−) exp(−πi(ξ−+η+ + η−+ξ+)) exp(πi(ξ−−η− + η−−ξ−))dη

applies for almost all elements ξ = (ξ+, ξ−) of the product skew–plane when the function
g(ξ+, ξ−) of ξ = (ξ+, ξ−) in the product skew–plane is integrable with respect to the
canonical measure. The Fourier transformation admits a unique continuous extension as
an isometric transformation of the Hilbert space of square integrable functions with respect
to the product skew–plane into itself.

Poisson summation is a transformation of integrable functions on the product skew–
plane into integrable functions on the quotient skew–plane which applies when all primes



38 LOUIS DE BRANGES September 4, 2009

are generating primes. If a function f(ξ+, ξ−) of ξ = (ξ+, ξ−) in the product skew–plane
is integrable with respect to the canonical measure, the Poisson sum is the function

g(ξ+, ξ−) =
∑

f(η+, η−)

of ξ = (ξ+, ξ−) in the product skew–plane which is defined by summation over the elements
η = (η+, η−) of the product skew–plane which are equivalent to ξ = (ξ+, ξ−). A function
is defined on the quotient skew–plane since equal values are taken at equivalent elements
of the product skew–plane. The inequality∫

|g(ξ+, ξ−)|dξ ≤
∫
|f(ξ+, ξ−)|dξ

holds with integration on the left with respect to the canonical measure for the quotient
skew–plane and with integration on the right with respect to the canonical measure for
the product skew–plane. The canonical measure for the set of elements equivalent to the
origin counts the elements in a finite subset and is infinite on infinite subsets.

The function
exp(πi(ξ−+η+ + η−+ξ+)) exp(−πi(ξ−−η− + η−−ξ−))

of ξ = (ξ+, ξ−) in the product skew–plane has equal values at equivalent elements of the
product skew–plane if, and only if, the element η = (η+, η−) of the product skew–plane is
equivalent to the origin.

The Fourier transform of a function f(ξ+, ξ−) of ξ = (ξ+, ξ−) in the quotient skew–plane
which is integrable with respect to the canonical measure is the bounded function

g(ξ+, ξ−) =

∫
f(η+, η−) exp(πi(ξ−+η+ + η−+ξ+)) exp(−πi(ξ−−η− + η−−ξ−))dη

of elements ξ = (ξ+, ξ−) equivalent to the origin which is defined by integration with
respect to the canonical measure. Fourier inversion

f(ξ+, ξ−) =

∫
g(η+, η−) exp(−πi(ξ−+η+ + η−+ξ+)) exp(πi(ξ−−η− + η−−ξ−))dη

applies for almost all elements ξ = (ξ+, ξ−) of the quotient skew–plane when the function
g(ξ+, ξ−) of elements ξ = (ξ+, ξ−) equivalent to the origin is integrable with respect to
the canonical measure. The Fourier transformation elements admits a unique continuous
extension as an isometric transformation of the Hilbert space of square integrable functions
with respect to the canonical measure for the quotient skew–plane onto the Hilbert space
of square integrable functions with respect to the canonical measure for the set of elements
equivalent to the origin.

A function f(ξ+, ξ−) of ξ = (ξ+, ξ−) in the product skew–plane is said to be of character
χ for a primitive character χ modulo ρ if the function f(ξ+, ξ−) of ξ− in the adic skew–plane
is of character χ for every element ξ+ of the Dedekind skew–plane.
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Hecke operators are continuous linear transformations of the Hilbert space of square
integrable functions with respect to the canonical measure for the product skew–plane,
which are of character χ, into itself. A Hecke operator ∆(r) is defined for every generating
positive integer r which is relatively prime to ρ. The transformation takes a function
f(ξ+, ξ−) of ξ = (ξ+, ξ−) in the product skew–plane into the function g(ξ+, ξ−) of ξ =
(ξ+, ξ−) in the product skew–plane defined by the sum

24g(ξ+, ξ−) =
∑

f(ξ+ω, ξ−ω)

over the integral elements ω of the algebraic skew–plane which represent

r = ω−ω.

The Hecke operator ∆(1) acts as the orthogonal projection of the Hilbert space onto the
subspace of functions f(ξ+, ξ−) of ξ = (ξ+, ξ−) in the product skew–plane which satisfy
the identity

f(ξ+, ξ−) = f(ξ+ω, ξ−ω)

for every integral element ω of the algebraic skew–plane with integral inverse.

The identity

∆(m)∆(n) =
∑

∆(mn/k2)

holds for all generating positive integers m and n which are relatively prime to ρ with
summation over the common odd divisors k of m and n.

The spectral analysis of Hecke operators is made in Hilbert spaces of finite dimension.
A space is defined for every nonnegative integer ν whose elements are function f(ξ+, ξ−)
of ξ = (ξ+, ξ−) in the product skew–plane, which are of character χ, such that the function
f(ξ+, ξ−) of ξ+ in the Dedekind skew–plane is a homogeneous harmonic polynomial of
degree ν for every element ξ− of the adic skew–plane. The function f(ξ+, ξ−) of ξ− in the
adic skew–plane has equal values at elements whose p–adic components are equal for every
prime divisor p of ρ when ξ+ is an element of the Dedekind skew–plane. The Hilbert space
is defined as a tensor product of the Hilbert space of homogeneous harmonic polynomials
of degree ν and a Hilbert space of functions which are square integrable with respect to
the canonical measure for the product skew–plane on the set of integral elements of the
adic skew–plane.

A Hecke operator ∆(r) is defined on the tensor product for every generating positive
integer r which is relatively prime to ρ. The transformation takes a function f(ξ+, ξ−) of
ξ = (ξ+, ξ−) in the product skew–plane into the function g(ξ+, ξ−) of ξ = (ξ+, ξ−) in the
product skew–plane defined by the sum

24r
1
2 νg(ξ+, ξ−) =

∑
f(ξ+ω, ξ−ω)

over the integral elements ω of the algebraic skew–plane which represent

r = ω−ω.
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The Hecke operator ∆(1) acts as the orthogonal projection of the tensor product onto
the subspace of functions f(ξ+, ξ−) of ξ = (ξ+, ξ−) in the product skew–plane which satisfy
the identity

f(ξ+, ξ−) = f(ξ+ω, ξ−ω)

for every integral element ω of the algebraic skew–plane with integral inverse.

The identity

∆(m)∆(n) =
∑

∆(mn/k2)

holds for all generating positive integers m and n which are relatively prime to ρ with
summation over the common odd divisors k of m and n.

The tensor product is the orthogonal sum of invariant subspaces whose elements are
defined as eigenfunctions of Hecke operators for given eigenvalues. The kernel of the Hecke
operator ∆(1) is annihilated by every Hecke operator. An invariant subspace which is
orthogonal to the kernel of ∆(1) is contained in the range of ∆(1). The elements of the
invariant subspace are defined as eigenfunctions of ∆(r) for a given eigenvalue τ(r) for
every generating positive integer r which is relatively prime to ρ. The identity

τ(m)τ(n) =
∑

τ(mn/k2)

holds for all generating positive integers m and n which are relatively prime to ρ with
summation over the common odd divisors k of m and n.

The zeta function characteristic of an invariant subspace is the Dirichlet series

ζ(s) =
∑

τ(n)n−s

defined as a sum over the generating positive integers n which are relatively prime to ρ.

The number of zeta functions associated with a primitive character modulo ρ is equal
to the product

ρ
∏

(1 + p−1)

taken over the odd prime divisor p of ρ.

A Laplace kernel κ associated with the zeta function is an element of the tensor–product
which is an eigenfunction of the Hecke operator ∆(r) for the eigenvalue τ(r) for every
generating positive integer r which is relatively prime to ρ and whose scalar self–product
is equal to the canonical measure of the set of integral elements of the adic skew–plane
which are invertible modulo ρ.

A Laplace kernel for the product skew–plane is applied in the definition of a Laplace
transformation with kernel κ for the product skew–plane. The domain of the transforma-
tion is the Hilbert space of functions f(ξ+, ξ−) of ξ = (ξ+, ξ−) in the product skew–plane
which are square integrable with respect to the canonical measure, which are of character
χ, and which satisfy the identity

κ(ξ+, ξ−)f(ω+ξ+, ω−ξ−) = κ(ω+ξ+, ω−ξ−)f(ξ+, ξ−)
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for every element ω+ of the Dedekind skew–plane with conjugate as inverse and every
element ω− of the adic skew–plane with conjugate as inverse.

Elements of the domain of the Laplace transformation with kernel κ are eigenfunctions
of the Hecke operator ∆(r) for the eigenvalue τ(r) for every generating positive integer r
which is relatively prime to ρ.

The Hilbert space functions which are square integrable with respect to the canonical
measure for the product skew–plane and which are of character χ is the orthogonal sum of
invariant subspaces whose elements are determined as eigenfunctions of Hecke operators
for given eigenvalues. An invariant subspace which is orthogonal to the kernel of ∆(1) is
determined by a zeta function

ζ(s) =
∑

τ(n)n−s

for the tensor product space as the set of elements which are eigenfunctions of ∆(r) for the
eigenvalue τ(r) for every generating positive integer r which is relatively prime to ρ. The
invariant subspace is spanned by the domains of Laplace transformations whose kernels
are eigenfunctions of the Hecke operators for the same eigenvalues.

The Laplace transform with kernel κ of a function f(ξ+, ξ−) of ξ = (ξ+, ξ−) in the
product skew–plane is the bounded continuous function

F (z, ξ) = 2

∫
κ(η+, η−)−f(η+, η−)χ(η−−η−) exp(πizη−+η+) exp(−πiξη−−η−)dη

of z in the upper half–plane and ξ in the adic line which is defined by integration with
respect to the canonical measure when the integral is absolutely convergent. The identity

(1 + 2ν)

∫ ∫ ∞
0

∫ +∞

−∞
|F (x+ iy, ξ)|2yνdxdydξ = 8(2π)−νΓ(1 + ν)

∫
|f(ξ+, ξ−)|2dξ

holds with integration on the left with respect to the Laplace measure and with integration
on the right with respect to the canonical measure. The Laplace transformation with kernel
κ is defined so as to preserve the identity.

A function F (z, ξ) of z in the upper half–plane and ξ in the adic line which belongs to
the range of the Laplace transformation is analytic as a function of z for every element ξ
of the adic line, vanishes when the p–adic component of 2ρξ is nonintegral for some prime
divisor p of ρ, and satisfies the identity

F (z, ξω) = F (z, ξ)χ(ω)−

for every integral element ω of the adic line whose p–adic component is invertible modulo
p for every prime divisor p of ρ and has integral inverse for every other generating prime
p.

The domain of the Laplace transformation with kernel κ is an invariant subspace for the
Radon transformation. The adjoint of the Radon transformation is a maximal dissipative
transformation in the Hilbert space which takes a function f(ξ+, ξ−) of ξ = (ξ+, ξ−) in the
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product skew–plane into the function g(ξ+, ξ−) in the product skew plane defined by the
identity

G(z, ξ) = (i/z)|ξ|F (z, ξ)

for almost all elements ξ of the adic line with respect to the Laplace measure when z is in
the upper half–plane. The integrals

F (z, ξ) =

∫
κ(η+, η−)−f(η+, η−)χ(η−−η−) exp(πizη−+η+) exp(−πiξη−−η−)dη

and

G(z, ξ) =

∫
κ(η+, η−)−g(η+, η−)χ(η−−η−) exp(πizη−+η+) exp(−πiξη−−η−)dη

with respect to the canonical measure for the product skew–plane are interpreted as Laplace
transforms when they are not absolutely convergent.

A maximal dissipative transformation −iH is defined as the inverse of the adjoint of the
Radon transformation in the Hilbert space of functions of character χ which are square
integrable with respect to the canonical measure for the product skew–plane.

A symplectic transformation T which has the Hilbert space of square integrable functions
of character χ as an invariant subspace is associated with a symplectic matrix(

A B
C D

)
for the algebraic skew–plane with self–conjugate entries which is compatible with the con-
straints modulo ρ. The domain of the Laplace transformation with kernel κ is an invariant
subspace.

The transformation takes a function f(ξ+, ξ−) of ξ = (ξ+, ξ−) in the product skew–plane
into a function g(ξ+, ξ−) of ξ = (ξ+, ξ−) in the product skew–plane when the identity

G(z, ξ) = (Cz +D)−2−ν |Cξ +D|2F ((Cz +D)−1(Az +B), (Cξ +D)−1(Aξ +B))

holds for almost all elements ξ of the adic line with respect to the Laplace measure when
z is in the upper half–plane. The integrals

F (z, ξ) =

∫
κ(η+, η−)−f(η+, η−)χ(η−−η−) exp(πizη−+η+) exp(−πiξη−−η−)dη

and

G(z, ξ) =

∫
κ(η+, η−)−g(η+, η−)χ(η−−η−) exp(πizη−+η+) exp(−πiξη−−η−)dη

with respect to the canonical measure are interpreted as Laplace transforms when they are
absolutely convergent.
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The theta function determined by a zeta function

ζ(s) =
∑

τ(n)n−s

is a function θ(z, ξ) of z in the upper half–plane and invertible elements ξ of the adic line
which is analytic as a function of z for every ξ and which satisfies the identity

θ(z, ξ) = θ(zλ, ξλ)

for every nonzero element λ of the algebraic line whose Dedekind modulus is equal to its
adic modulus.

The theta function appears in a simplification of the sum∑
κ(η+λ, η−λ) exp(πizη−+η+λ

−λ) exp(−πiξη−−η−λ−λ)

over the nonzero elements λ of the algebraic skew–plane whose Dedekind modulus is equal
to its adic modulus such that η−λ is integral. Since the sum remains unchanged when η+

is replaced by η+λ and η− is replaced by η−λ for a nonzero element λ of the algebraic
skew–plane whose Dedekind modulus is equal to its adic modulus, the computation of the
sum for invertible elements η− of the adic skew–plane reduces to the case in which η− is
integral and has integral inverse.

When η− is integral and has integral inverse, the sum is taken over the integral elements
λ of the algebraic skew–plane such that λ−λ is positive and relatively prime to ρ. A partial
sum in which

λ−λ = n

for a generating positive integer n which is relatively prime to ρ is computed using the
definition of the Hecke operator ∆(n). The sum is a product

κ(η+, η−)θ(zη−+η+, ξη
−
−η−)

with the theta function

θ(z, ξ) =
∑

n
1
2 ντ(n) exp(πinz) exp(−πinξ)

defined as a sum over the generating positive integers n which are relatively prime to ρ
when ν is positive or ρ is not one. When ν is zero and ρ is one, the theta function

θ(z, ξ) = 1 +
∑

τ(n) exp(πinz) exp(−πinξ)

is defined as a sum over the generating positive integers n with a contribution for the
integer zero.

The function θ(z, ξ) of invertible elements ξ of the adic line admits a unique continuous
extension as a function θ(z, ξ) of elements ξ of the adic line for every element z of the
upper half–plane. The identity

θ(z, ξ) = θ(z + t, ξ + t)
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holds for every element t of the algebraic line. The function

θ(z) = θ(z, 0)

of z in the upper half–plane is represented as a sum

θ(z) =
∑

n
1
2 ντ(n) exp(πinz)

over the generating positive integers n which are relatively prime to ρ when ν is positive
or ρ is not one. The function

θ(z) = 1 +
∑

τ(n) exp(πinz)

of z in the upper half–plane is represented as a sum over the generating positive integers
n with a contribution for the integer zero when ν is zero and ρ is one.

The theta function satisfies a functional identity when all primes are generating primes.
A computation of Fourier transforms is made for application of the Poisson summation
formula. With a primitive character χ modulo ρ is associated the conjugate character χ−

which is primitive modulo ρ. With a zeta function

ζ(s) =
∑

τ(n)n−s

for the character χ is associated the conjugate zeta function

ζ(s−)− =
∑

τ(n)−n−s

for the conjugate character χ−. With a Laplace kernel κ of character χ for the zeta function
ζ(s) is associated a Laplace kernel κ∧ of character χ− associated with the zeta function
ζ(s−)−. Assume that z is in the upper half–plane and that ξ is an invertible element of
the adic line. An integral element ω of the algebraic plane is chosen which represents

2 = ω−w.

When ρ is even, the Fourier transform of the function of η = (η+, η−) in the product
skew–plane which is equal to

κ(η+, η−) exp(πizη−+η+) exp(−πiξη−−η−)

when η− is integral and which vanishes otherwise is the function η = (η+, η−) in the
product skew–plane which is equal to

4ρ−2(i/z)2+ν |ξ|2κ∧(η+,
1
2
ρη−) exp(−πiz−1η−+η+) exp(πiξ−1η−−η−)

when 1
2ρη− is integral and which vanishes otherwise.
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When ρ is odd, the Fourier transform of the function of η = (η+, η−) in the product
skew–plane which is equal to

κ(η+, η−) exp(πizη−+η+) exp(−πiξη−−η−)

when η− is integral and which vanishes otherwise is the function of η = (η+, η−) in the
product skew–plane which is equal to

2ρ−2(i/z)2+ν |ξ|2κ∧(η+, ρω
−1η−) exp(−πiz−1η−+η+) exp(πiξ−1η−−η−)

when ρω−1η− is integral and which vanishes otherwise.

When ρ is even, the Poisson formula yields the functional identity

κ(1, 1)θ(2ρ−1z, 2ρ−1ξ)

= κ∧(2ρ−1, 1)(2ρ−1)2+ν(i/z)2+ν |ξ|2θ∧(−2ρ−1z−1,−2ρ−1ξ−1).

When ρ is odd, the Poisson formula yields the functional identity

κ(1, 1)θ(ρ−1z, ρ−1ξ)

= κ∧(ωρ−1, 1)|ωρ−1|2+ν(i/z)2+ν |ξ|2θ(−2ρ−1z−1,−2ρ−1ξ−1).

The Fourier transformation for the product skew–plane is a symplectic transformation
associated with the symplectic matrix (

0 −1
1 0

)
for the algebraic skew–plane. A generalization of the Poisson formula applies when the
Fourier transformation is replaced by a symplectic transformation associated with an ad-
missible symplectic matrix for the algebraic skew–plane. An example is the matrix(

1 2n
0 1

)
for every integer n. The associated symplectic transformation takes a function f(ξ+, ξ−)
of ξ = (ξ+, ξ−) in the product skew–plane into the function

exp(2πinξ−+ξ+) exp(−2πinξ−−ξ−)f(ξ+, ξ−)

of ξ = (ξ+, ξ−) in the product skew–plane.

The modular group is the set of matrices(
A B
C D

)
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with integer entries and determinant one. A submodular group is the set of matrices in
the modular group whose diagonal entries have equal parity and whose off–diagonal entries
have equal parity. The submodular group is generated by the matrices(

1 2
0 1

)
and (

0 −1
1 0

)
which satisfy no relations other than the one implied by the Fourier transformation, whose
fourth power is the identity.

The signature for the submodular group is the homomorphism of the subgroup onto the
fourth roots of unity which has value one on(

1 2
0 1

)
and which has value i on (

0 −1
1 0

)
.

An element (
A B
C D

)
of the submodular group has signature one if, and only if, its diagonal entries are congruent
to one modulo four and its off–diagonal entries are even.

A symplectic transformation for which the Poisson summation formula applies is associ-
ated with every matrix in the submodular group. The symplectic transformation associated
with a matrix (

A B
C D

)
of signature one in the submodular group takes functions of character χ into functions of
character for a primitive character χ modulo ρ when the subdiagonal entry is divisible by
2ρ. A theta function θ(z, ξ) associated with the character χ satisfies the identity

θ(z, ξ) = χ(D)(Cz +D)−2−ν |Cξ +D|2θ((Cz +D)−1(Az +B), (Cξ +D)−1(Aξ +B))

when ν is positive or ρ is not one. The identity

1 + θ(z, ξ) = (Cz +D)−2|Cξ +D|2[1 + θ((Cz +D)−1(Az +B), (Cξ +D)−1(Aξ +B))]

holds when ν is zero and ρ is one.

The analytic function θ(z) of z in the upper half–plane satisfies the identity

θ(z) = χ(D)(Cz +D)−2−νθ((Cz +D)−1(Az +B))
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for every matrix (
A B
C D

)
of signature one in the submodular group which has subdiagonal entry divisible by 2ρ.

An analytic function F (z) of z in the upper half–plane is said to be a submodular form
of order ν associated with a primitive character χ modulo ρ if the function

(Cz +D)−2−νF ((Cz +D)−1(Az +B))

is represented by a power series in
exp(πiz)

for every matrix (
A B
C D

)
in the submodular group and if the identity

F (z) = χ(D)(Cz +D)−2−νF ((Cz +D)−1(Az +B))

holds whenever the matrix has signature one and has subdiagonal entry divisible by 2ρ.

A submodular form of order ν associated with a primitive character χ modulo ρ is a
linear combination of analytic functions obtained from theta functions of order ν associated
with the character. The proof is given by showing that the dimension of the space of
submodular forms of order ν associated with a primitive character modulo ρ is not greater
than the number of theta functions of order ν associated with the character.

Elements z and w of the upper half–plane are considered equivalent modulo ρ if

w = (Cz +D)−1(Az +B)

for a matrix (
A B
C D

)
of signature one in the submodular group whose subdiagonal entry is divisible by 2ρ.

A fundamental region modulo ρ is a connected open subset of the upper half–plane such
that every element of the upper half–plane is equivalent to an element of the closure of the
set and such that equivalent elements of the set are equal.

A fundamental region modulo ρ is constructed as the interior of the union of closures
of fundamental regions modulo one.

Considerations of symmetry are applied in the construction of a fundamental region
modulo one. Elements z and w of the upper half–plane are said to be symmetric modulo
one if z and −w− are equivalent modulo one. The elements of the upper half–plane which
are not self–symmetric modulo one form an open set which is the union of connected
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components. A fundamental region modulo one is constructed as the interior of the union
of the closures of two symmetric components when the interior is connected.

An example of a symmetric component is the set of elements z of the upper half–plane
which satisfy the inequalities

0 < z + z− < 2

and
(2z − 1)−(2z − 1) > 1.

Another example is the set of elements z of the upper half–plane which satisfy the inequal-
ities

−2 < z + z− < 0

and
(2z + 1)−(2z + 1) > 1.

A fundamental region modulo one is the union of the two components with the imaginary
axis.

The boundary line
z + z− = −2

is mapped onto the boundary line
z + z− = 2

by taking z into
z + 2.

The boundary circle
(2z + 1)−(2z + 1) = 1

is mapped onto the boundary circle

(2z − 1)−(2z − 1) = 1

by taking z into
z/(1 + 2z).

A fundamental region modulo ρ is constructed as the interior of the union of the closure
of symmetric components modulo one. The fundamental region is compactified by taking
its closure in the complex plane and by supplying an element at the upper end of the
imaginary axis.

Analytic structure is supplied at the infinite element by requiring a power series expan-
sion in

exp(πiz).

Analytic structure is supplied at finite elements of the boundary by requiring analyticity
of the mapping which takes z into

(Cz +D)−1(Az +B)
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whenever (
A B
C D

)
is an element of signature one of the submodular group whose subdiagonal entry is divisible
by 2ρ.

The dimension of the space of submodular forms of order ν associated with a primitive
character modulo ρ is less than or equal to the maximal number of inequivalent zeros of a
nontrivial submodular form of order ν associated with the character in the compactification
of the fundamental region.

The number of inequivalent zeros in the closure of a fundamental region modulo ρ is the
sum of the number of inequivalent zeros in the closures of symmetric components contained
in the region. The number of zeros of a nontrivial submodular form F (z) in a symmetric
component is a Cauchy integral

(2πi)−1

∫
F (z)−1F ′(z)dz

taken counterclockwise over the boundary of the component. Since there may be zeros
on the boundary and since some boundary elements lie outside the upper half–plane,
the Cauchy integral is interpreted as a limit of Cauchy integrals over the boundaries of
regions which are contained in the symmetric component and which contain the zeros of
the function in the component.

The boundary of a symmetric component is divided into three arcs by the three elements
of the boundary which lie outside the upper half–plane. Every arc of the boundary of
a fundamental region is an arc of the boundary of a symmetric component inside the
region and of a symmetric component outside the region. An arc of the boundary of
the fundamental region is paired with another arc of the boundary whose elements are
equivalent modulo ρ. A matrix (

A B
C D

)
of signature one in the submodular group exists which has subdiagonal entry divisible by
2ρ such that the mapping z into

(Cz +D)−1(Az +B)

takes a bounding component inside the region onto a bounding component outside the
region. The contribution to the Cauchy integral of each bounding arc depends on the
function. The sum of the contributions of two equivalent arcs is independent of the func-
tion.

The number of inequivalent zeros of a nontrivial submodular form of order ν associated
with a primitive character modulo ρ is independent of the function. The number is equal
to the product of

1 + ν
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and the number of fundamental regions modulo one contained in a fundamental region
modulo ρ.

This completes the proof that all submodular forms of order ν associated with a primitive
character modulo ρ are derived from theta functions of order ν associated with the character
since the number of fundamental regions modulo one contained in a fundamental region
modulo ρ is equal to the product

ρ
∏

(1 + p−1)

taken over the odd prime divisors p of ρ.

The Euler product for a zeta function

ζ(s) =
∑

τ(n)n−s

is a consequence of the identity

τ(m)τ(n) =
∑

τ(mn/k2)

which holds for all generating positive integers m and n which are relatively prime to ρ
with summation over the common odd divisors k of m and n. The Euler product

ζ(s)−1 =
∏

(1− τ(p)p−s + p−2s)

when ρ is even and

ζ(s)−1 = (1− τ(2)21−s)
∏

(1− τ(p)p−s + p−2s)

when ρ is odd and is taken over the odd generating primes p which are not divisors of ρ.

A zeta function
ζ(s) =

∑
τ(n)n−s

of order ν associated with a primitive character χ modulo ρ satisfies a functional identity
when all primes are generating primes. The functional identity for the zeta function is
obtained from the functional identity for the theta function. The zeta function admits an
analytic extension to the complex plane when ν is positive or ρ is not one. When ν is zero
and ρ is one, the zeta function admits an analytic extension to the complex plane except
for a simple pole at two.

When ρ is even, the analytic extension of the function

(2π/ρ)−
1
2 ν−sΓ( 1

2ν + s)ζ(s)

and the analytic extension of the function obtained from

(2π/ρ)−
1
2 ν−sΓ( 1

2ν + s)ζ(s)
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on replacing s by 2− s are linearly dependent.

When ρ is odd, the analytic extension of the function

(2
1
2π/ρ)−

1
2 ν−sΓ( 1

2ν + s)ζ(s)

and the analytic extension of the function obtained from

(2
1
2 π/ρ)−

1
2 ν−sΓ( 1

2
ν + s)ζ(s−)−

on replacing s by 2− s are linearly dependent. The analytic extensions are equal when ν
is zero and ρ is one.

A Laplace transformation is defined by a theta function. Associated with the theta
function θ(z, ξ) of z in the upper half–plane and ξ in the adic line is the conjugate theta
function

θ∗(z, ξ) = θ(−z−,−ξ)−

of z in the upper half–plane and ξ in the adic line.

The domain of the Laplace transformation is the Hilbert space of functions f(ξ+, ξ−) of
ξ = (ξ+, ξ−) in the product skew–plane which are of character χ and satisfy the identity

κ(ξ+, ξ−)f(ω+ξ+, ω−ξ−) = κ(ω+ξ+, ω−ξ−)f(ξ+, ξ−)

for every element ω+ of the Dedekind skew–plane with conjugate as inverse and every
element ω− of the adic skew–plane with conjugate as inverse, which satisfy the identity

f(ξ+, ξ−) = f(ξ+λ, ξ−λ)

for every nonzero element λ of the algebraic skew–plane such that λ−λ is a ratio of gener-
ating positive integers which are relatively prime to ρ, and whose product with ξ−+ξ+)−1 is
square integrable with respect to the canonical measure for the product skew–plane over
the set of elements whose adic component is integral and has integral inverse.

The Laplace space of order ν and character χ is a Hilbert space which is applied in
the description of the range of the Laplace transformation. The elements of the space are
functions F (z, ξ) of z in the upper half–plane and invertible elements ξ of the adic line
such that the function F (z, ξ) of z is analytic for every invertible element ξ of the adic
line, such that F (z, ξ) vanishes when the p–adic component of 2ρξ is nonintegral for some
prime divisor p of ρ, such that the identity

F (z, ξω) = F (z, ξ)χ(ω)−

holds for every integral element ω of the adic line whose p–adic component has integral
inverse for every generating prime p which does not divide ρ when the p–adic component
of 2ρξ is integral for every prime divisor p of ρ, such that the identity

F (z, ξ) = F (zλ, ξλ)
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holds for every positive element λ of the algebraic line which is a ratio of generating positive
integers relatively prime to ρ, and such that the integral∫ ∫ ∞

0

∫ +∞

−∞
|F (x+ iy, ξ)|2y2+νdxdydξ

with respect to the Laplace measure over the set of integral elements of the adic line with
integral inverse is finite.

If ν is positive or if ρ is not one, the Laplace transform of a function f(ξ+, ξ−) of
ξ = (ξ+, ξ−) in the product skew–plane is defined as an integral when the function is
square integrable with respect to the canonical measure for the product skew–plane over
the set of elements whose adic component is integral and has integral inverse. The Laplace
transform is the function

F (z, ξ) = 2

∫
κ(η+, η−)−f(η+, η−)χ(η−−η−)θ∗(zη−+η+, ξη

−
−η−)dη

of z in the upper half–plane and invertible elements ξ of the adic line which is defined by
integration with respect to the canonical measure for the product skew–plane over the set
of elements whose adic component is integral and has integral inverse.

If ν is zero and ρ is one, the Laplace transform of a function f(ξ+, ξ−) of ξ = (ξ+, ξ−)
in the product skew–plane is defined as an integral when the function is square integrable
with respect to the canonical measure for the product skew–plane over the set of elements
whose adic component is integral and has integral inverse. The identity

θ∗(z, ξ) = θ(z, ξ)

is then satisfied. The Laplace transform is the function

F (z, ξ) = 2

∫
f(η+, η−)[θ(zη−+η+, ξη

−
−η−)− 1]dη

of z in the upper half–plane and invertible elements ξ of the adic line defined by integration
with respect to the canonical measure for the product skew–plane over the set of elements
whose adic component is integral and has integral inverse.

In all cases a function F (z, ξ) of z in the upper half–plane and invertible elements ξ of
the adic line is a Laplace transform if, and only if, the function

G(z, ξ) =
∑

n
1
2 ντ(n)F (zn, ξn)χ(n)−

of z in the upper half–plane and invertible elements ξ of the adic line, which is defined as
a sum over the generating positive integers which are relatively prime to ρ, belongs to the
Laplace space of order ν and character χ. The identity

(1+2ν)

∫ ∫ ∞
0

∫ +∞

−∞
|G(x+iy, ξ)|2y2+νdxdy = 8(2π)−2−νΓ(3+ν)

∫
|f(ξ+, ξ−)|2(ξ−+ξ+)−2dξ
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holds with integration on the left with respect to the Laplace measure over the set of
integral elements of the adic line with integral inverse and with integration on the right
with respect to the canonical measure for the product skew–plane over the set of elements
whose adic component is integral and has integral inverse. The identity defines the Laplace
transformation when the transformation is not defined by an absolutely convergent integral.

A Radon transformation is defined on the space of functions f(ξ+, ξ−) of ξ = (ξ+, ξ−) in
the product skew–plane which satisfy the constraints modulo ρ, which satisfy the identity

f(ξ+, ξ−) = f(ξ+λ, ξ−λ)

for every nonzero element λ of the algebraic skew–plane such that λ−λ is a ratio of generat-
ing positive integers which are relatively prime to ρ, and which are integrable with respect
to the canonical measure for the product skew–plane over the set of elements whose adic
component is integral and has integral inverse.

The Radon transformation takes a function f(ξ+, ξ−) of ξ = (ξ+, ξ−) in the product
skew–plane into a function g(ξ+, ξ−) in the product skew–plane when the identity

g(ω+ξ+, ω−ξ−) =

∫
f(ω+ξ+ + ω+η+, ω−ξ− + ω−η−)dη

holds for almost all elements ξ = (ξ+, ξ−) of the product plane for every element ω+ of the
Dedekind skew–plane with conjugate as inverse and for every element ω− of the adic skew–
plane with conjugate as inverse with integration with respect to the canonical measure for
the complementary space to the product plane in the product skew–plane over the set of
elements whose adic component is integral and has integral inverse.

The function g(ξ+, ξ−) of ξ = (ξ+, ξ−) in the product skew–plane satisfies the constraints
modulo ρ and satisfies the identity

g(ξ+, ξ−) = g(ξ+λ, ξ−λ)

for every nonzero element λ of the algebraic skew–plane such that λ−λ is a ratio of gener-
ating positive integers which are relatively prime to ρ. The inequality∫

|g(ω+ξ+, ω−ξ−)|dξ ≤
∫
|f(ξ+, ξ−)|dξ

holds for every element ω+ of the Dedekind skew–plane with conjugate as inverse and
every element ω− of the adic skew–plane with conjugate as inverse with integration on the
left with respect to the canonical measure for the product plane over the set of elements
whose adic component is integral and has integral inverse and with integration on the right
over the canonical measure for the product skew–plane over the set of elements whose adic
component is integral and has integral inverse.

The adjoint of the Radon transformation is a maximal dissipative transformation in the
domain of the Laplace transformation when ν is positive or ρ is not one. The adjoint of the
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Radon transformation takes a function f(ξ+, ξ−) of ξ = (ξ+, ξ−) in the product skew–plane
into a function g(ξ+, ξ−) of ξ = (ξ+, ξ−) in the product skew–plane when the identity∫

κ(η+, η−)−g(η+, η−)χ(η−−η−)θ∗(zη−+η+, ξη
−
−η−)dη

= (i/z)|ξ|
∫
κ(η+, η−)−f(η+, η−)χ(η−−η−)θ∗(zη−+η+, ξη

−
−η−)dη

holds when z is in the upper half–plane for almost all invertible elements ξ of the adic line
with respect to the Laplace measure. The integrals with respect to the canonical measure
for the product skew–plane over the set of elements whose adic component is integral and
has integral inverse are interpreted as Laplace transforms when they are not absolutely
convergent.

A relation T with domain and range in a Hilbert space is said to be nearly maximal
dissipative if

(T − λ−)(T − λ)−1

is a contractive transformation of a closed subspace of the Hilbert space of codimension
at most one into the Hilbert for some, and hence every, complex number λ in the right
half–plane.

The adjoint of the Radon transformation is a nearly maximal dissipative transformation
in the domain of the Laplace transformation when ν is zero and ρ is one. The adjoint of the
Radon transformation takes a function f(ξ+, ξ−) of ξ = (ξ+, ξ−) in the product skew–plane
into a function g(ξ+, ξ−) in the product skew–plane when the identity∫

g(η+, η−)[θ(zη−+η+, ξη
−
−η−)− 1]dη

= (i/z)|ξ|
∫
f(η+, η−)[θ(zη−+η+, ξη

−
−η−)− 1]dη

holds when z is in the upper half–plane for almost all invertible elements ξ of the adic line.
The integrals with respect to the canonical measure for the product skew–plane over the
set of elements whose adic component is integral and has integral inverse are interpreted
as Laplace transforms when they are not absolutely convergent.

8. The Riemann Hypothesis for Hilbert Spaces of Entire Functions

The proof of the Riemann hypothesis originates in properties of the gamma function
exhibited in an integral representation due to Euler. The Mellin transformation derives
the Euler representation in Fourier analysis on the real line. The gamma function is
coupled with a zeta function in a Mellin representation derived in Fourier analysis for a
product skew–plane. The Riemann hypothesis asserts that a zeta function coupled with its
gamma function resembles a gamma function in its properties. The proof of the Riemann
hypothesis is an application of the Mellin representation. The argument is formulated in
Hilbert spaces whose elements are functions analytic in the upper half–plane.
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An analytic weight function is a function which is analytic and without zeros in the
upper half–plane. The weighted Hardy space constructed from an analytic weight function
W (z) is the set of functions F (z) of z, which are analytic in the upper half–plane, such
that the least upper bound

‖F‖2F(W ) = sup

∫ +∞

−∞
|F (x+ iy)/W (x+ iy)|2dx

taken over all positive numbers y is finite. The function

W (z)W (w)−/[2πi(w− − z)]

of z belongs to the space when w is in the upper half–plane and acts as reproducing kernel
function for function values at w.

Special weighted Hardy spaces are represented by the Mellin transformation in Fourier
analysis. The Riemann hypothesis is treated as the issue of analytic extension of the weight
function without zeros to a larger half–plane. An axiomatic formulation is indicated by
properties of the gamma function.

Theorem 1. A maximal dissipative transformation in the weighted Hardy space F(W ) is
defined for a positive number h by taking F (z) into F (z + ih) whenever the functions of z
belong to the space if, and only if, the function

W (z − 1
2 ih)/W (z + 1

2 ih)

of z admits an extension which is analytic and has nonnegative real part in the upper
half–plane.

Proof of Theorem 1. A Hilbert space H whose elements are functions analytic in the upper
half–plane is constructed when a maximal dissipative transformation in the weighted Hardy
space F(W ) is defined by taking F (z) into F (z + ih) whenever the functions of z belong
to the space. The space is constructed from the graph of the adjoint of the transformation
which takes F (z) into F (z + ih) whenever the functions of z belong to the space.

An element
F (z) = (F+(z), F−(z))

of the graph is a pair of analytic functions of z, which belong to the space F(W ), such
that the adjoint takes F+(z) into F−(z). The scalar product

〈F (t), G(t)〉 = 〈F+(t), G−(t)〉F(W ) + 〈F−(t), G+(t)〉F(W )

of elements F (z) and G(z) of the graph is defined as a sum of scalar products in the space
F(W ). Scalar self–products are nonnegative in the graph since the adjoint of a maximal
dissipative transformation is dissipative.

An element
K(w, z) = (K+(w, z), K−(w, z))
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of the graph is defined when w is in the half–plane

h < iw− − iw

by

K+(w, z) = W (z)W (w − 1
2
ih)−/[2πi(w− + 1

2
ih− z)]

and

K−(w, z) = W (z)W (w + 1
2 ih)−/[2πi(w− − 1

2 ih− z)].

The identity

F+(w + 1
2 ih) + F−(w − 1

2 ih) = 〈F (t), K(w, t)〉

holds for every element

F (z) = (F+(z), F−(z))

of the graph. An element which is orthogonal to itself is orthogonal to every element of
the graph.

The reproducing kernel function for function values at w in the space H is the function

[W (z + 1
2 ih)W (w − 1

2 ih)− +W (z − 1
2 ih)W (w + 1

2 ih)−]/[2πi(w− − z)]

of z. Division by W (z + 1
2 ih) acts as an isometric transformation of the space onto a

Hilbert space appearing in the Poisson representation of functions which are analytic and
have nonnegative real part in the upper half–plane [1]. The function

φ(z) = W (z − 1
2 ih)/W (z + 1

2 ih)

of z admits an analytic extension to the upper half–plane. The function

[φ(z) + φ(w)−]/[2πi(w− − z)]

of z belongs to the space when w is in the upper half–plane and acts as reproducing kernel
function for function values at w. The real part of the function is nonnegative in the
half–plane.

The argument is reversed to construct a maximal dissipative transformation in the
weighted Hardy space F(W ) when the function φ(z) of z admits an extension which is
analytic and has nonnegative real part in the upper half–plane. The Poisson representation
constructs a Hilbert space whose elements are functions analytic in the upper half–plane
and which contains the function

[φ(z) + φ(w)−]/[2πi(w− − z)]

of z as reproducing kernel function for function values at w when w is in the upper half–
plane. Multiplication by W (z+ 1

2 ih) acts as an isometric transformation of the space onto
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a Hilbert space H whose elements are functions analytic in the upper half–plane and which
contains the function

[W (z + 1
2 ih)W (w − 1

2 ih)− +W (z − 1
2 ih)W (w + 1

2 ih)−]/[2πi(w− − z)]

of z as reproducing kernel function for function values at w when w is in the upper half–
plane.

A transformation in the space F(W ) is defined by taking F (z) into F (z+ ih) whenever
the functions of z belong to the space. The graph of the adjoint is a space of pairs

F (z) = (F+(z), F−(z))

of elements of the space F(W ) which contains

K(w, z) = (K+(w, z), K−(w, z))

with
K+(w, z) = W (z)W (w − 1

2
ih)−|[2πi(w− + 1

2
ih− z)]

and
K−(w, z) = W (z)W (w + 1

2
ih)−|[2πi(w− − 1

2
ih− z)]

whenever the inequality
h < iw− − iw

is satisfied. The elements K(w, z) of the graph span the graph of a restriction of the
adjoint. The transformation in the space F(W ) is recovered as the adjoint of its restricted
adjoint.

The scalar product

〈F (t), G(t)〉 = 〈F+(t), G−(t)〉F(W ) + 〈F−(t), G+(t)〉F(W )

of elements
F (z) = (F+(z), F−(z))

and
G(z) = (G+(z), G−(z))

of the graph is defined as a sum of scalar products in the space F(W ). An isometric
transformation of the graph of the restricted adjoint into the space H is defined by taking

F (z) = (F+(z), F−(z))

into
F+(z + 1

2 ih) + F−(z − 1
2 ih).

The restricted adjoint is dissipative since scalar self–products are nonnegative on its graph.
Since the transformation in the space F(W ) is the adjoint of its restricted adjoint, the
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adjoint is dissipative. An isometric transformation of the graph of the adjoint into the
space H is defined by taking

F (z) = (F+(z), F−(z))

into
F+(z + 1

2 ih) + F−(z − 1
2 ih).

The dissipative property of the adjoint is equivalent to the inequality

‖F+(t)− F−(t)‖F(W ) ≤ ‖F+(t) + F−(t)‖F(W )

for elements
F (z) = (F+(z), F−(z))

of the graph. The domain of the contractive transformation which takes

F+(z) + F−(z)

into
F+(z)− F−(z)

is closed. The maximal dissipative property of the adjoint is equivalent to the requirement
that the contractive transformation be everywhere defined. The maximal dissipative prop-
erty is proved by showing that no nonzero element of the space F(W ) is orthogonal to the
domain.

Since K(w, z) belongs to the graph when w belongs to the half–plane

h < iz− − iz,

an element H(z) of the space F(W ) which is orthogonal to the domain satisfies the identity

H(w − 1
2 ih) +H(w + 1

2 ih) = 0.

The function H(z) admits an analytic extension to the complex plane which satisfies the
identity

H(z) +H(z + ih) = 0

for all complex z. A zero of h(z) is repeated with period ih. Since

H(z)/W (z)

is of bounded type in the upper half–plane, the function of z vanishes identically if it has
a zero. The orthogonal complement of the domain of the contractive transformation has
dimension at most one.

The space of elements H(z) of the space F(W ) which are solutions of the equation

H(z) + exp(ha)H(z + ih) = 0
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for a real number a has dimension at most one. The dimension is independent of a.
Multiplication by

exp(iaz)

takes a solution of the equation with a equal to zero into a solution for a real number a.
Since

exp(iaz)H(z)

belongs to the space F(W ) for every real number a when H(z) is a solution of the equation
with a equal to zero, the function H(z) vanishes identically.

The transformation which takes F (z) into F (z+ih) whenever these functions of z belong
to the space F(W ) is maximal dissipative since it has a maximal dissipative adjoint.

This completes the proof of the theorem.

The analytic extension of the function

W (z − 1
2
ih)/W (z + 1

2
ih)

of z has no zeros in the upper half–plane since the real part of the function is nonnegative
in the half–plane. Since the analytic function

W (z + 1
2 ih)

of z has no zeros in the upper half–plane, the function

W (z − 1
2 ih)

of z has an analytic extension without zeros in the upper half–plane. The function

W (z)

of z has an analytic extension without zeros to the half–plane

−h < iz− − iz.

Although the analytic weight functions introduced to prove the Riemann hypothesis
are new, they are not without precedent. A related class of analytic weight functions is
characterized by the maximal dissipative property of the transformation which takes F (z)
into iF ′(z) whenever a function F (z) of z and its derivative F ′(z) belong to the weighted
Hardy space. The maximal dissipative transformation exists in a weighted Hardy space
F(W ) if, and only if, the modulus of

W (x+ iy)

is a nondecreasing function of positive y for every real number x. The proof is similar to
the proof of Theorem 1.
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Analytic weight functions make their appearance in applications to entire functions.
Fundamental examples of analytic weight functions are entire functions.

An entire function E(z) is said to be of Hermite class if it has no zeros in the upper
half–plane, if the inequality

|E(x− iy)| ≤ |E(x+ iy)|
holds for every real number x when y is positive, and if the modulus of

E(x+ iy)

is a nondecreasing function of positive y for every real number x. These properties are
satisfied by a polynomial E(z) which has no zeros in the upper half plane and hence also
by an entire function which is a limit of polynomials without zero in the upper half–plane
but does not vanish identically. An entire function of Hermite class is a uniform limit on
compact subsets of the complex plane of polynomials which have no zeros in the upper
half–plane.

The structure of an entire function of Hermite class is determined by its zeros. The
function is the exponential of a polynomial of degree at most two if it has no zeros. The
function otherwise admits a factorization in terms of zeros. The present terminology defines
the Hermite class so that the upper half–plane contains no zeros. Another usage defines
the Hermite class so that the lower half–plane contains no zeros. The half–planes are
interchanged on replacing an entire function E(z) by the entire function

E∗(z) = E(z−)−.

Use is made of a characterization of the Hermite class which is due to Pólya. The proof
of the Riemann hypothesis calls attention to the contribution of Hermite to the theory of
entire functions. The Pólya class of entire functions is identical with the Hermite class.

The Stieltjes integral representation of nonnegative linear functionals on polynomials
explores properties of the Hermite class of entire functions when they are polynomials. A
generalization to other entire functions is made possible by an axiomatic treatment [1].

Hilbert spaces whose elements are entire functions appear with these properties:

(H1) Whenever an entire function F (z) belongs to the space and has a nonreal zero w,
the entire function

F (z)(z − w−)/(z − w)

belongs to the space and has the same norm as F (z).

(H2) A continuous linear functional on the space is defined by taking an entire function
F (z) of z into its value F (w) at w for every nonreal number w.

(H3) The entire function
F ∗(z) = F (z−)−

belongs to the space whenever F (z) belongs to the space and it always has the same norm
as F (z).
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An example of an analytic weight function is an entire function F (z) which satisfies the
inequality

|E(x− iy) < |E(x+ iy)|

for every real number x when y is positive. A Hilbert space H(E) of entire functions, which
is contained isometrically in the weighted Hardy space F(E), contains all entire functions
F (z) such that F (z) and F ∗(z) belong to the weighted Hardy space. The entire function

[E(z)E(w)− − E∗(z)E(w−)]/[2πi(w− − z)]

if z belongs to the space H(E) for every complex number w and acts as reproducing kernel
function for function values at w.

The Hilbert space H(E) of entire functions satisfies the axioms (H1), (H2), and (H3).
The space is characterized by the axioms [1]. A Hilbert space of entire functions which
satisfies the axioms (H1), (H2), and (H3) and which contains a nonzero element is isomet-
rically equal to a space H(E).

The defining function E(z) of a space H(E) need not be of Hermite class. The appear-
ance of entire functions of Hermite class is due to its stability in relationship to the class
of functions which are analytic and of bounded type in the upper half–plane [1]. Assume
that an analytic weight function W (z) is given such that the modulus of

W (x+ iy)

is a nondecreasing function of positive y for every real number x. If F (z) is a nontrivial
entire function such that the functions

F (z)/W (z)

and
F ∗(z)/W (z)

of z are of bounded type in the upper half plane, then

F ∗(z)F (z) = G∗(z)G(z)

for an entire function G(z) of Hermite class such that the functions

F (z)/G(z)

and
F ∗(z)/G(z)

are bounded by one in the upper half–plane.

The Riemann hypothesis for Hilbert spaces of entire functions formulates an underlying
concept in the proof of Riemann hypothesis which has the formulation in weighted Hardy
spaces as a limiting case.
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Theorem 2. A maximal dissipative transformation in a Hilbert space H(E) of entire
functions is defined for a positive number h by taking F (z) in F (z + ih) whenever the
functions of z belong to the space if, and only if, a Hilbert space H of entire functions
exists which contains the function

[E(z + 1
2
ih)E(w − 1

2
ih)− − E∗(z + 1

2
ih)E(w− + 1

2
ih)]/[2πi(w− − z)]

+[E(z − 1
2
ih)E(w + 1

2
ih)− − E∗(z − 1

2
ih)E(w− − 1

2
ih)]/[2πi(w− − z)]

of z as reproducing kernel function for function values at w for every complex number w.

Proof of Theorem 2. The space H is constructed from the graph of the adjoint of the
transformation which takes F (z) into F (z + ih) whenever the functions of z belong to
the space. The maximal dissipative property of the transformation is assumed in the
construction.

An element

F (z) = (F+(z), F−(z))

of the graph is a pair of entire functions of z, which belong to the space H(E), such that
the adjoint takes F+(z) into F−(z). The scalar product

〈F (t), G(t)〉 = 〈F+(t), G−(t)〉H(E) + 〈F−(t), G+(t)〉H(E)

of elements F (z) and G(z) of the graph is defined as a sum of scalar products in the space
H(E). Scalar self–products are nonnegative in the graph since the adjoint of a maximal
dissipative transformation is dissipative.

An element

K(w, z) = (K+(w, z), K−(w, z))

of the graph is defined for every complex number w by

K+(w, z) = [E(z)E(w− 1
2 ih)− − E∗(z)E(w− + 1

2 ih)]/[2πi(w− + 1
2 ih− z)]

and

K−(w, z) = [E(z)E(w+ 1
2 ih)− − E∗(z)E(w− − 1

2 ih)]/[2πi(w− − 1
2 ih− z)].

The identity

F+(w + 1
2 ih) + F−(w − 1

2 ih) = 〈F (t), K(w, t)〉

holds for every element

F (z) = (F+(z), F−(z))

of the graph. An element which is orthogonal to itself is orthogonal to every element of
the graph.
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A Hilbert space H exists whose elements are entire functions and which contains the
function

K+(w, z + 1
2 ih) +K−(w, z − 1

2 ih)

of z as reproducing kernel function for function values at w for every complex number w.
An isometric transformation of the graph onto a dense subset of H is defined by taking

F (z) = (F+(z), F−(z))

into

F+(z + 1
2
ih) + F−(z − 1

2
ih).

This completes the construction of a Hilbert space of entire functions with the desired
reproducing kernel functions when the maximal dissipative transformation in the space
H(E) exists. The argument is reversed as in the proof of Theorem 1 to construct the
maximal dissipative transformation in the space H(E) when the Hilbert space of entire
functions with the desired reproducing kernel functions exists.

An element H(z) of the space H(E) which satisfies the equation

H(z) +H(z + ih) = 0

vanishes identically if it has a zero. The space of such functions has dimension zero or one.
The space of elements H(z) of the space H(E) which satisfy the equation

H(z) + exp(ha)H(z + ih) = 0

for a real number a has the same dimension. A solution of the equation for a real number
a is a product

exp(ias)H(z)

with H(z) a solution of the equation when a is zero. Since the function

exp(ias)H(z)

belongs to the space H(E) for every real number a when H(z) is a solution of the equation
when a is zero, the solution H(z) of the equation vanishes identically.

This completes the proof of the theorem.

The Riemann hypothesis for Hilbert spaces of entire functions admits a formulation
which applies to zeta functions having a singularity. Hilbert spaces are replaced in the
construction by Krein spaces of Pontryagin index at most one.

Theorem 3. A nearly maximal dissipative transformation in a weighted Hardy space
F(W ) is defined for a positive number h by taking F (z) into F (z + ih) whenever the
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functions of z belong to the space if, and only if, the function W (z − 1
2
ih) admits an ana-

lytic extension to the upper half–plane with the possible exception of a simple pole, and a
Krein space of Pontryagin index at most one exists which contains the function

[W (z − 1
2
ih)W (w + 1

2
ih)− +W (z + 1

2
ih)W (w − 1

2
ih)−]/[2πi(w− − z)]

of z as reproducing kernel function for function values at w when w is in the upper half–
plane and is not a singularity.

Proof of Theorem 3. A Krein space H of Pontryagin index at most one whose elements are
functions of analytic in the upper half–plane, with the possible exception of a simple pole,
is constructed when a nearly maximal dissipative transformation in the weighted Hardy
space F(W ) is defined by taking F (z) into F (z + ih) whenever the functions of z belong
to the space. The space is constructed from the graph of the adjoint of the transformation
which takes F (z) into F (z + ih) whenever the functions of z belong to the space.

An element
F (z) = (F+(z), F−(z))

of the graph is a pair of analytic functions of z, which belong to the space F(W ), such
that the adjoint takes F+(z) into F−(z). The scalar product

〈F (t), G(t)〉 = 〈F+(t), G−(t)〉F(W ) + 〈F−(t), G+(t)〉F(W )

of elements F (z) and G(z) of the graph is defined as a sum of scalar products in the space
F(W ). Scalar self–products are nonnegative in a subspace of the graph of codimension one
since the adjoint of a nearly maximal dissipative transformation is dissipative on a closed
invariant subspace of codimension at most one.

An element
K(w, z) = (K+(w, z), K−(w, z))

of the graph is defined when w is in the half–plane

h < iw− − iw

by
K+(w, z) = W (z)W (w − 1

2 ih)−/[2πi(w− + 1
2 ih− z)]

and
K−(w, z) = W (z)W (w + 1

2 ih)−/[2πi(w− − 1
2 ih− z)].

The identity
F+(w + 1

2 ih) + F−(w − 1
2 ih) = 〈F (t), K(w, t)〉

holds for every element
F (z) = (F+(z), F−(z))

of the graph.
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The function

[W (z + 1
2
ih)W (w − 1

2
ih)− +W (z − 1

2
ih)W (w + 1

2
ih)−]/[2πi(w− − z)]

of z is the reproducing kernel function for function values at w in the space H. Division
by W (z + 1

2
ih) acts as an isometric transformation of the space H onto a Krein space of

Pontryagin index at most one. The function

φ(z) = W (z − 1
2 ih)/W (z + 1

2 ih)

of z admits an analytic extension to the upper half–plane with the possible exception of a
simple pole. The function

[φ(z) + φ(w)−]/[2πi(w− − z)]

of z is the reproducing krenel function for function values at w when w is in the upper
half–plane and is not a singularity.

The function φ(z) has an analytic extension to the upper half–plane with the possible
exception of a simple pole. The function

[φ(z) + φ(w)−]/[2πi(w− − z)]

of z belongs to the space for all elements w of the space other than the singularity and acts
as reproducing kernel for function values at w. The elements of the space have analytic
extensions to the upper half–plane with the exception of the singularity of φ(z).

The argument is reversed to construct a nearly maximal dissipative transformation in
the weighted Hardy space F(W ) when the function φ(z) admits an analytic extension to
the upper half–plane with the possible exception of a simple pole and when a Krein space
of Pontryagin index at most one exists whose elements are functions analytic in the upper
half–plane with the possible exception of a simple pole at the pole of φ(z) and which
contains the function

[φ(z) + φ(w)−]/[2πi(w− − z)]

of z as reproducing kernel function for function values at w when w is an element of the
upper half–plane other than the simple pole.

This completes the proof of the theorem.

The Fourier transformation for the product skew–plane determines a quantized Fourier
transformation for the Dedekind skew–plane when applied to functions f(ξ+, ξ−) of ξ =
(ξ+, ξ−) in the product skew–plane of character χ which satisfy the identities

κ(ξ+, ξ−)f(ξ+, ωξ−) = κ(ξ+, ωξ−)f(ξ+, ξ−)

for every element ω of the adic skew–plane with conjugate as inverse and

f(ξ+, ξ−) = f(ξ+λ, ξ−λ)
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for every nonzero element λ of the algebraic skew–plane such that λ−λ is a ratio of generat-
ing positive integers which are relatively prime to ρ. A function f(ξ) of |xi in the Dedekind
skew–plane determines a function f∧(ξ+, ξ−) of ξ = (ξ+, ξ−) in the product skew–plane
which satisfies the identities such that

f(ξ) = f∧(ξ, 1)

for every element ξ of the Dedekind skew–plane. The function f(ξ) of ξ in the Dedekind
skew–plane is square integrable with respect to the canonical measure if, and only if, the
function f(ξ+, ξ−) of ξ = (ξ+, ξ−) in the product skew–plane is square integrable with
respect to the canonical measure over the set of elements whose adic component is integral
and has integral inverse.

The quantized Fourier transform of a function f(ξ) of ξ in the Dedekind skew–plane is
the function g(ξ) of ξ in the Dedekind skew–plane such that the identity

g∧(ξ+, ξ−) =

∫
exp(πi(ξ−+η+ + η−+ξ−)) exp(−πi(ξ−−η− + η−−ξ−))f∧(η+, η−)dη

holds for almost all elements ξ = (ξ+, ξ−) of the product skew–plane with integration with
respect to the canonical measure for the product skew–plane over the set of elements whose
adic component is integral and has integral inverse.

The Laplace transformation defined by a theta function is reformulated as a transfor-
mation which takes functions of a Dedekind variable into functions of a Dedekind variable.
The quantized Laplace kernel

φ(ξ) = κ(ξ, 1)

is the homogeneous harmonic polynomial of degree ν which is obtained from the Laplace
kernel when the adic variable is equal to the unit. The conjugate quantized Laplace kernel

φ∧(ξ) = κ∧(ξ, 1)

applies to the conjugate theta function.

The domain of the quantized Laplace transformation is the Hilbert space of functions
f(ξ) of ξ in the Dedekind skew–plane which are square integrable with respect to the
canonical measure and which satisfy the identity

φ(ξ)f(ωξ) = φ(ωξ)f(ξ)

for every element ω of the Dedekind skew–plane with conjugate as inverse.

The range of the Laplace transformation is characterized by the quantized Laplace space
of order ν. The space is the Hilbert space of analytic functions G(z) of z in the upper
half–plane with finite integral∫ ∞

0

∫ +∞

−∞
|G(x+ iy)|2y2+νdxdy.
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The range of the Laplace transformation is the set of analytic functions F (z) of z in the
upper half–plane such that the function

G(z) =
∑

n
1
2 ντ(n)n2F (nz)

of z in the upper half–plane belongs to the reduced Laplace space of order ν. Summation
is over the generating positive integers n which are relatively prime to ρ.

When ν is positive or ρ is not one, the quantized Laplace transform of a function f(ξ)
of ξ in the Dedekind skew–plane is the analytic function

F (z) =

∫
(ξ−ξ)φ(ξ)−f(ξ)θ∗(zξ−ξ)dξ

of z in the upper half–plane which is defined as an integral with respect to the canonical
measure for the Dedekind skew–plane when the integral is absolutely convergent. When
ν is zero and ρ is one, the quantized Laplace transform of the function f(ξ) of ξ in the
Dedekind skew–plane is the analytic function

F (z) =

∫
(ξ−ξ)f(ξ)[θ(zξ−ξ)− 1]dξ

of z in the upper half–plane which is defined as an integral with respect to the same
measure. The identity

(1 + 2ν)

∫ ∞
0

∫ +∞

−∞
|G(x+ iy)|2y2+νdxdy = 2(2π)−ν−2Γ(3 + ν)

∫
|f(ξ)|2dξ

holds with integration on the right with respect to the canonical measure for the Dedekind
skew–plane. The quantized Laplace transformation is defined so as to maintain the identity.

A maximal dissipative transformation is defined in the domain of the quantized Laplace
transformation when ν is positive or ρ is not one. The transformation takes a function
f(ξ) of ξ in the Dedekind skew–plane into a function g(ξ) of the Dedekind skew–plane
when the identity∫

(ξ−ξ)φ(ξ)−g(ξ)θ∗(zξ−ξ)dξ = (i/z)

∫
(ξ−ξ)φ(ξ)−f(ξ)θ∗(zξ−ξ)dξ

holds for z in the upper half–plane. The integrals with respect to the canonical measure
for the Dedekind skew–plane are interpreted as reduced Laplace transforms when they are
not absolutely convergent.

A nearly maximal dissipative transformation is defined in the domain of the quantized
Laplace transformation when ν is zero and ρ is one. The transformation takes a function
f(ξ) of ξ in the Dedekind skew–plane into a function g(ξ) of ξ in the Dedekind skew–plane
when the identity∫

(ξ−ξ)g(ξ)[θ(zξ−ξ)− 1]dξ = (i/z)

∫
(ξ−ξ)f(ξ)[θ(zξ−ξ)− 1]dξ
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holds for z in the upper half–plane. The integrals with respect to the canonical measure
for the Dedekind skew–plane are interpreted as reduced Laplace transforms when they are
not absolutely convergent.

The Mellin transformation defined by a theta function is an application of the quantized
Laplace transformation defined by the theta function. The quantized Laplace transform
of a function f(ξ) of ξ in the Dedekind skew–plane is the analytic function

g(z) =

∫
(ξ−ξ)φ(ξ)−f(ξ)θ∗(zξ−ξ)dξ

of z in the upper half–plane when v is positive or ρ is not one and is the function

g(z) =

∫
(ξ−ξ)f(ξ)[θ(zξ−ξ)− 1]dξ

of z in the upper half–plane when ν is zero and ρ is one. The integral with respect to
the canonical measure for the Dedekind skew–plane is interpreted as a Laplace transform
when it is not absolutely convergent. The Mellin transform is the analytic function

F (z) =

∫ ∞
0

g(it)t
1
2 ν+1−izdt

of z in the upper half–plane which is defined when for some positive number a the function
f(ξ) of ξ in the Dedekind skew–plane vanishes in the neighborhood

ξ−ξ < a

of the origin.

Since the analytic function

W (z) = π−
1
2 ν−2+izΓ( 1

2ν + 2− iz)ζ(2− iz)

of z in the upper half–plane admits the integral representation

W (z) = (ξ−ξ)
1
2 ν+2−iz

∫ ∞
0

θ(it)t
1
2 ν+1−izdt

when ν is positive or ρ is not one and the integral representation

W (z) = (ξ−ξ)2−iz
∫ ∞

0

[θ(it)− 1]t1−izdt

when ν is zero and ρ is one, the identity

F (z)/W (z) =

∫
φ(ξ)−f(ξ)(ξ−ξ)−

1
2 ν−1+izdξ



RIEMANN ZETA FUNCTIONS 69

holds when z is in the upper half–plane with integration with respect to the canonical
measure. The identity

(1 + 2ν)

∫ +∞

−∞
|F (x+ iy)/W (x+ iy)|2dx = 16π2

∫
|f(ξ)|2(ξ−ξ)−2ydξ

holds when y is positive with integration on the right with respect to the canonical measure
for the Dedekind skew–plane.

The function W (z) of z is analytic and without zeros in the upper half–plane. An
analytic function F (z) of z in the upper half–plane is the Laplace transform of a function
which vanishes when ξ−ξ < a if, and only if, the least upper bound

sup a2y

∫ +∞

−∞
|F (x+ iy)/W (x+ iy)|2dx

taken over all positive y is finite.

The weighted Hardy space F(W ) is the set of Mellin transforms of functions f(ξ) of |xi
in the Dedekind skew–plane which vanish when

ξ−ξ < 1.

If ν is positive or if ρ is not one, a maximal dissipative transformation is defined in the space
when h is in the interval [0, 1] by taking F (z) into F (z + ih) whenever the functions of z
belong to the space. If ν is zero and ρ is one, a nearly maximal dissipative transformation
is defined in the space when h is in the interval [0, 1] by taking F (z) into F (z + ih)
whenever the functions of z belong to the space. When v is zero and ρ is one, an isometric
transformation of the space onto itself is defined by taking F (z) into F (−z).

A zeta function of order ν and character χ is a function

ζ(s) =
∑

τ(n)n−s

which has an analytic extension to the complex plane when ν is positive or ρ is not one
and which has an analytic extension to the complex plane with the exception of a simple
pole at two when ν is zero and ρ is one. The zeta function has no zeros in the half–plane

Rs > 3
2 .

Examples of zeta functions associated with a primitive character modulo ρ are con-
structed from zeta functions associated with the character modulo one. A Laplace kernel
associated with the character modulo one is a function

φ(ξ+)



70 LOUIS DE BRANGES September 4, 2009

of ξ = (ξ+, ξ−) in the product skew–plane which is determined by a homogeneous harmonic
polynomial φ of degree ν in the Dedekind component of ξ. The zeta function∑

τ(n)n−s

is a sum over the generating positive integers n.

If χ is a primitive character modulo ρ for a generating positive integer ρ, a Laplace
kernel κ associated with the character χ is defined by

κ(ξ+, ξ−) = φ(ξ+)χ(ξ−−ξ−)

when the adic component of ξ = (ξ+, ξ−) is integral. The corresponding zeta function∑
τ(n)χ(n)n−s

is a sum over the generating positive integers n which are relatively prime to ρ.

Computable examples of zeta functions are obtained when ν is zero since the homoge-
neous harmonic polynomial φ is a constant. The zeta function∑

τ(n)n−s

associated with the character modulo one has coefficient τ(n) equal to the sum of the odd
divisors of n for every generating positive integer n.

Dirichlet zeta functions appear when all primes are generators of adic topology. The
Dirichlet zeta function

ζχ(s) =
∑

χ(n)n−s

defined by a primitive character χ modulo ρ is a sum over all positive integers n. The
Euler product

ζχ(s)−1 =
∏

(1− χ(p)p−s)

is taken over the primes p. Sum and product define the Dirichlet zeta function in the
half–plane

Rs > 1.

The Dirichlet zeta function admits an analytic extension to the complex plane when ρ
is not one. The functional identity states that the analytic extension of the function

(ρ/π)
1
2 sΓ( 1

2
s)ζχ(s)

of s and the function obtained on replacing s by 1− s and σ by σ− are linearly dependent
when χ is an even character. The analytic extension of the function

(ρ/π)
1
2 s+

1
2 Γ( 1

2s+ 1
2 )ζχ(s)
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of s and the function obtained on replacing s by 1− s and χ by χ− are linearly dependent
when χ is an odd character.

The Euler zeta function is the Dirichlet zeta function when ρ is one. The Euler zeta
function admits an analytic extension to the complex plane with the exception of a simple
pole at one. The Euler functional identity states that the analytic extension of the function

π−
1
2 sΓ( 1

2s)ζχ(s)

of s and the function obtained on replacing s by 1− s are equal. The conjugate character
χ− is identical with χ since χ is identically one on integral elements of the adic line.

The Euler duplication formula for the gamma function

2sΓ( 1
2
s)Γ( 1

2
s+ 1

2
) = 2

√
π Γ(s)

π
1
2 is acceptable if

√
π is awkward is applied in relating the functional identities for Dirichlet

zeta functions to the functional identities for Hecke zeta functions of order zero.

The identity ∑
χ(n)τ(n)n−s = (1− χ(2)21−s)ζχ(s)ζχ(s− 1)

expresses a zeta function of order zero associated with a primitive character χ modulo ρ
in terms of the Dirichlet zeta function associated with the character. The Dirichlet zeta
function is the Euler zeta function when ρ is one.

The Dirichlet zeta function has no zeros in the half–plane

Rs > 1
2
.

The Euler zeta function has no zeros in the half–plane.
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