HW \# 2

1 Page 63: \#1.65(a). (Find RREF).
02 Page 64: \#1.67(a).
3 For what value(s) of k, if any, will this system be inconsistent?

$$
\left\{\begin{array}{l}
2 x+k y=4 \\
x+k^{2} y=2+k
\end{array}\right.
$$

4 Which sets are linearly independent and which are linearly dependent?
(a) $\left.S=\left\{\left[\begin{array}{c}\mathbf{v}_{1} \\ 2 \\ 3\end{array}\right], \begin{array}{c}\mathbf{v}_{2} \\ {\left[\begin{array}{l}1 \\ 1\end{array}\right],}\end{array} \begin{array}{r}\mathbf{v}_{3} \\ -1 \\ 2\end{array}\right]\right\}$
(b) $S=\left\{\left[\begin{array}{ccc}\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3} \\ 1 & 2 & -1\end{array}\right],\left[\begin{array}{lll}2 & 2 & 1\end{array}\right],\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]\right\}$
A_{1}
(c) A_{2} $\begin{gathered}A_{3} \\ \left.S=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right],\left[\begin{array}{cc}1 & 3 \\ -2 & 0\end{array}\right]\right\}\end{gathered}$
(d) $S=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]\right\}$
(e) $S=\begin{array}{ccc}\boldsymbol{f}_{\mathbf{1}} & \boldsymbol{f}_{\mathbf{2}} & \boldsymbol{f}_{\mathbf{3}} \\ (1+x)^{2}, & \left(1+x^{2}\right), & \left.\left(1-2 x+x^{2}\right)\right\}\end{array}$

5 TRUE or FALSE Questions:

(a) If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}, \mathbf{0}\right\}$ is a set of vectors which contains the zero vector $\mathbf{0}$ (i.e., $\mathbf{0} \in S$), then S is always a linearly dependent set.
(b) If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}\right\}$ is a linearly dependent set of vectors, then every subset of S is also linearly dependent.
(c) If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}\right\}$ is a linearly independent set of vectors, then every subset of S is also linearly independent.

