HW \# 3

1 TRUE or FALSE Questions: Page 108: \# 2.2(a)(b), 2.7, 2.9.
2 TRUE or FALSE Questions: Page 122: \# 2.11.
3 Find a set of vectors in \mathbb{R}^{5} which span the Solution Space to $A \mathbf{x}=\mathbf{0}$, if

$$
A=\left[\begin{array}{lllll}
1 & 0 & 3 & 2 & 1 \\
2 & 0 & 5 & 3 & 5 \\
3 & 0 & 7 & 4 & 9 \\
2 & 0 & 4 & 2 & 8
\end{array}\right]
$$

4 TRUE or FALSE Questions: Page 85: \# 1.33, 1.34, 1.35.

55 Which subsets \mathcal{W} of $V(\mathcal{W} \subset V)$ are actually subspaces of V ? (Justify your answers.)
(a) $\mathcal{W}=\left\{\left[\begin{array}{lll}x & y & 0 \\ 3 & x & z\end{array}\right]: x, y, z \in \mathbb{R}\right\} ; \quad V=M(2,3)$
(b) $\mathcal{W}=\left\{\left[\begin{array}{l}a \\ 0 \\ b\end{array}\right]:\right.$ where $\left.a b=0\right\} ; \quad V=\mathbb{R}^{3}$
(c) $\mathcal{W}=\left\{\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]: a d-b c=0\right\} ; \quad V=M(2,2)$
(d) $\mathcal{W}=\left\{\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]: a d-b c \neq 0\right\} ; \quad V=M(2,2)$
(e) $\mathcal{W}=\left\{p(x)=a+b x+c x^{2}+d x^{3} \in \mathcal{P}_{3}: p(1)=0\right.$ and $\left.p(-1)=0\right\} ; \quad V=\mathcal{P}_{3}$.
(f) $\mathcal{W}=\left\{\mathrm{x} \in \mathbb{R}^{3}: A \mathrm{x}=\mathbf{0}\right\}$, where A is a fixed 2×3 matrix; $V=\mathbb{R}^{3}$.

